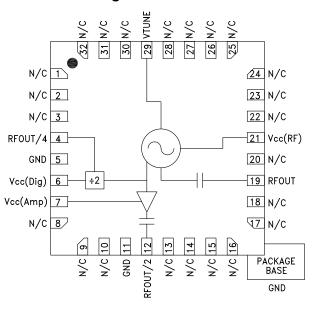


HMC632LP5 / 632LP5E

v03.0811


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 14.25 - 15.65 GHz

Typical Applications

The HMC632LP5(E) is ideal for:

- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- SATCOM
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 14.25 - 15.65 GHz

Fo/2 = 7.125 - 7.825 GHz

Pout: +9 dBm

Phase Noise: -107 dBc/Hz @100 kHz Typ.

No External Resonator Needed

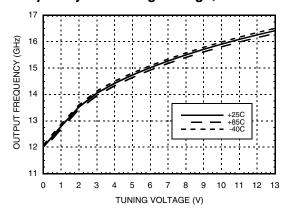
32 Lead 5x5mm SMT Package: 25mm²

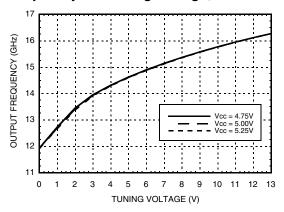
General Description

The HMC632LP5(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC632LP5(E) integrates resonators, negative resistance devices, varactor diodes and features half-frequency and divide-by-4 outputs. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a +5V supply voltage. The prescaler and RF/2 functions can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

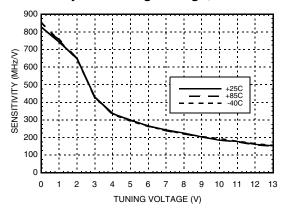
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc (Dig), Vcc (Amp), Vcc (RF) = +5V

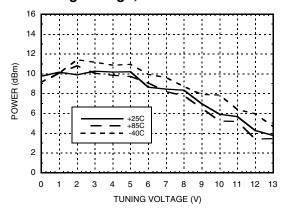
Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2	14.25 - 15.65 7.125 - 7.825			GHz GHz
Power Output	RFOUT/2 RFOUT/4	4 7 -8		12 13 -2	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-107		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	Icc(Dig) + Icc(Amp) + Icc(RF)	280	350	400	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			2		dB
Harmonics/Subharmonics	1/2 2nd		25 25		dBc dBc
Pulling (into a 2.0:1 VSWR)			10		MHz pp
Pushing @ Vtune= 5V		·	35		MHz/V
Frequency Drift Rate			1.0		MHz/°C

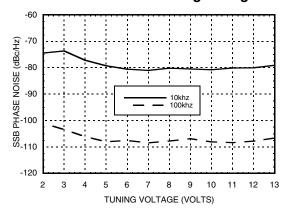


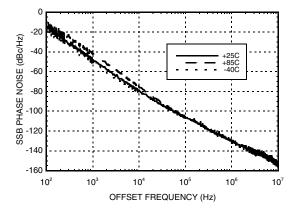

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 14.25 - 15.65 GHz

Frequency vs. Tuning Voltage, Vcc = +5V


v03.0811

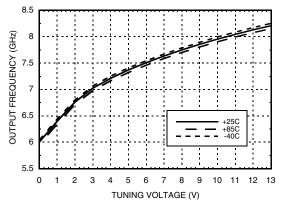

Frequency vs. Tuning Voltage, T= 25°C

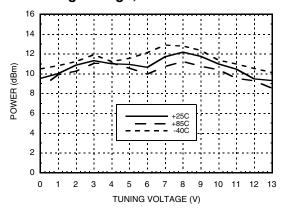

Sensitivity vs. Tuning Voltage, Vcc = +5V


Output Power vs. Tuning Voltage, Vcc = +5V

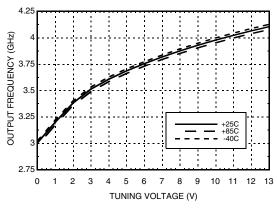
SSB Phase Noise vs. Tuning Voltage

SSB Phase Noise @ Vtune = +5V




MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 14.25 - 15.65 GHz

RFOUT/2 Frequency vs. Tuning Voltage, Vcc = +5V



v03.0811

RFOUT/2 Output Power vs. Tuning Voltage, Vcc = +5V

Divide-by-4 Frequency vs. Tuning Voltage, Vcc = +5V

Divide-by-4 Output Power vs. Tuning Voltage, Vcc = +5V

Absolute Maximum Ratings

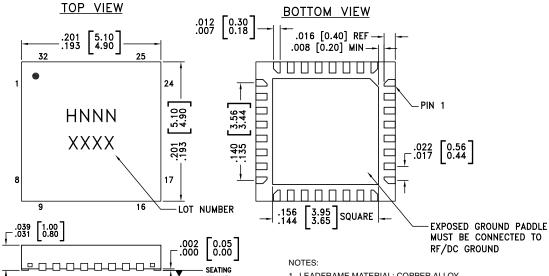
Vcc(Dig), Vcc(Amp), Vcc(RF)	+5.5 Vdc
Vtune	0 to +15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 46 mW/C above 85 °C	2.27 W
Thermal Resistance (junction to ground paddle)	22 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	325
5.00	350
5.25	375

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



HMC632LP5 / 632LP5E

v03.0811

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4. 14.25 - 15.65 GHz

Outline Drawing

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

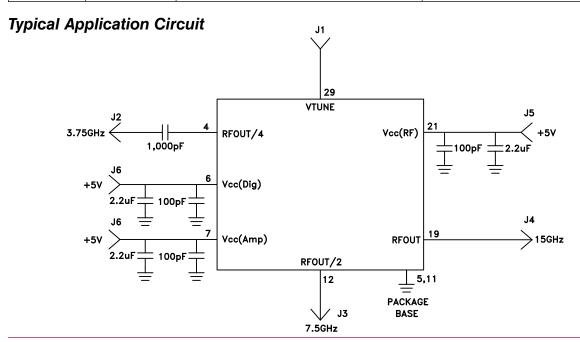
△ .003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC632LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 [1]	H632 XXXX
HMC632LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 [2]	<u>H632</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 3, 8 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
4	RFOUT/4	Divide-by-4 output. DC block required.	5V O RFOUT/4
6	Vcc (Dig)	Supply voltage for prescaler. If prescaler is not required, this pin may be left open to conserve approximately 65 mA of current.	Vcc(Dig) 22pF



v03.0811

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-4, 14.25 - 15.65 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
7	Vcc (Amp)	Supply voltage, for RFOUT/2 output. If RFOUT/2 is not required, this pin may be left open to conserve approximately 30 mA of current.	Vcc(Amp) 14pF
12	RFOUT/2	Half frequency output (AC coupled).	RFOUT/2
19	RF OUT	RF output (AC coupled).	RFOUT
21	Vcc (RF)	Supply Voltage, +5V	Vcc(RF)
29	VTUNE	Control voltage and modulation input. Modulation bandwidth dependent on drive source impedance. See "Determining the FM Bandwidth of a Wideband Varactor Tuned VCO" application note.	3nH VTUNE 0
5, 11, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	= Gend

