

# HMC646LP2 / 646LP2E

v02.1009



GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

## Typical Applications

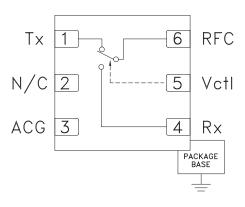
The HMC646LP2(E) is ideal for:

- LNA Protection & T/R Switching
- TD-SCDMA / 3G Infrastructure
- Satellite Subscriber Terminals
- Private Mobile Radio & Public Safety Handsets
- Automotive Telematics

#### **Features**

High Input P0.1dB: +46 dBm Tx

Low Insertion Loss: 0.4 dB


High IIP3: +74 dBm

Single Positive Control: 0/+3V to 0/+8V

Failsafe operation; Tx 'On' when unpowered

2x2mm DFN SMT Package

#### **Functional Diagram**



#### **General Description**

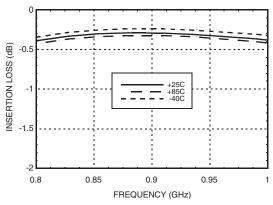
The HMC646LP2(E) is an SPDT switch in a leadless DFN surface mount plastic package for use in transmit / receive and LNA protection applications which require very low distortion and high power handling of up to 40 watts with less than 10% duty cycle. This robust switch can control signals from 100 - 2100 MHz\* and is ideal for TD-SCDMA / 3G repeaters, PMR, automotive telematics, and satellite subscriber terminal applications. The design provides exceptional P0.1dB of +46 dBm and +74 dBm IIP3 on the Transmit (Tx) port. The failsafe topology provides a low loss path from Tx to RFC, when no DC power is available.

# Electrical Specifications, $T_A = +25^{\circ}C$ , Vdd = 5V, Vctl = 0/+5 Vdc, 50 Ohm System\*

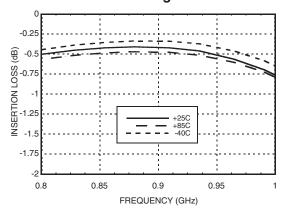
| Parameter                                                                    |                                                                     | Min.      | Тур.              | Max.        | Min.     | Тур.              | Max.       | Min.     | Тур.              | Max        | Units          |
|------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|-------------------|-------------|----------|-------------------|------------|----------|-------------------|------------|----------------|
| Frequency Range                                                              |                                                                     | 869 - 960 |                   | 1525 - 1661 |          | 2010 - 2025       |            | MHz      |                   |            |                |
| Insertion Loss                                                               | Tx - RFC<br>RFC - Rx                                                |           | 0.3<br>0.4        | 0.6<br>0.7  |          | 0.6<br>0.8        | 0.9<br>1.1 |          | 0.7<br>1.3        | 1.0<br>1.7 | dB<br>dB       |
| Isolation                                                                    | Tx - RFC<br>RFC - Rx                                                | 20<br>28  | 27<br>38          |             | 15<br>20 | 22<br>30          |            | 12<br>25 | 17<br>32          |            | dB<br>dB       |
| Return Loss                                                                  | Tx - RFC<br>RFC - Rx                                                |           | 17<br>25          |             |          | 27<br>20          |            |          | 25<br>12          |            | dB<br>dB       |
| Input Power for 0.1 dB<br>Compression                                        | Tx - RFC<br>RFC - Rx                                                |           | 44<br>20          |             |          | 46<br>20          |            |          | 46<br>20          |            | dBm<br>dBm     |
| Input Third Order<br>Intercept (Two-tone input<br>power = +17 dBm each tone) | Tx - RFC<br>RFC - Rx                                                |           | 71<br>41          |             |          | 74<br>42          |            |          | 74<br>34          |            | dBm<br>dBm     |
| tON                                                                          | SE, tFALL (10/90% RF)<br>(50% CTL to 90% RF)<br>(50% CTL to 10% RF) |           | 100<br>320<br>320 |             |          | 100<br>320<br>320 |            |          | 100<br>320<br>320 |            | ns<br>ns<br>ns |

<sup>\*</sup> Specifications and data reflect HMC646LP2(E) measured using the respective application circuits for each designated frequency band found herein

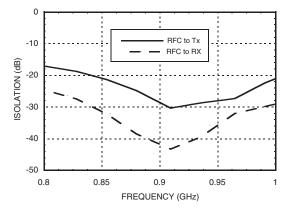
GaAs MMIC 40W FAILSAFE


SWITCH, 0.1 - 2.1 GHz

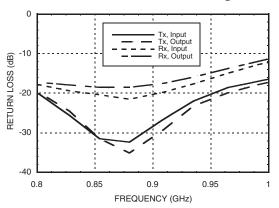



v02.1009

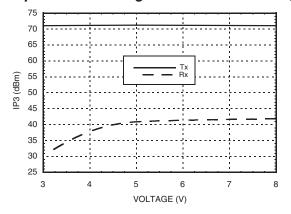



## Insertion Loss vs. Temperature, Tx with 915 MHz Tuning




#### Insertion Loss vs. Temperature, Rx with 915 MHz Tuning



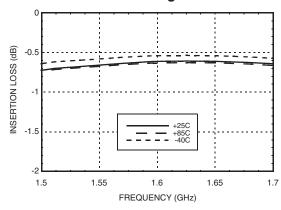

## Isolation with 915 MHz Tuning



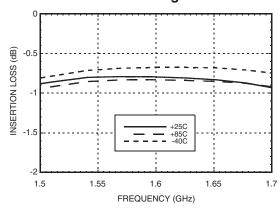
#### **Return Loss with 915 MHz Tuning**



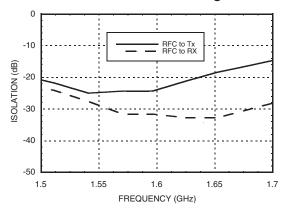
#### Input IP3 vs. Voltage with 915 MHz Tuning



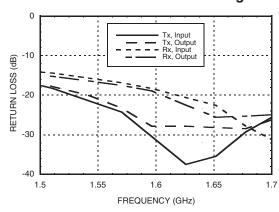


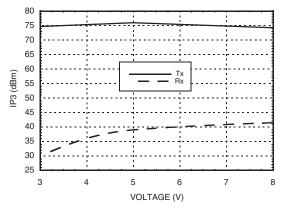

# GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz


#### Insertion Loss vs. Temperature, Tx with 1600 MHz Tuning




# Insertion Loss vs. Temperature, Rx with 1600 MHz Tuning




#### Isolation with 1600 MHz Tuning



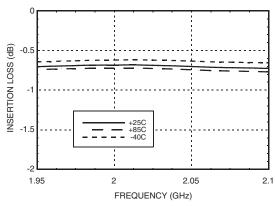
## Return Loss with 1600 MHz Tuning



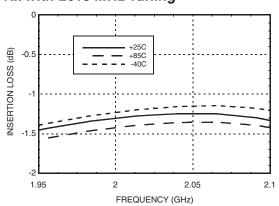
## Input IP3 vs. Voltage with 1600 MHz Tuning



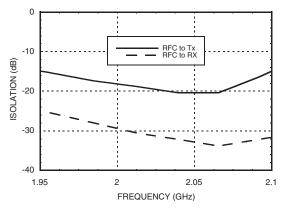
GaAs MMIC 40W FAILSAFE


SWITCH, 0.1 - 2.1 GHz

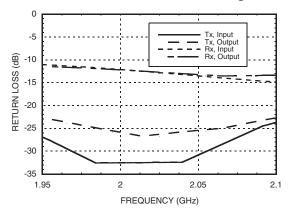



v02.1009

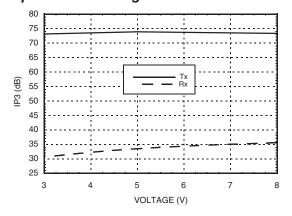



## Insertion Loss vs. Temperature, Tx with 2015 MHz Tuning




## Insertion Loss vs. Temperature, Rx with 2015 MHz Tuning




## Isolation with 2015 MHz Tuning



#### Return Loss with 2015 MHz Tuning



#### Input IP3 vs. Voltage with 2015 MHz Tuning







# GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

## **Absolute Maximum Ratings**

| Max. CW Input Power Tx Port Rx Port |                         |  |
|-------------------------------------|-------------------------|--|
| Max Channel Temp.                   |                         |  |
| Thermal Resistance Tx Port Rx Port  |                         |  |
| Continuous Dissipated Power         |                         |  |
| Supply Voltage (Vdd)                |                         |  |
| Control Voltage Range (Vctl)        |                         |  |
| Storage Temperature                 |                         |  |
| Operating Temperature               |                         |  |
|                                     | Tx Port Rx Port Tx Port |  |

#### **Truth Table**

| Contro                                                              | ol Input | Signal Path State |           |  |  |
|---------------------------------------------------------------------|----------|-------------------|-----------|--|--|
| Vctl                                                                | Vdd      | RFC To Tx         | RFC to Rx |  |  |
| 0.0                                                                 | 0.0      | ON                | OFF       |  |  |
| 0.0                                                                 | Vdd      | OFF               | ON        |  |  |
| Vdd                                                                 | Vdd      | ON                | OFF       |  |  |
| Vdd = +3V to +8V<br>Control Input Voltage Tolerances are ± 0.2 Vdc. |          |                   |           |  |  |

DC blocking capacitors are required at ports RFC, Tx and Rx.

.014 [0.35] REF

.057 [1.45] .053 [1.35]

EXPOSED

GROUND PADDLE



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

# **Outline Drawing**

## 

.002 [0.05]

**SEATING** 

**PLANE** 

#### NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
   PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

# Package Information

△|.003[0.08]|C

.039 [1.00] .031 [0.80]

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [3] |  |
|-------------|----------------------------------------------------|---------------|------------|---------------------|--|
| HMC646LP2   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]   | 646<br>XXX          |  |
| HMC646LP2E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>646</u><br>XXX   |  |

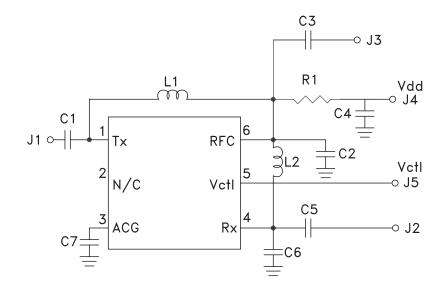
- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260  $^{\circ}\text{C}$
- [3] 3-Digit lot number XXX





# GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

## **Pin Descriptions**


| Pin Number | Function | Description                                                                      | Interface Schematic |
|------------|----------|----------------------------------------------------------------------------------|---------------------|
| 1          | Tx       | This pin is DC coupled and matched to 50 Ohms.                                   |                     |
| 2          | N/C      | Not Connected                                                                    |                     |
| 3          | ACG      | External capacitor to ground is required. See application circuit herein.        |                     |
| 4          | Rx       | This pin is DC coupled and matched to 50 Ohms.                                   |                     |
| 5          | Vctl     | See truth table.                                                                 | Vctl O—             |
| 6          | RFC      | This pin is DC coupled and matched to 50 Ohms.                                   |                     |
|            | GND      | Package bottom has exposed metal paddle that must be connected to PCB RF ground. | GND<br>=            |





# GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

# **Application Circuit**



## **Components for Selected Frequencies**

| Tuned Frequency           | 915 MHz | 1600 MHz | 2015 MHz |
|---------------------------|---------|----------|----------|
| Evaluation PCB Number     | 118098  | 118099   | 118100   |
| C1, C3, C5 <sup>[1]</sup> | 1000 pF | 330 pF   | 330 pF   |
| C2                        | 2.7 pF  | 1.5 pF   | 1.1 pF   |
| C4                        | 1000 pF | 100 pF   | 100 pF   |
| C6                        | 1.8 pF  | 0.5 pF   | 0.5 pF   |
| C7                        | 15 pF   | 4.7 pF   | 2.7 pF   |
| L1                        | 15 nH   | 3.9 nH   | 1.8 nH   |
| L2                        | 9 nH    | 4.3 nH   | 3.3 nH   |
| R1                        | 10 k    | 10 k     | 10 k     |

[1] DC blocking capacitors