

HMC408LP3 / 408LP3E

v03.0705

GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz

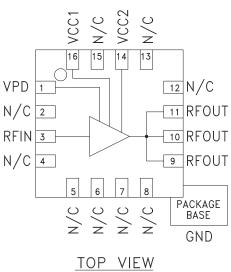
Typical Applications

The HMC408LP3 / HMC408LP3E is ideal for:

- 802.11a & HiperLAN WLAN
- UNII & Point-to-Point / Multi-Point Radios
- Access Point Radios

Features

Gain: 20 dB


Saturated Power: +32.5 dBm @ 27% PAE

Single Supply Voltage: +5V

Power Down Capability

3x3 mm Leadless SMT Package

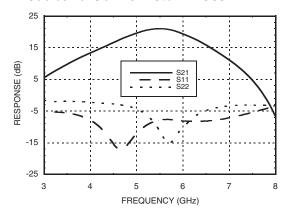
Functional Diagram

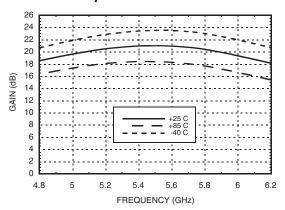
General Description

The HMC408LP3 & HMC408LP3E are 5.1 - 5.9 GHz high efficiency GaAs InGaP Heterojunction Bipolar Transistor (HBT) Power Amplifier MMICs which offer +30 dBm P1dB. The amplifier provides 20 dB of gain, +32.5 dBm of saturated power, and 27% PAE from a +5V supply voltage. The input is internally matched to 50 Ohms while the output requires a minimum of external components. Vpd can be used for full power down or RF output power/current control. The amplifier is packaged in a low cost, 3x3 mm leadless surface mount package with an exposed base for improved RF and thermal performance.

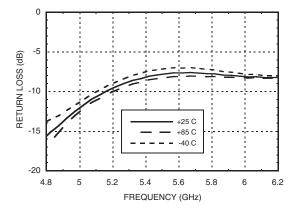
Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = 5V, Vpd = 5V

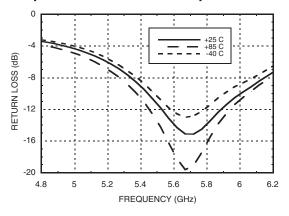
Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range			5.7 - 5.9		5.1 - 5.9		GHz	
Gain		17	20		17	20		dB
Gain Variation Over Temperature			0.045	0.055		0.045	0.055	dB/°C
Input Return Loss			8			8		dB
Output Return Loss*			14			6		dB
Output Power for 1 dB Compression (P1dB)	Icq= 750 mA Icq= 500 mA	27	30 27		24	27 23		dBm
Saturated Output Power (Psat)			32.5			31		dBm
Output Third Order Intercept (IP3)		40	43		36	39		dBm
Harmonics, Pout= 30 dBm, F= 5.8 GHz	2 fo 3 fo		-50 -90			-50 -90		dBc dBc
Noise Figure			6			6		dB
Supply Current (Icq)	Vpd= 0V/5V		0.002 / 750			0.002 / 750		mA
Control Current (Ipd)	Vpd= 5V		14			14		mA
Switching Speed	tOn, tOff		50			50		ns

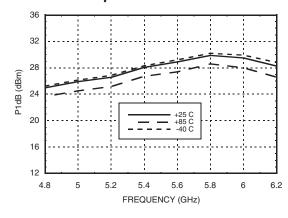

^{*} Output match optimized for 5.7 - 5.9 GHz operation. See Application Circuit herein.



GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz


Broadband Gain & Return Loss

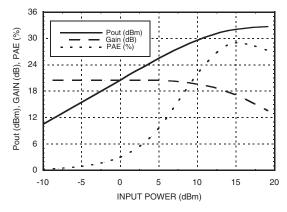

Gain vs. Temperature

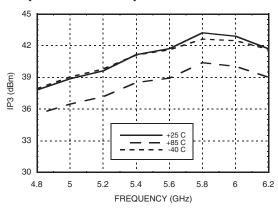

Input Return Loss vs. Temperature

Output Return Loss vs. Temperature*

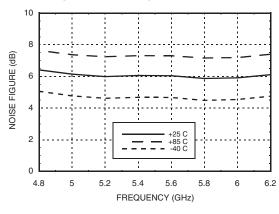
P1dB vs. Temperature

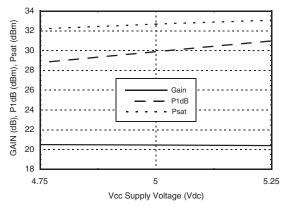
Psat vs. Temperature

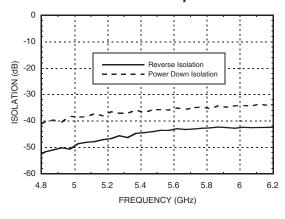

^{*} Output match optimized for 5.7 - 5.9 GHz.

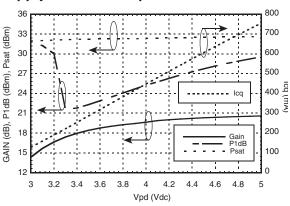


GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz


Power Compression @ 5.8 GHz


Output IP3 vs. Temperature


Noise Figure vs. Temperature


Gain & Power vs. Supply Voltage @ 5.8 GHz

Reverse Isolation vs. Temperature

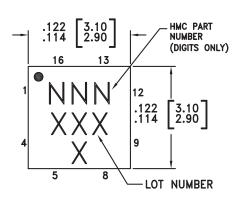
Gain, Power & Quiescent Supply Current vs. Vpd @ 5.8 GHz

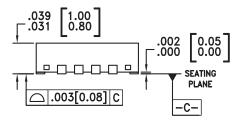
Absolute Maximum Ratings

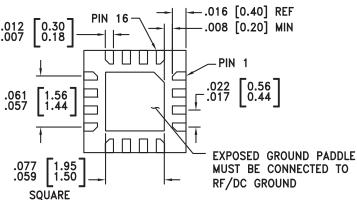
Collector Bias Voltage (Vcc1, Vcc2)	+5.5 Vdc
Control Voltage (Vpd)	+5.5 Vdc
RF Input Power (RFIN)(Vs = Vpd = +5Vdc)	+20 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 72.5 mW/°C above 85 °C)	4.71 W
Thermal Resistance (junction to ground paddle)	13.8 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz

Typical Supply Current vs. Vs= Vcc1 + Vcc2


Vs (V)	Icq (mA)	
4.75	725	
5.0	750	
5.25	780	


Note: Amplifier will operate over full voltage range shown above


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO POR BE GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

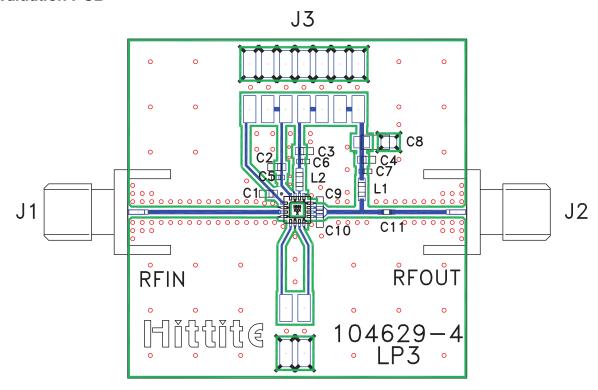
Package Information

Part Number	Part Number Package Body Material		MSL Rating	Package Marking [3]
HMC408LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	408 XXXX
HMC408LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	408 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1	Vpd	Power control pin. For maximum power, this pin should be connected to 5V. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	OVPD
2, 4, 5 - 8, 12, 13, 15	N/C	No Connection	
3	RFIN	This pin AC coupled and matched to 50 Ohms.	RFIN O—
9, 10, 11	RFOUT	RF output and DC bias for the output stage.	ORFOUT ORFOUT
14	Vcc2	Power supply voltage for the second amplifier stage. External bypass capacitors and pull up choke are required as shown in the application schematic.	ovcc1 vcc2
16	Power supply voltage for the first amplifier stage. External bypass capacitors are required as shown in the application schematic.		=
	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	GND =

GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz

Evaluation PCB

List of Materials for Evaluation PCB 105180 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3	2 mm DC Header	
C1 - C4	1,000 pF Capacitor, 0603 Pkg.	
C5 - C7	100 pF Capacitor, 0402 Pkg.	
C8	2.2 µF Tantalum Capacitor	
C9 - C10	0.5 pF Capacitor, 0603 Pkg.	
C11	10 pF Capacitor, 0402 Pkg.	
L1 - L2	1.6 nH Inductor, 0603 Pkg.	
U1	HMC408LP3 / HMC408LP3E Amplifier	
PCB [2]	104629 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

GaAs InGaP HBT MMIC 1 WATT POWER AMPLIFIER, 5.1 - 5.9 GHz

Application Circuit

Recommended Component Values			
L1, L2 1.6 nH			
C1 - C4	1,000 pF		
C5 - C7	100 pF		
C8	2.2 μF		
C9 - C10	0.5 pF		

	TL1	TL2
Impedance	50 Ohm	50 Ohm
Length	0.200"	0.100"

Note 1: C9, C10 should be located < 0.020" from pins 9, 10, & 11.

Note 2: Application circuit values shown are optimized for 5.7 - 5.9 GHz operation.

Contact our Applications Engineers for optimization of output match for other frequencies.