
1

Grove - 3-Axis Digital

Accelerometer(±16g)

Version： 1.0

Release date： 9/20/2015

Wiki: http://www.seeedstudio.com/wiki/Grove_-_3-Axis_Digital_Accelerometer_ADXL345

Bazaar: http://www.seeedstudio.com/depot/Grove-3Axis-Digital-Accelerometer16g-p-1156.html

http://www.seeedstudio.com/wiki/Grove_-_3-Axis_Digital_Accelerometer_ADXL345
http://www.seeedstudio.com/depot/Grove-3Axis-Digital-Accelerometer16g-p-1156.html

2

Document Revision History

Revision Date Author Description

1.0 Sep 21, 2015 Victor.He Create file

3

Contents

Document Revision History ··· 2

1. Introduction ··· 2

2. Specifications ··· 3

3. Demonstration ··· 4

3.1 With Arduino ··· 4

3.2 With Raspberry Pi ··· 5

3.3 With Beaglebone Green ·· 8

4. Resources ··· 12

1

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to product quality,

such as operating without following manual guide, natural disasters or force majeure, we take no

responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published which

covered the latest product description and specification. The content of this manual is subject to change

without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any action to

violate relevant right of our product will be penalized through law. Please consciously observe relevant local

laws in the use of this product.

2

1. Introduction

This is a high resolution digital accelerometer providing you at max 3.9mg/LSB resolution and

large ±16g measurement range. It's based on an advanced 3-axis IC ADXL345. Have no worry to

implement it into your free-fall detection project, cause it's robust enough to survive up to 10,000g

shock. Meanwhile, it's agile enough to detect single and double taps. It's ideal for motion detection,

Gesture detection as well as robotics.

3

2. Specifications

 Input Voltage: 3.3V, 5V

 Test Range: ±16

 High sensitivity

 Large measurement range

 Low power 0.1 μA in standby mode at VS = 2.5 V (typical)

 10,000 g shock survival

 RoHS/WEEE lead-free compliant

 Suli-compatible Library

Note: More details about Suli-compatible Library, please refer to Suli

http://www.seeedstudio.com/wiki/Suli

4

3. Demonstration

3.1 With Arduino

Every accelerometer has been individually tested before shipping to you. But in rare cases, you

might need to reset the zero-offset by yourself.

Here below we show you how to read the raw data and obtain data in the unit of g, AKA g-force,

from this accelerometer.

1. Plug it onto the I2C port of your Grove - Base Shield.

2. Download the Digital Accelerometer(±16g) Library .zip and unpack it into arduino-1.0\libraries

in your Arduino installation folder.

3. Open the demo code directly by the path:File -> Example

->DigitalAccelerometer_ADXL345->ADXL345_demo_code.

4. Upload the code and open the serial monitor. Please click here if you do not know how to

upload.

5. Open the serial monitor to check the result.

http://www.seeedstudio.com/wiki/Arduino
http://www.seeedstudio.com/depot/grove-base-shield-p-754.html?cPath=132_134
http://www.seeedstudio.com/wiki/File:DigitalAccelerometer_ADXL345.zip
http://www.seeedstudio.com/wiki/Upload_Code
http://www.seeedstudio.com/wiki/File:Grove_-_3-Axis_Digital_Accelerometer_ADXL345_connect_photo.JPG

5

The outputs of this sensor consist of two parts: raw data and 3-axis acceleration info converted

into the unit of gravity, "g".

3.2 With Raspberry Pi

1. You should have got a raspberry pi and a grovepi or grovepi+.

2. You should have completed configuring the development environment, otherwise follow here.

3. Connection. Plug the sensor to grovepi socket i2c-x(1~3) by using a grove cable.

4. Navigate to the demos' directory:

cd yourpath/GrovePi/Software/Python/

To see the code

http://www.seeedstudio.com/wiki/GrovePi%2B
http://www.seeedstudio.com/wiki/GrovePi%2B#Introducing_the_GrovePi.2B
http://www.seeedstudio.com/wiki/File:Digital_Accelerometer.jpg

6

nano grovepi_tilt_switch.py # "Ctrl+x" to exit #

import smbus

from time import sleep

select the correct i2c bus for this revision of Raspberry Pi

revision = ([l[12:-1] for l in open('/proc/cpuinfo','r').readlines() if

l[:8]=="Revision"]+['0000'])[0]

bus = smbus.SMBus(1 if int(revision, 16) >= 4 else 0)

ADXL345 constants

EARTH_GRAVITY_MS2 = 9.80665

SCALE_MULTIPLIER = 0.004

DATA_FORMAT = 0x31

BW_RATE = 0x2C

POWER_CTL = 0x2D

BW_RATE_1600HZ = 0x0F

BW_RATE_800HZ = 0x0E

BW_RATE_400HZ = 0x0D

BW_RATE_200HZ = 0x0C

BW_RATE_100HZ = 0x0B

BW_RATE_50HZ = 0x0A

BW_RATE_25HZ = 0x09

RANGE_2G = 0x00

RANGE_4G = 0x01

RANGE_8G = 0x02

RANGE_16G = 0x03

MEASURE = 0x08

AXES_DATA = 0x32

class ADXL345:

 address = None

 def __init__(self, address = 0x53):

 self.address = address

 self.setBandwidthRate(BW_RATE_100HZ)

 self.setRange(RANGE_2G)

 self.enableMeasurement()

7

 def enableMeasurement(self):

 bus.write_byte_data(self.address, POWER_CTL, MEASURE)

 def setBandwidthRate(self, rate_flag):

 bus.write_byte_data(self.address, BW_RATE, rate_flag)

 # set the measurement range for 10-bit readings

 def setRange(self, range_flag):

 value = bus.read_byte_data(self.address, DATA_FORMAT)

 value &= ~0x0F;

 value |= range_flag;

 value |= 0x08;

 bus.write_byte_data(self.address, DATA_FORMAT, value)

 # returns the current reading from the sensor for each axis

 #

 # parameter gforce:

 # False (default): result is returned in m/s^2

 # True : result is returned in gs

 def getAxes(self, gforce = False):

 bytes = bus.read_i2c_block_data(self.address, AXES_DATA, 6)

 x = bytes[0] | (bytes[1] << 8)

 if(x & (1 << 16 - 1)):

 x = x - (1<<16)

 y = bytes[2] | (bytes[3] << 8)

 if(y & (1 << 16 - 1)):

 y = y - (1<<16)

 z = bytes[4] | (bytes[5] << 8)

 if(z & (1 << 16 - 1)):

 z = z - (1<<16)

 x = x * SCALE_MULTIPLIER

 y = y * SCALE_MULTIPLIER

 z = z * SCALE_MULTIPLIER

 if gforce == False:

 x = x * EARTH_GRAVITY_MS2

 y = y * EARTH_GRAVITY_MS2

8

 z = z * EARTH_GRAVITY_MS2

 x = round(x, 4)

 y = round(y, 4)

 z = round(z, 4)

 return {"x": x, "y": y, "z": z}

if __name__ == "__main__":

 # if run directly we'll just create an instance of the class and

output

 # the current readings

 adxl345 = ADXL345()

 axes = adxl345.getAxes(True)

 print "ADXL345 on address 0x%x:" % (adxl345.address)

 print " x = %.3fG" % (axes['x'])

 print " y = %.3fG" % (axes['y'])

 print " z = %.3fG" % (axes['z'])

5. Run the demo.

sudo python grove_tilt_switch.py

3.3 With Beaglebone Green

To begin editing programs that live on BBG, you can use the Cloud9 IDE.

As a simple exercise to become familiar with Cloud9 IDE, creating a simple application to blink one

of the 4 user programmable LEDs on the BeagleBone is a good start.

If this is your first time to use Cloud9 IDE, please follow this link.

Step1: Set the Grove - UART socket as a Grove - GPIO Socket, just follow this link.

Step2: Click the "+" in the top-right to create a new file.

http://www.seeedstudio.com/wiki/Beaglebone_green#Getting_Started
http://www.seeedstudio.com/recipe/362-how-to-use-the-grove-uart-port-as-a-gpio-on-bbg.html

9

Step3: Copy and paste the following code into the new tab

import smbus

import time

bus = smbus.SMBus(1)

ADXL345 device address

ADXL345_DEVICE = 0x53

ADXL345 constants

EARTH_GRAVITY_MS2 = 9.80665

SCALE_MULTIPLIER = 0.004

DATA_FORMAT = 0x31

BW_RATE = 0x2C

POWER_CTL = 0x2D

BW_RATE_1600HZ = 0x0F

BW_RATE_800HZ = 0x0E

BW_RATE_400HZ = 0x0D

BW_RATE_200HZ = 0x0C

BW_RATE_100HZ = 0x0B

BW_RATE_50HZ = 0x0A

BW_RATE_25HZ = 0x09

RANGE_2G = 0x00

RANGE_4G = 0x01

RANGE_8G = 0x02

RANGE_16G = 0x03

http://www.seeedstudio.com/wiki/File:C9-create-tab.png
http://www.seeedstudio.com/wiki/File:C9_newfile.jpg

10

MEASURE = 0x08

AXES_DATA = 0x32

class ADXL345:

 address = None

 def __init__(self, address = ADXL345_DEVICE):

 self.address = address

 self.setBandwidthRate(BW_RATE_100HZ)

 self.setRange(RANGE_2G)

 self.enableMeasurement()

 def enableMeasurement(self):

 bus.write_byte_data(self.address, POWER_CTL, MEASURE)

 def setBandwidthRate(self, rate_flag):

 bus.write_byte_data(self.address, BW_RATE, rate_flag)

 # set the measurement range for 10-bit readings

 def setRange(self, range_flag):

 value = bus.read_byte_data(self.address, DATA_FORMAT)

 value &= ~0x0F;

 value |= range_flag;

 value |= 0x08;

 bus.write_byte_data(self.address, DATA_FORMAT, value)

 # returns the current reading from the sensor for each axis

 #

 # parameter gforce:

 # False (default): result is returned in m/s^2

 # True : result is returned in gs

 def getAxes(self, gforce = False):

 bytes = bus.read_i2c_block_data(self.address, AXES_DATA, 6)

 x = bytes[0] | (bytes[1] << 8)

 if(x & (1 << 16 - 1)):

 x = x - (1<<16)

 y = bytes[2] | (bytes[3] << 8)

 if(y & (1 << 16 - 1)):

11

 y = y - (1<<16)

 z = bytes[4] | (bytes[5] << 8)

 if(z & (1 << 16 - 1)):

 z = z - (1<<16)

 x = x * SCALE_MULTIPLIER

 y = y * SCALE_MULTIPLIER

 z = z * SCALE_MULTIPLIER

 if gforce == False:

 x = x * EARTH_GRAVITY_MS2

 y = y * EARTH_GRAVITY_MS2

 z = z * EARTH_GRAVITY_MS2

 x = round(x, 4)

 y = round(y, 4)

 z = round(z, 4)

 return {"x": x, "y": y, "z": z}

if __name__ == "__main__":

 # if run directly we'll just create an instance of the class and

output

 # the current readings

 adxl345 = ADXL345()

 while True:

 axes = adxl345.getAxes(True)

 print "ADXL345 on address 0x%x:" % (adxl345.address)

 print " x = %.3fG" % (axes['x'])

 print " y = %.3fG" % (axes['y'])

 print " z = %.3fG" % (axes['z'])

 time.sleep(2)

Step4: Save the file by clicking the disk icon with with the .py extension.

Step5: Connect Grove - 3-Axis Digital Accelerometer(±16g) to Grove I2C socket on BBG.

Step6: Run the code. You'll find that the terminal outputs Gravity info every 2 seconds.

