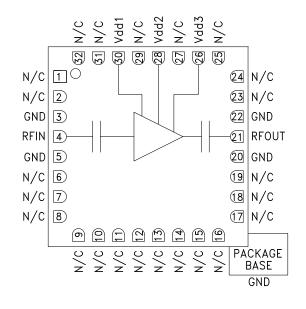


v04.0118


GaAs SMT PHEMT LOW NOISE AMPLIFIER, 6 - 20 GHz

Typical Applications

The HMC565LC5 is ideal for use as a LNA or driver amplifier for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment and Sensors
- Military & Space

Functional Diagram

Features

Noise Figure: 2.5 dB

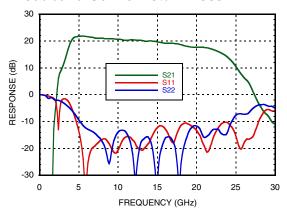
Gain: 21 dB OIP3: 20 dBm

Single Supply: +3V @ 53 mA 50 Ohm Matched Input/Output

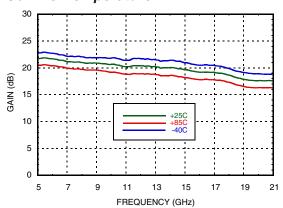
RoHS Compliant 5 x 5 mm Package

General Description

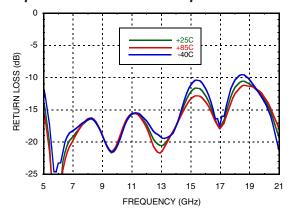
The HMC565LC5 is a high dynamic range GaAs pHEMT MMIC Low Noise Amplifier housed in a leadless RoHS compliant 5x5mm SMT package. Operating from 6 to 20 GHz, the HMC565LC5 features 21 dB of small signal gain, 2.5 dB noise figure and IP3 of +20 dBm across the operating band. This self-biased LNA is ideal for microwave radios due to its single +3V supply operation, and DC blocked RF I/O's.

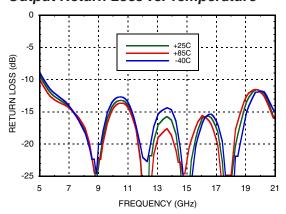

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd 1, 2, 3 = +3V

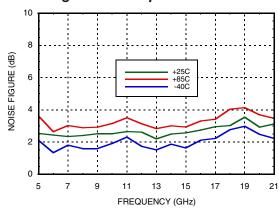
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		6 - 12		12 - 20			GHz
Gain	19	21		16	18.5		dB
Gain Variation Over Temperature		0.025	0.035		0.025	0.035	dB/ °C
Noise Figure		2.5	2.8		2.5	3	dB
Input Return Loss		15			12		dB
Output Return Loss		13			15		dB
Output Power for 1 dB Compression (P1dB)	8	10		9	11		dBm
Saturated Output Power (Psat)		11			13		dBm
Output Third Order Intercept (IP3)		20			21		dBm
Total Supply Current (Idd)(Vdd = +3V)		53	75		53	75	mA

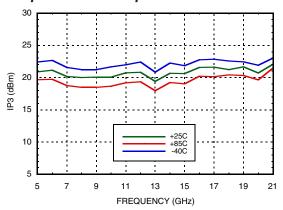


GaAs SMT PHEMT LOW NOISE AMPLIFIER, 6 - 20 GHz

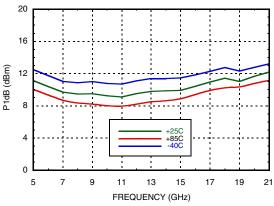

Broadband Gain & Return Loss


Gain vs. Temperature

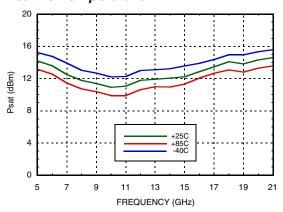

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

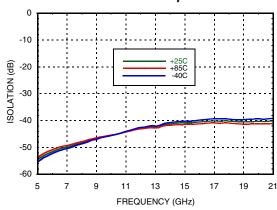
Noise Figure vs. Temperature

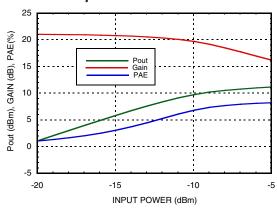


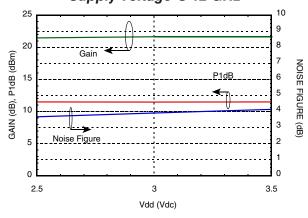
Output IP3 vs. Temperature



GaAs SMT PHEMT LOW NOISE AMPLIFIER, 6 - 20 GHz


P1dB vs. Temperature


Psat vs. Temperature


Reverse Isolation vs. Temperature

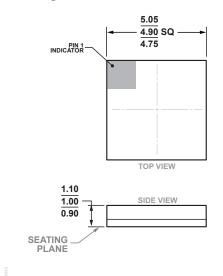
Power Compression @ 12 GHz

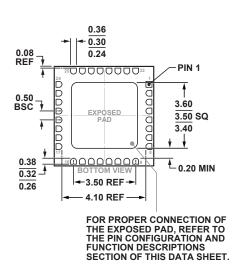
Gain, Noise Figure & Power vs. Supply Voltage @ 12 GHz

GaAs SMT PHEMT LOW NOISE AMPLIFIER, 6 - 20 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2, Vdd3)	+3.5 Vdc
RF Input Power (RFIN)(Vdd = +3.0 Vdc)	10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 8.5 mW/°C above 85 °C)	0.753 W
Thermal Resistance (channel to ground paddle)	119.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A


Typical Supply Current vs. Vdd


ldd (mA)		
1		
3		
6		

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

32-Terminal Ceramic Leadless Chip Carrier [LCC] (E-32-1)

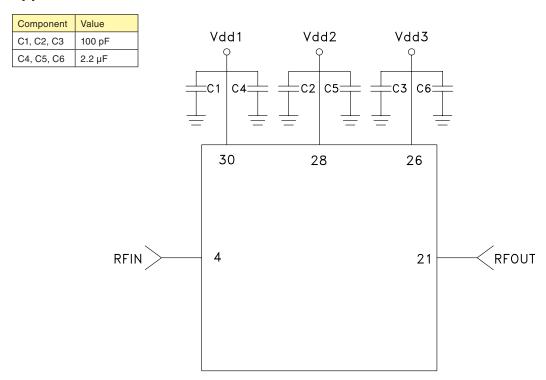
ORDERING GUIDE

Part Number	Package Material	Lead Finish	MSL Rating [1]	Package Marking [2]
HMC565LC5	Alumina, White	Gold over Nickle	MSL3	<u>H565</u> XXXX
HMC565LC5TR	Alumina, White	Gold over Nickle	MSL3	<u>H565</u> XXXX
HMC565LC5TR-R5	Alumina, White	Gold over Nickle	MSL3	<u>H565</u> XXXX

^[1] Max peak reflow temperature of 260 °C

Dimensions shown in millimeters.

^{[2] 4-}Digit lot number XXXX


v04.0118

GaAs SMT PHEMT LOW NOISE AMPLIFIER, 6 - 20 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6 - 19, 23 - 25, 27, 29, 31, 32	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.	
3, 5, 20, 22	GND	These pins and package bottom must be connected to RF/DC ground.	GND =
4	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○── ├──
21	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
30, 28, 26	Vdd1, 2, 3	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF and 2.2 μF are required.	Vdd1,2,3

Application Circuit

