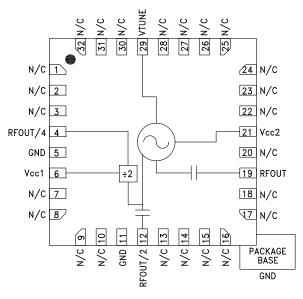


HMC513LP5 / 513LP5E

v04.0811


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 10.43 - 11.46 GHz

Typical Applications

Low noise MMIC VCO w/Half Frequency, Divide-by-4 Outputs for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 10.43 - 11.46 GHz

Fo/2 = 5.21 - 5.73 GHz

Pout: +7 dBm

Phase Noise: -110 dBc/Hz @100 KHz Typ.

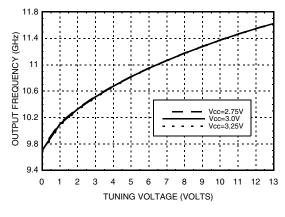
No External Resonator Needed

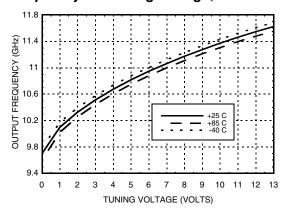
32 Lead 5x5mm SMT Package: 25mm²

General Description

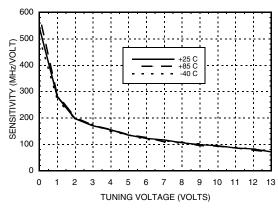
The HMC513LP5 & HMC513LP5E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC513LP5 & HMC513LP5E integrate resonators, negative resistance devices, varactor diodes and feature half frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +7 dBm typical from a +3V supply voltage. The prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

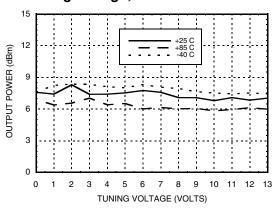
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2 = +3V

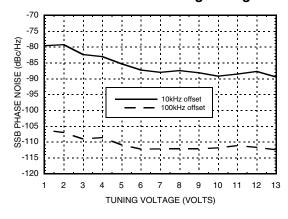

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2	10.43 - 11.46 5.215 - 5.73		GHz GHz	
Power Output	RFOUT/ RFOUT/2 RFOUT/4	+5 +5 -10		+10 +11 -4	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-110		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	lcc1 & lcc2	240	275	290	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 3/2 2nd 3rd		32 26 15 28		dBc dBc dBc dBc
Pulling (into a 2.0:1 VSWR)			5		MHz pp
Pushing @ Vtune= 5V			25		MHz/V
Frequency Drift Rate			1		MHz/°C

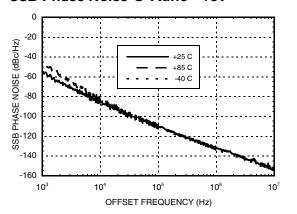


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 10.43 - 11.46 GHz


Frequency vs. Tuning Voltage, T= 25°C

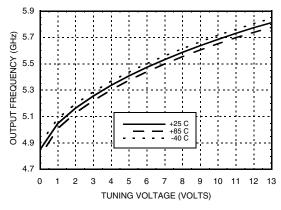

Frequency vs. Tuning Voltage, Vcc= +3V

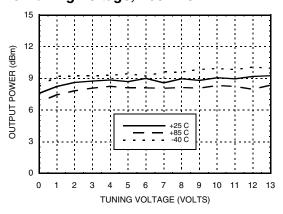

Sensitivity vs. Tuning Voltage, Vcc= +3V


Output Power vs. Tuning Voltage, Vcc= +3V

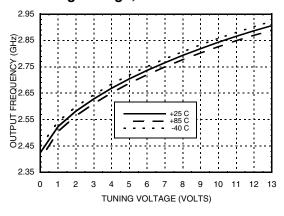
SSB Phase Noise vs. Tuning Voltage

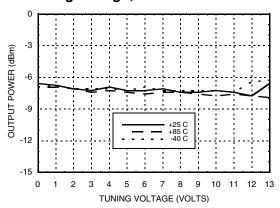
SSB Phase Noise @ Vtune= +5V





MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 10.43 - 11.46 GHz


RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +3V


RFOUT/2 Output Power vs. Tuning Voltage, Vcc= +3V

Divide-by-4 Frequency vs. Tuning Voltage, Vcc= +3V

Divide-by-4 Output Power vs. Tuning Voltage, Vcc= +3V

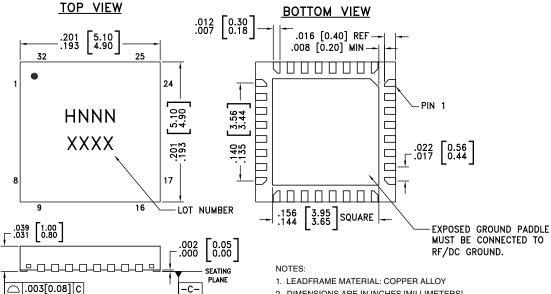
Absolute Maximum Ratings

Vcc1, Vcc2	+3.5 Vdc
Vtune	0 to +15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 27 mW/C above 85 °C	1.3 W
Thermal Resistance (junction to ground paddle)	37.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
2.75	230
3.0	275
3.25	320

 ${\it Note: VCO\ will\ operate\ over\ full\ voltage\ range\ shown\ above.}$


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 10.43 - 11.46 GHz

Outline Drawing

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

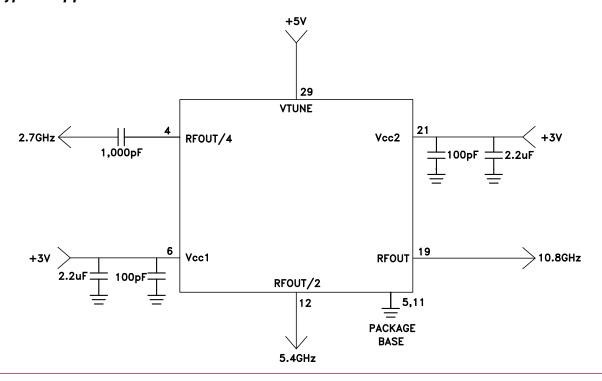
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC513LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 [1]	H513 XXXX
HMC513LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 [2]	<u>H513</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 3, 7 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 Output	ORFOUT/4
6	VCC1	Supply Voltage for prescaler. If prescaler is not required, this pin may be left open to conserve 40 mA of current.	Vcc10 14pF



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 10.43 - 11.46 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
12	RFOUT/2	Half frequency output (AC coupled).	HORFOUT/2
19	RFOUT	RF output (AC coupled).	RFOUT
21	VCC2	Supply Voltage, +3V	Vcc2 O
29	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	3nH VTUNEO
5, 11, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	○ GND =

Typical Application Circuit

