

10.1 inch LVDS Capacitive Touch Display 1280x800 V1.0

Datasheet

Version: 1.1

PRODUCT SPECIFICATION

DESCRIPTION

TFT Module – 10.1" WSXGA 1280x (RGB) x 800 IPS Display with cap touch

PART NUMBER LT170410-2WHC

VERSION 1.1

ROHS COMPLIANT

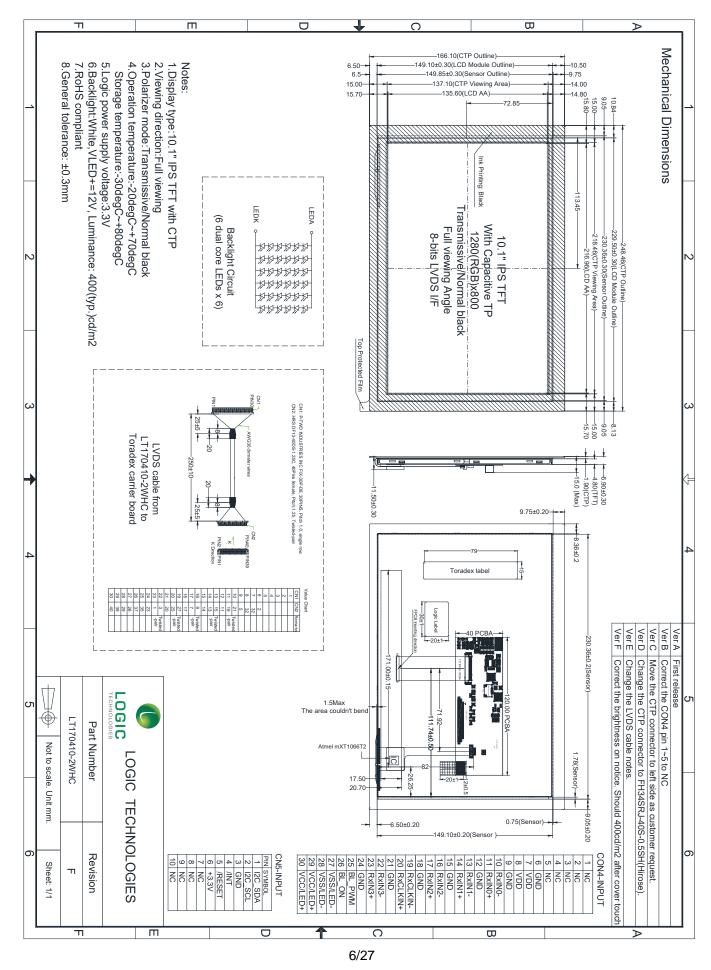
Revision Status

Revision	Revision Date	Page	Content	Notes
1.0	12.09.2018		Initial release	
1.1	31.07.2019		 Updated Schematics, Add C11 to AP3012 for power sequencePage13 Update the packaging drawing, add 10pins FFC for Cap touch_Page19 	
	· · · · · · · · · · · · · · · · · · ·			

Table of Contents

- GENERAL INFORMATION
- MECHANICAL DIMENSIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- BACKLIGHT CHARACTERISTICS
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE DESCRIPTION
- BLOCK DIAGRAM
- TIMING CHARACTERISTICS
- TIMING CHART & DATA
- TOUCH PANEL CHARACTERISTICS
- RELIABILITY TESTING
- INSPECTION CRITERIA
- INSPECTION STANDARD
- PRECAUTIONS FOR USING LCD MODULES

• GENERAL INFORMATION

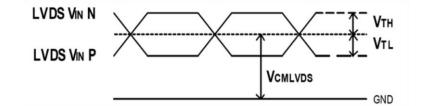

Item	Contents	Unit
LCD Type	Transmissive TFT, normally Black	
Technology	IPS TFT	-
Viewing Direction	Full View	O'clock
Module dimensions (W x H x T)	248.5x 166.1 x 15.0(Max*)	mm
Active area (W x H)	216.96 x 135.60	mm
Number of pixels	1280 x 3 (RGB) x 800	
Pixel pitch (W x H)	(0.0565x3) x 0.1695	mm
Colours	16.7M	
Contrast ratio	800:1 (typical)	
Backlight	LED (36 dual core LEDs; 6 serial x 6)	
Backlight Brightness	400	cd/m2
Interface	LVDS 8-bit	
With Touch	CTP touch	
Operating temperature	-20 to +70	°C
Storage temperature	-30 to +80	°C

*Exclusive hooks, posts ,PCB/FFC/FPC tail etc, thickness is 6.9mm. Once including will be 15mm.

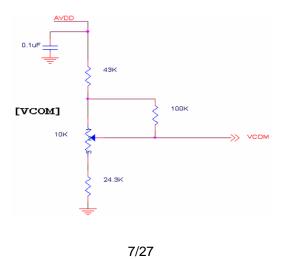
Issue Date : 31.07.2019

Version: 1.1

MECHANICAL DIMENSIONS


• ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Min.	Max.	Unit	Note
	VDD	- 0.3	3.9	V	
Power Voltage	VLED+	-0.3	16	V	
Backlight LED Forward Current	lF		70	mA	One LED
Operating Temperature	Topr	-20	70	°C	
Storage temperature	Tst	- 30	80	°C	


• ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min	Тур.	Max	Unit	Remark
Supply Voltage	Vdd	3.0	3.3	3.5	V	Note1
Input signal high voltage	Vін	0.8 Vdd		Vdd	V	Nete2
Input signal low voltage	VIL	0		0.2V _{DD}	V	Note2
Current for driver	IVDD		247	350	mA	VDD =3.3V

Note 1: VDD setting should match the signals output voltage of customer's system board.

Note2: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR.

• BACKLIGHT CHARACTERISTICS

ltem	Symbo I	Min.	Тур.	Max.	Unit	Condition
Backlight Forward Voltage	VF	16.8	19.5	21	V	
Backlight Forward Current	IF	200	240	280	mA	
Driver Input Voltage	VLED+	9	12	15		
Driver Input Current	IVLED		438			Notes
PWM Frequency	PWM	100	150	200	Hz	
LED Lifetime			20000		Hrs	
Power Consumption	WBL		5.3		W	

NOTES:

Backlight drive conditions: constant current driving method.

- The LED driving condition is defined for the module (6 dual core LED Serial x 6 Parallel).
- The LED driving condition is defined for total backlight consumption and the driver circuit.
- Forward Voltage adjustment depends on the Forward Current setting.
- One LED : max IF = 50mA, VF = 3.5V
- The LED lifetime is typically 20,000 hours at 25degC.
- IF =240mA is defined for all channels LEDs.
- If the LEDs are driven by high current, high ambient temperature & humidity condition the lifetime of the LEDs will be reduced.
- Operating life means brightness reduces to 50% of initial brightness and typical operating life time is estimated data.

ELECTRO-OPTICAL CHARACTERISTICS

ltem		Symbol	Condition	Min.	Тур.	Max.	Unit	Refer	Note
Deeres Ti			0500		10	20			4
Response Ti	ne	TOFF	25°C		15	30	ms	Fig 1	1
Contrast rat	io	Cr	$\theta = 0^{\circ}$	600	800			Fig 2	1
Uniformity		U		70	80		%	Fig 2	3
Surface Lumina	ance	Lv		330	400		cd/m ²	Fig 2	2
			$\emptyset = 90^{\circ}$		85				
		θ	$\varnothing = 270^{\circ}$		85				0
Viewing angle	ratio	θ -	$\varnothing = 0^{\circ}$		85			Fig 3	6
			Ø = 180°		85				
	Ded	х		0.530	0.580	0.630			
	Red	У		0.300	0.350	0.400			
	Croon	х		0.270	0.320	0.370			
CIE (x,y)	Green	У	Backlight	0.550	0.600	0.650			
chromaticity	Dive	х	On	0.100	0.150	0.200		Fig 2.	5
	Blue	У		0.070	0.120	0.170	1	5	-
		\	х		0.260	0.310	0.360		
	White	У		0.280	0.330	0.380			

Test Conditions: DVDD=3.3V, IL=480mA (Backlight current), the ambient temperature is 25° C. Optical performance should be evaluated at Ta= 25° C only.

NOTES

1. Contrast ratio (CR) is defined mathematically in Figure 2.

Contrast Ratio = <u>Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)</u> Average Surface Luminance with all black pixels (P1, P2, P3, P4, P5)

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see figure 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5...)

Note 3. Uniformity of surface luminance, δ White, is defined mathematically in figure 2.

 δ White = <u>Minimum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)</u> Maximum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)

Note 4. Response time is the time required for the display to transition form white to black (rise time Tr) and from black to white (decay or fall time, Tf). The industry standard test equipment used is the Autronic-Melcher's Conoscope.

Logic Technologies

Note 5. CIE (x,y) chromaticity. The x,y value is determined by measuring luminance at each test position 1 through 5, then calculating the average value.

Note 6. The Viewing angle is the angle at which the contrast ratio is greater than 2. For a TFT module, the contrast ratio is greater than 10. The angles are determined for the horizontal or 'x' axis and the vertical or 'y' axis with respect to the 'z' axis, being the LCD surface reference. Also see figure 3.

Note 7. For viewing angle and response time testing, the testing data is based on Autronic-Melcher's BM-7A. For the contrast ratio, surface luminance, luminance uniformity and chromaticity (CIE), the test data is based on the industry's standard SR-3A photo detector.

Note 8. For TFT modules, grey scale reversing occurs in the direction of the panel viewing angle.

Figure 1. Definition of response time

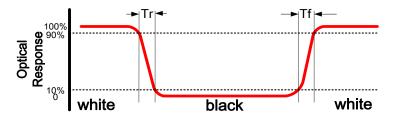


Figure 2. Measuring contrast ratio, surface luminance, luminance uniformity and CIE (chromaticity).

A: 5mm, B: 5mm, H & V: Active area.

Light spot diameter \varnothing =7mm, 500mm distance from the LCD surface to the detector lens. Measurement instrument is Topcon's luminance meter BM-7.

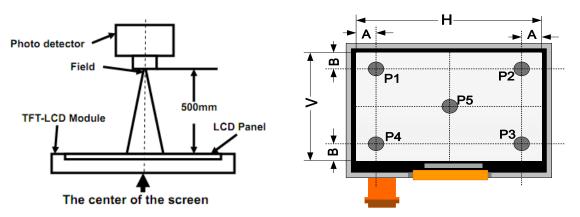
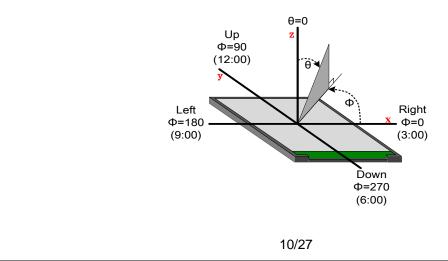
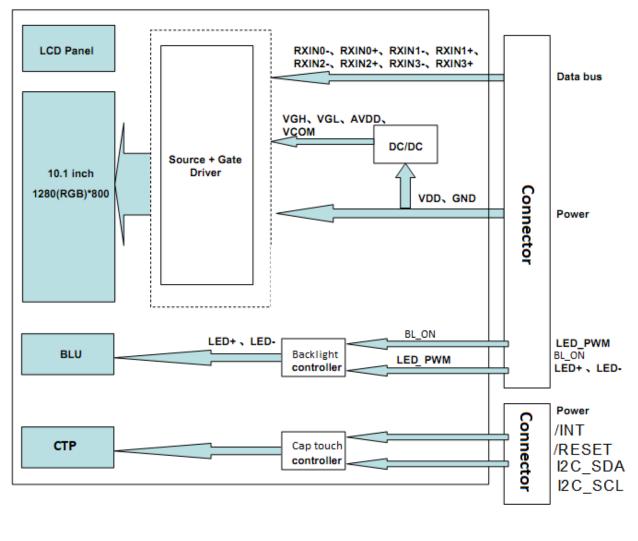
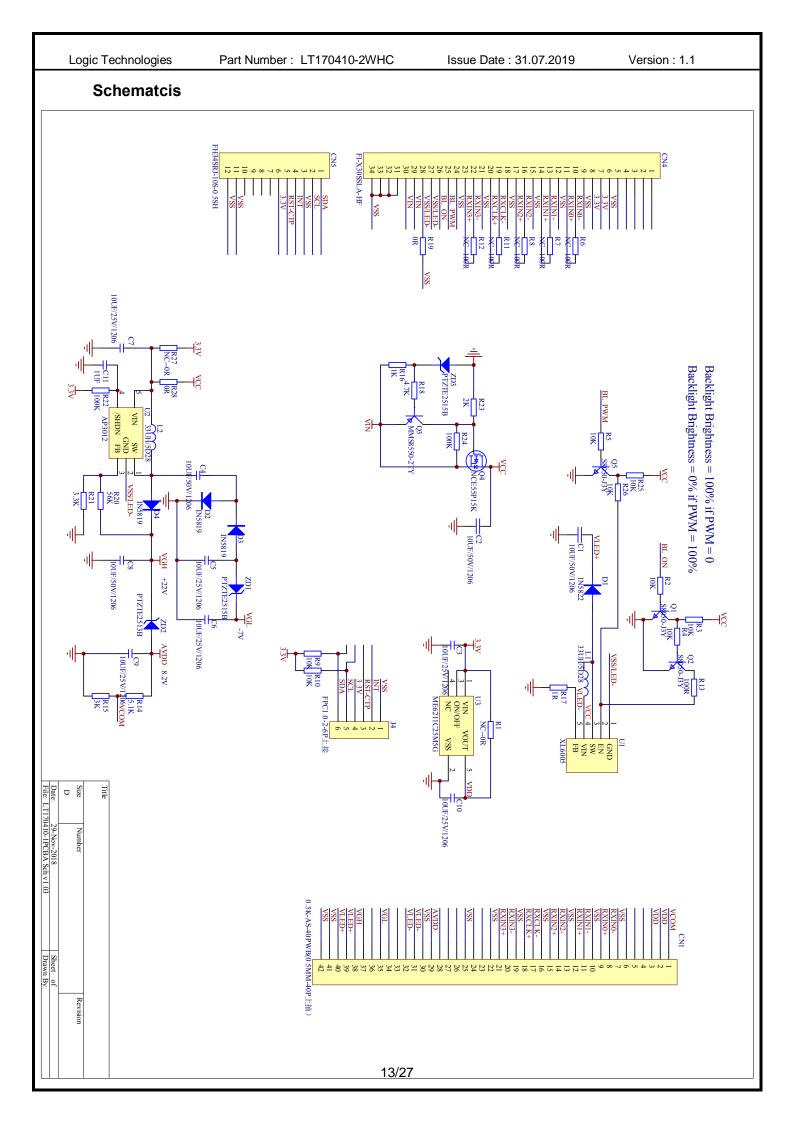



Figure 3. Definition of viewing angle

INTERFACE DESCRIPTION •

TFT 8-bit LVDS Interface

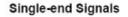

Pin	Symbol	I/O	Description	Note
1	NC		Not connect	
2	NC		Not connect.	
3	NC		Not connect	
4	NC		Not connect	
5	NC		Not connect	
6	GND	Р	Ground	
7	VDD	Р	TFT&CTP Power supply, 3.3V	
8	VDD	Р	TFT&CTP Power supply, 3.3V	
9	GND	Р	Ground	
10	RxIN0-	Ι	Transmission Data of Pixels	
11	RxIN0+	I	Transmission Data of Pixels	
12	GND	Р	Ground	
13	RxIN1-	I	Transmission Data of Pixels 1	
14	RxIN1+	Ι	Transmission Data of Pixels 1	
15	GND	Р	Ground	
16	RxIN2-	I	Transmission Data of Pixels 2	
17	RxIN2+	Ι	Transmission Data of Pixels 2	
18	GND	Р	Ground	
19	RxCLKIN-	Ι	-LVDS differential clock input	
20	RxCLKIN+	Ι	+LVDS differential clock input	
21	GND	Р	Ground	
22	RxIN3-	I	Transmission Data of Pixels 3	
23	RxIN3+	Ι	Transmission Data of Pixels 3	
24	GND	Р	Ground	
25	BL_PWM	Ι	PWM signal to control backlight diming. 100~200Hz	
26	BL_ON	I	Backlight on/off control pin. H: On ; L: Off	
27	VSS/LED-	Р	Backlight Ground which is LED Cathode.	
28	VSS/LED-	Р	Backlight Ground Which is LED Califorde.	
29	VCC/LED+	Р	Backlight supply voltage input, 12V typical	
30	VCC/LED+	Р		

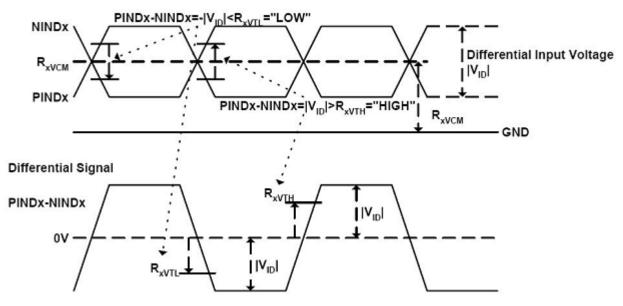

I -Input only; O -Output only; I/O -Input /output; P -Power or Ground.

TP Interface

Pin	Symbol	I/O	Description	Note
1	I2C_SDA	Ι	I2C data input/output	
2	I2C_SCL	Ι	I2C clock singal	
3	GND	Р	Ground	
4	/INT	I	Wake up/Interrupt, equal to /CHG of Atmel MXT1066T2	
5	/RESET	Ι	Reset signal for CTP, low active.	
6	+3.3V	Р	3.3V supply power input	
7	NC(CLK)	Ι	Not connection	
8	NC(CS)	Ι	Not connection	
9	NC(TX)	Ι	Not connection	
10	NC(RX)	Ι	Not connection	

BLOCK DIAGRAM

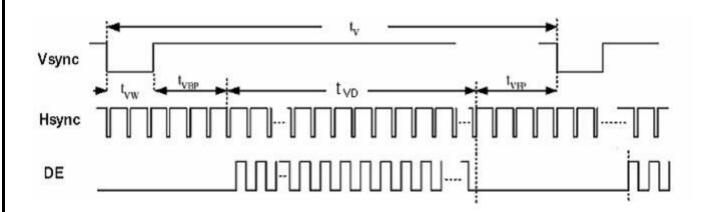


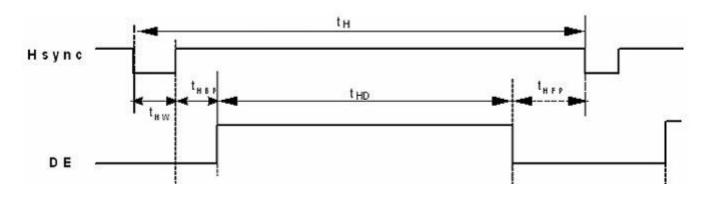


TIMING CHARACTERISTICS

LVDS mode AC electrical characteristics

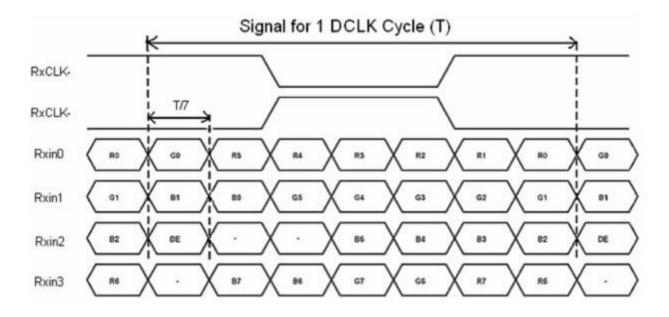
Parameter	Symbol		Values	Unit	Remark	
		Min.	Typ.	Max.		
LVDS Differential input high Threshold voltage	R _{xVTH}	-	-	+100	mV	R _{XVCM} =1.2V
LVDS Differential input low Threshold voltage	R _{xVTL}	-100	-	-	mV	1 XXVCM- 1.2 V
LVDS Differential input common mode voltage	R _{xVCM}	0.7	-	1.6	V	
LVDS Differential voltage	V _{ID}	100	-	600	mV	





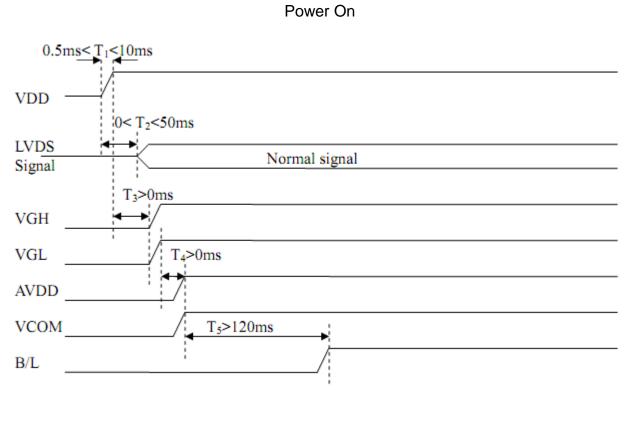
Issue Date : 31.07.2019

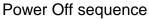
Timing Table

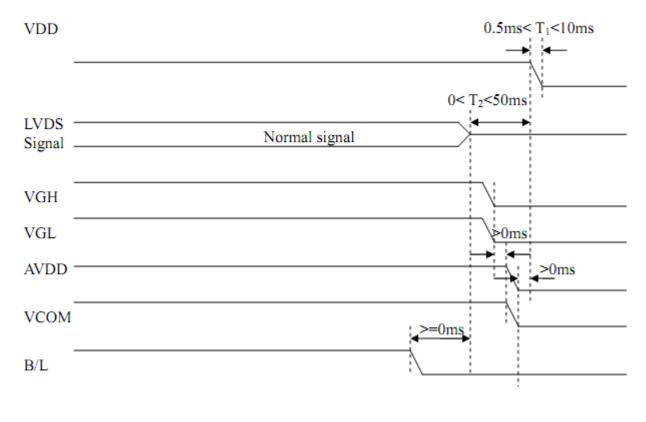

ltem	Symbol		Values		Unit	Remark
nem	Symbol	Min.	Тур.	Max.	Onit	Remark
Clock Frequency	1/Tc	(68.9)	71.1	(73.4)	MHz	Frame rate =60Hz
Horizontal display area	thd		1280		Тс	
HS period time	tн	(1410)	1440	(1470)	Тс	
HS Width +Back Porch +Front Porch	thw+ thBP +thFP	(60)	160	(190)	Тс	
Vertical display area	tvD		800		tн	
VS period time	tv	(815)	823	(833)	tн	
VS Width +Back Porch +Front Porch	tvw+ tvBP +tvFP	(15)	23	(33)	tн	

LVDS data input format

Parameter	Symbol		Values	5	Unit	Remark
Farameter	Symbol	Min.	Typ.	Max.	Unin	Keinark
Differential input high Threshold voltage	RxVTH	0.1	0.2	0,3	v	RXVCM=1.2
Differential input low Threshold voltage	RxVTL	-0.3	-0.2	-0.1	V	V
Input voltage range (singled-end)	RxVIN	0.7	-	1.7	V	
Differential input common mode voltage	RxVCM	1	1.2	1.4	V	
Differential voltage	[VID]	0.2	-	0.6	V	
Differential input leakage current	RVxliz	-10	-	+10	uA	




8-bit LVDS data input


Part Number: LT170410-2WHC

Issue Date : 31.07.2019

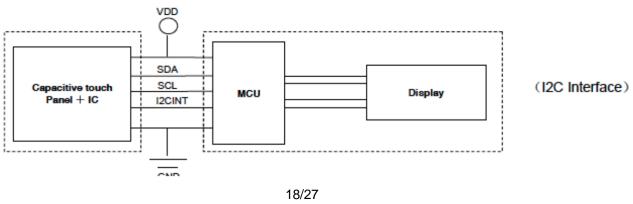
Power on/Off sequence

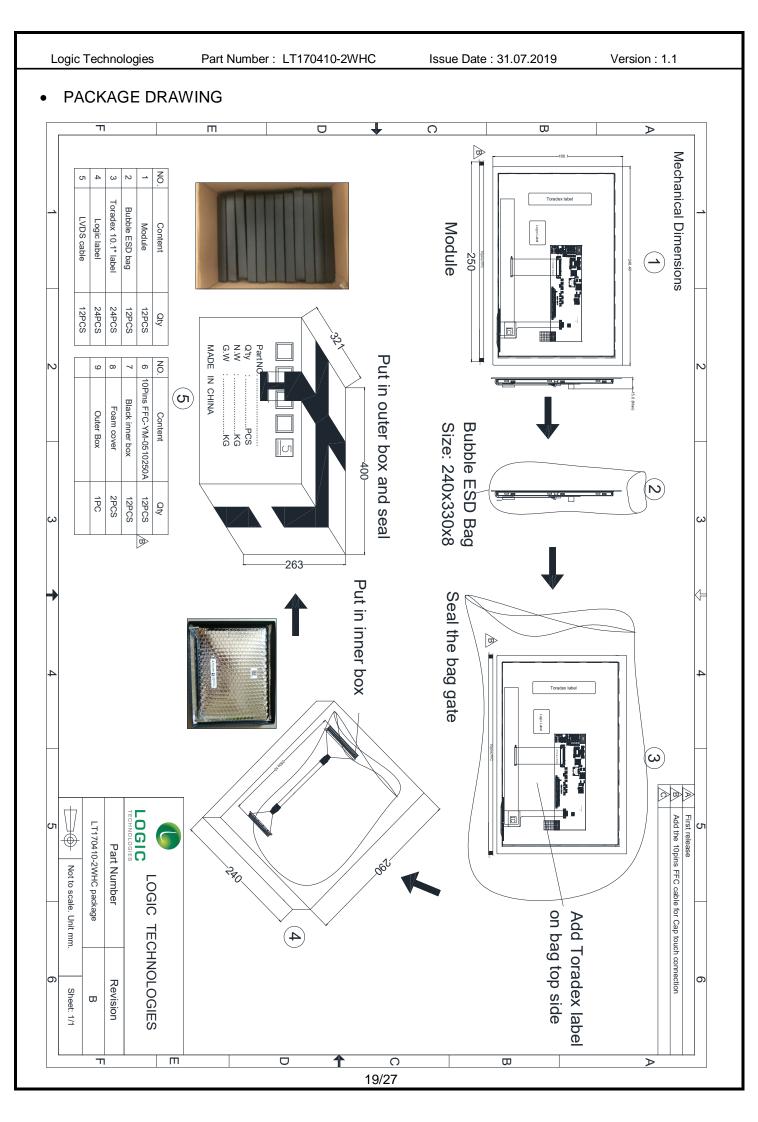
• TOUCH PANEL CHARACTERISTICS

• CONSTRUCTION – Lens + OCA + Seneor(ITO glass) + FPC (See Note 1)

ltem	Symbol	Min.	Тур.	Max.	Unit	Note
Overall dimensions		248.5	5 x 166.1	x 1.9	mm	
Viewing Area		21	8.5 x 137	7.1	mm	
Total Thickness			1.90		mm	+/- 0.15mm
Lens thickness			1.1		mm	+/- 0.15mm
OCA thickness			0.15		mm	+/- 0.05mm
Sensor thickness			0.55		mm	+/- 0.05mm
Lens surface hardness		6			Н	JIS K 5600

Note 1


- (i) Lens = 6H surface hardness + black mask area
- (ii) OCA = Optically Clear Adhesive
- (iii) ITO = Indium Tin Oxide (touch sensor layer)
- (iv) FPC = Flexible Printed Circuit (includes Atmel Mxt1066T2 controller IC)


The minimum test force is 80g.

• TOUCH PANEL INTERFACING (Connector CN2)

Pin No	Symbol	I/O	Description Not	
1	GND	Р	Ground	
2	/CHG INT	I	External Interrupt to the host	
3	/RESET	I	External Interrupt from the host	
4	VDD_3.3V	Р	CTP power supply(+3.3V)	
5	SCL	I/O	I2C clock input	
6	SDA	I/O	I2C data input and output	

TOUCH PANEL BLOCK DIAGRAM

Note: Bubble ESD bag and packaging steps.

1). Bubble ESD Bag

3). Seal the gate with tape

2). Insert Display

4). Add the label on top

5). Put the module and LVDS cable into inner box

• RELIABILITY TESTING

NO.	ltem	Condition	Criteria
1	High Temperature Operating	70°C +/-2°C, 240Hrs	IEC60068-2-1, GB2423.2
2	Low Temperature Operating	-20°C +/-2°C, 240Hrs	IEC60068-2-1 GB2423.1
3	High Temperature Storage	80°C +/-2°C, 240Hrs	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	-30°C +/-2°C, 240Hrs	IEC60068-2-1 GB2423.2
5	Hi Temperature & High Humidity Operation	50°C, 90%RH max, 240Hrs	IEC60068-2-78 GB/T2423.3
		Frequency range:10 ~ 55Hz,	
6	Vibration (non operating)	Stroke:1.5mm Sweep:10Hz ~	IEC60068-2-6
Ŭ		55Hz ~ 10Hz2hours for each	GB/T2423.10
		direction of x.y.z (6 hours for total)	
7	Package Vibration Test	Random Vibration: 0.015GxG/Hz for 5-200Hz, -6dB/Octave from 200-500Hz 2 hours for each direction of X,Y,Z (6 hours for total)	IEC60068-2-34 GB/T2423.11
8	Thermal Shock (non operating)	-20°C to 30min to 70°C, 30min Change time: 5min, 10 cycles	Start with cold temperature, End with high temperature, IEC60068-2- 14:1984,GB2423.22
9	Drop Test (packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8
10	Shock (non-operation)	80G 6ms, ±X,±Y,±Z 3 times for each direction	IEC60068-2-27 GB/T2423.5
11	ESD (operation)	C=150pF,R=330Ω, Air:±15Kv, Contact:±8Kv, 10times/terminal	IEC61000-4-2 GB/T17626.2

Notes:

- 1. Test samples are applied to one test item.
- 2. Samples for each test item are 2-10pcs.
- 3. For humidity testing, a pure water resistance of >10MW should be used.
- 4. (a) In the case of a malfunction caused by ESD damage, if the LCM returns to normal state after reset, the item is considered to have passed the ESD test.
 - (b) It is recommended to use an anti-static blower (ioniser) to reduce the electro-static voltage in the working area.
 - (c) When removing the protection film from the TFT panel, peel off the film slowly (more than 1sec) while blowing the ioniser towards the peeling area to minimize ESD. This will reduce the risk of damaging the electrical circuitry.
- 5. In operating test, please use the automatic pictures changes test mode or automatic pictures changes on demonstration box.

• INSPECTION CRITERIA

This specification is designed to be used as the standard acceptance/rejection criteria for normal LCM products.

1. Sampling plan.

The sampling plan according to GB/T 2828.1-2003 / ISO2859-16 1999 and ANSI/ASQC Z1.4 1993, normal level 2 and based on:

- Major defect: AQL 0.65
- Minor defect: AQL 1.5
- 2. Inspection condition
 - The viewing distance for cosmetic inspection is approximately 30cm with the naked eye, and under an environment of 20-40W light intensity, in all directions, within 45° against a perpendicular line. (Normal temperature 20-25°C and normal humidity 60+/-15 RH.)
 - Driving voltage The Vop value from which the most optimal contrast can be obtained near the specified Vop in the specification (within +/-0.5V of the typical value at 25°C.)
- 3. Definition of inspection zone in LCD.

Zone A : Active Area Zone B : Viewing Area except Zone A (Zone A + Zone B = Minimum viewing area) Zone C : Outside Viewing Area (invisible area after assembling customer's product.

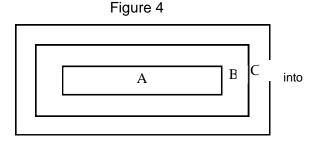


Figure 4 inspection zones in an LCD

Note: As a general rule visual defects in Zone C are permissible when there is no visual effect once assembled into the customer's product.

• INSPECTION STANDARD

MAJOR CRITERIA

Item No	Item to be inspected	Inspection standard	Classification
1	All functional defects	 No display Display abnormal Missing vertical or horizontal segment Short circuit Backlight not working, flickering and abnormal light 	Maina
2	Missing	Missing component	Major
3	Outline dimension	Overall outline dimension beyond the drawing dimension is not allowed	

• COSMETIC CRITERIA

No.	Item	Judgment Criteria	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing	Major
	3	No soldering bridge	Major Minor
		No cold soldering	,
4	Resist flaw on substrate	Invisible copper foil (\emptyset 0.5mm or more) on substrate pattern	Minor
5	Accretion of metallic Foreign	No soldering dust	Minor
	matter	No accretion of metallic foreign matters (Not exceed Ø0.2mm)	Minor
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount	a. Soldering side of PCB	Minor
		Solder to form a 'Filet'	
	1. Lead parts	all around the lead.	
		Solder should not hide the	
		lead form perfectly. (too much)	
		b. Components side	
		(In case of 'Through Hole PCB')	
		Solder to reach the Components side of DCD	
	2. Elet poekegee	Solder to reach the Components side of PCB.	Minor
	2. Flat packages	the lead to be covered by 'Filet'.	IVIITIOI
		Lead form to be assume	
		over solder.	
	3. Chips	(3/2) H ≥ h ≥ (1/2) H	Minor
		↓ ^H	
9	Solder ball/solder splash	a) The spacing between solder ball and the conductor or solder pad h \geq	
		0.13mm.	Minor
		The diameter of the solder ball $d \le 0.15$ mm.	
		b) The quantity of solder balls or solder splashes isn't more than	Minor
		5 in 600mm2.	
		c) Solder balls / splashes do not violate minimum electrical clearance	Major
		d) Solder balls/splashes must be not be able to be dislodged with	Minor
		normal product usage	

• COSMETIC CRITERIA (non-operating)

No.	Defect	Jud	Classification		
1	Spots	In accordance with Screen Cosm	In accordance with Screen Cosmetic Criteria (Operating) No.1.		
2	Lines	In accordance with Screen Cosm	etic Criteria (Operating) No.2.	Minor	
3	Bubbles in polarizer	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Minor	
4	Scratch	In accordance with spots and line reflects on the panel surface, the	Minor		
5	Allowable density	Above defects should be separate	Minor		
6	Coloration	Not to be noticeable coloration in Back-lit type should be judged wit	Minor		
7	Contamination	Not to be noticeable. Minc			

Logic 1	「echno	loaies

• COSMETIC CRITERIA (operating)

No.	Defect	Judgment Criteria		
1	Spots	A) Clear	Minor	
		Size : d mm Acceptable Qty in active area		
		$d \le 0.1$ Disregard		
		$0.1 < d \le 0.2$ 6		
		$0.2 < d \le 0.3$ 2		
		0.3 < d 0		
		Note : Including pin holes and defective dots which must be within one pixel size. B) Unclear		
		Size : d mm Acceptable Qty in active area		
		$d \le 0.2$ Disregard		
		$0.2 < d \le 0.5$ 6		
		$0.5 < d \le 0.7$ 2		
		0.7 < d 0		
2	Lines	A) Clear L 5.0 (0) 2.0 (6) (0) See No. 1 W Note :() - Acceptable Qty in active area L - Length (mm) W - Width (mm) ∞ - Disregard B) Unclear L 10.0 (6) (0) 2.0 (6) (0) (Minor	
3	Rubbing line	Not to be noticeable.		
4	Allowable density	Above defects should be separated more than 10mm each other.	Minor	
5 6	Rainbow Dot size	Not to be noticeable. To be 95% ~ 105% of the dot size (Typ.) in drawing.	Minor Minor	
J	201 0120	Partial defects of each dot (ex. pin-hole) should be treated as 'spot'. (see Screen Cosmetic Criteria (Operating) No.1)		

Part Number: LT170410-2WHC

Issue Date : 31.07.2019

Logic Te	echnologies	Part Number :	LT170410-2WHC	Issue Date : 31.07.2019	Versio	n : 1.1
	Jneven brightness (only back-lit type module)	- BMAX - BMIN Divide activ	ghtness must be BMAX / E : Max. value by measure i : Min. value by measure in e area into 4 vertically and points shown in the followi	in 5 points n 5 points I horizontally.		Minor
			0	0		
			0	0		
			O : Measuring points			

Note :

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complex defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should not allowed.

Following three situations should be treated as 'concentration'.

- 7 or over defects in circle of Ø5mm.
- 10 or over defects in circle of \emptyset 10mm.
- 20 or over defects in circle of \varnothing 20mm.

• PRECAUTIONS FOR USING LCD MODULES

• HANDLING PRECAUTIONS

(1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.

(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

(5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:

- Isopropyl alcohol

- Ethyl alcohol

(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water

- Ketone

- Aromatic solvents

(7) Exercise care to minimize corrosion of the electrode. Water droplets, moisture condensation or current flow in a high-humidity environment, accelerate corrosion of the electrodes.

Issue Date : 31.07.2019

Version : 1.1

(8) Install the LCD Module by using the mounting holes. When mounting the LCD module ensure it is free of twisting, warping or distortion.

(9) Do not attempt to disassemble the LCD module.

(10) NC terminal should be open. Do not connect anything.

(11) If the logic circuit power is off, do not apply the input signals.

(12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.

- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

• STORAGE PRECAUTIONS

When storing the LCD modules, the following precaution is necessary.

(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature

between 0°C and 35°C, and keep the relative humidity between 40%RH and 60%RH.

(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the anti-static electricity container in which they were shipped.

• OTHERS

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.

- Terminal electrode sections.

• PRECAUTIONS FOR SOLDERING THE LCM

	Manual Soldering	Machine Drag Soldering	Machine Pre-soldering
Non ROHS Product	290°C ~ 350°C Speed : 3 ~ 5 mm/s	330°C ~ 350°C Speed : 4 ~ 8mm/s	300°C ~ 330°C Time : 3 ~ 6S Pressure : 0.8 to 1.2Mpa
RoHS Product	340°C ~ 370°C Time : 3 ~ 5S.	350°C ~ 370°C Time : 4 ~ 8 mm/S.	330°C ~ 360°C Time : 3 ~ 6S. Pressure : 0.8 ~ 1.2Mpa.

- (1) If solder flux is used, be sure to remove any remaining flux after finishing the soldering process. (This does not apply in the case of a non-halogen type of flux.) It is recommended that your protect the LCD surface with a cover during the soldering process to prevent any damage due to the flux sparks.
- (2) When soldering a backlight panel and PCB, the panel and PCB should not be detached more than 3 times. The temperature determines this number and time conditions as mentioned in the above table, although there may be some variance depending on the actual temperature of the soldering iron.