

HMC739LP4 / 739LP4E

v03.0309

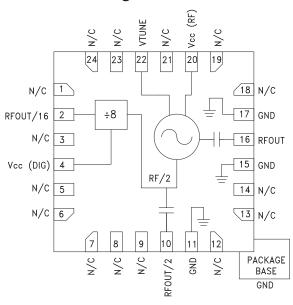
MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 23.8 - 26.8 GHz

Typical Applications

The HMC739LP4(E) is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Features


Pout: +8 dBm

Phase Noise: -93 dBc/Hz @ 100 kHz Typ.

No External Resonator Needed

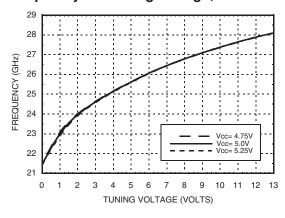
24 Lead 4x4mm SMT Package: 16mm²

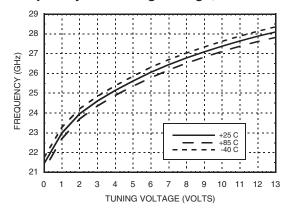
Functional Diagram

General Description

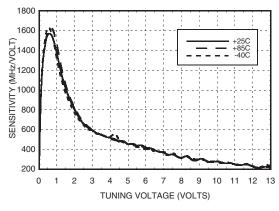
The HMC739LP4(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC739LP4(E) integrates a resonator, negative resistance device, varactor diode and divide-by-16 prescaler. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +8 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost leadless QFN 4x4 mm surface mount package

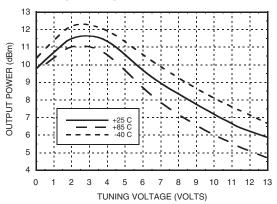
Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc(RF), Vcc(DIG) = +5V

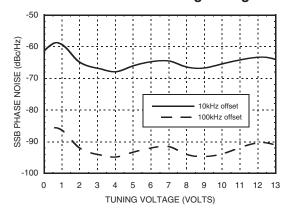

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2	23.8 - 26.8			GHz
Power Output	RF OUT/ RF OUT/2 RF OUT/16	3 -3 -7		14 5 -1	dBm dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-93		dBc/Hz
Tune Voltage	Vtune	1		13	V
Supply Current	Icc (RF), Icc (DIG)	160	200	220	mA
Tune Port Leakage Current (Vtune= 13V)				10	μΑ
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		-20 -30		dBc dBc
Pulling (into a 2.0:1 VSWR)			30		MHz pp
Pushing @ Vtune= 5V			-65		MHz/V
Frequency Drift Rate			4		MHz/°C

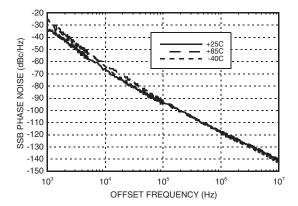


MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 23.8 - 26.8 GHz


Frequency vs. Tuning Voltage, T= 25°C

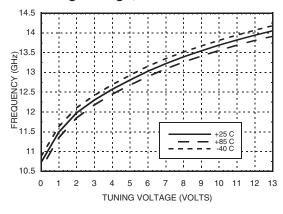

Frequency vs. Tuning Voltage, Vcc= +5V

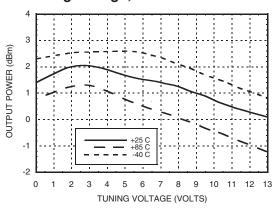

Sensitivity vs. Tuning Voltage, Vcc= +5V


Output Power vs. Tuning Voltage, Vcc= +5V

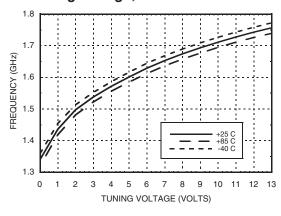
SSB Phase Noise vs. Tuning Voltage

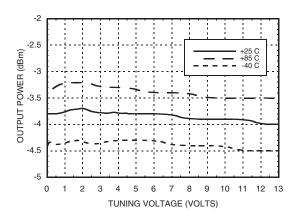
SSB Phase Noise @ Vtune= 5V





MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 23.8 - 26.8 GHz


RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V


RFOUT/2 Output Power vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Frequency vs. Tuning Voltage, Vcc = +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc = +5V

Absolute Maximum Ratings

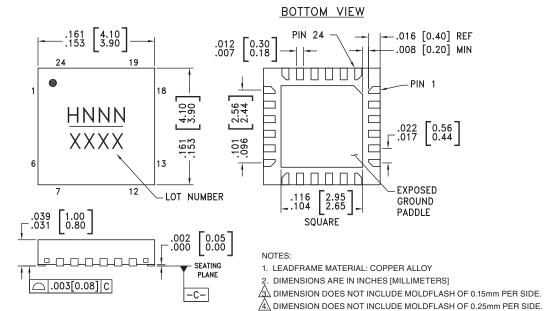
Vcc (RF), Vcc (DIG)	+5.5V
Vtune	0 to +15V
Junction Temperature	135° C
Continuous Pdiss (T= 85 °C) (derate 23.3 mW/° above 85 °C)	1.2 W
Thermal Resistance (junction to ground paddle)	43 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc(RF), Vcc DIG) (V)	Icc (mA)
4.75	172
5.0	192
5.25	212

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 23.8 - 26.8 GHz

5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO

Outline Drawing

Package Information

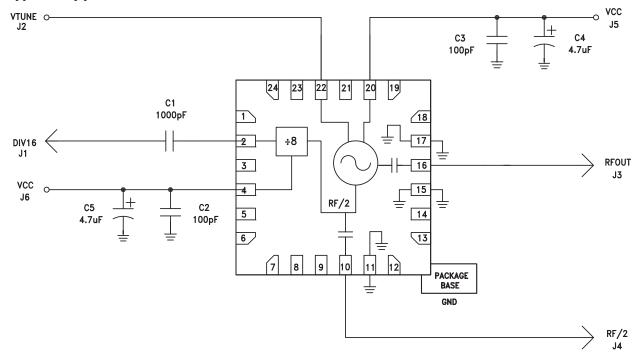
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC739LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H739 XXXX
HMC739LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H739</u> XXXX

PCB RF GROUND.

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 21, 23, 24	N/C	No Connection required. These pins may be connected to RF/DC ground without affecting performance.	
2	RFOUT/16	RF/16 Divided Output. Requires DC Block.	5V ORFOUT/16
4	Vcc (DIG)	Supply voltage for prescaler. Can be omitted if prescaler is not needed to conserve approximately 100 mA	Vcc O (DIG) = 9pF



MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 23.8 - 26.8 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
10	RFOUT/2	Half frequency output (AC coupled)	PORFOUT/2
11, 15, 17	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	= O GND
16	RFOUT	RF output (AC coupled).	RFOUT
20	Vcc (RF)	Supply Voltage	Vcc ○
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	1.5nH 250Ω VTUNE 0 5.0pF

Typical Application Circuit

