



## GaAs HEMT MMIC LOW NOISE AMPLIFIER, 2 - 12 GHz

#### Typical Applications

This HMC772LC4 is ideal for:

- · Wideband Communication Systems
- Surveillance Systems
- Point-to-Point Radios
- Point-to-Multi-Point Radios
- · Military & Space
- Test Instrumentation

### **Functional Diagram**



#### **Features**

Noise Figure: 1.8 dB

Gain: 15 dB

Output IP3: +25 dBm

P1dB Output Power: +13 dBm 50 Ohm Matched Input/Output Supply Voltage: +4V @ 45 mA

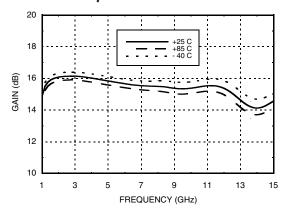
24 Lead Ceramic 4x4mm SMT Package: 16mm<sup>2</sup>

#### **General Description**

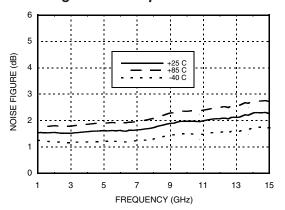
The HMC772LC4 is a GaAs MMIC HEMT Low Noise Wideband Amplifier which operates between 2 and 12 GHz. The amplifier provides 15 dB of gain, 1.8 dB noise figure up to 12 GHz and output IP3 of +25 dBm, while requiring only 45 mA from a +4V supply voltage. The Psat output power of up to +15 dBm enables the LNA to function as a LO driver for many of HIttite's balanced, I/Q or image reject mixers. The HMC772LC4 also features I/Os that are DC blocked and internally matched to 50 Ohms, making it ideal for SMT based high capacity microwave radio applications. The HMC772LC4 is housed in a RoHS compliant 4x4 mm QFN leadless ceramic package.

## Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +4V, Idd = 45 mA\*

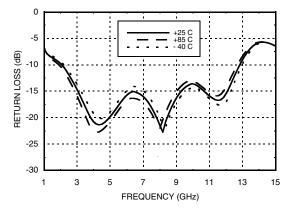
| Parameter                                          | Min.   | Тур. | Max. | Units   |
|----------------------------------------------------|--------|------|------|---------|
| Frequency Range                                    | 2 - 12 |      |      | GHz     |
| Gain                                               | 14     | 15   |      | dB      |
| Gain Variation over Temperature                    |        | 0.01 |      | dB / °C |
| Noise Figure                                       |        | 1.8  | 2.5  | dB      |
| Input Return Loss                                  |        | 15   |      | dB      |
| Output Return Loss                                 |        | 15   |      | dB      |
| Output Power for 1 dB Compression                  |        | 13   |      | dBm     |
| Output Third Order Intercept (IP3)                 |        | 25   |      | dBm     |
| Supply Current (Idd) (Vdd = 4V, Vgg = -0.2V Typ.)* |        | 45   |      | mA      |


<sup>\*</sup> Adjust Vgg between -1 to 0.3V to achieve Idd = 45mA typical.

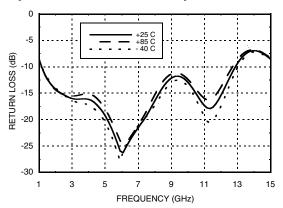




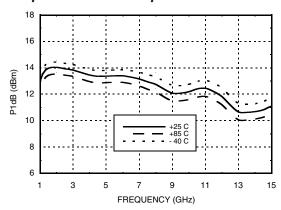

# GaAs HEMT MMIC LOW NOISE AMPLIFIER, 2 - 12 GHz


#### Gain vs. Temperature

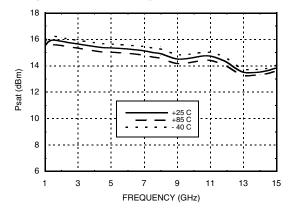



#### Noise Figure vs. Temperature




#### **Output Return Loss vs. Temperature**



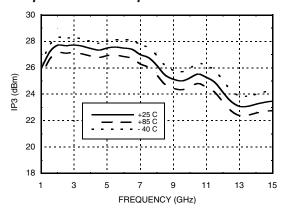

#### Input Return Loss vs. Temperature



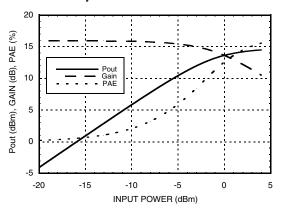
#### Output P1dB vs. Temperature



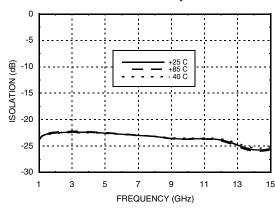
#### **Output Psat vs. Temperature**



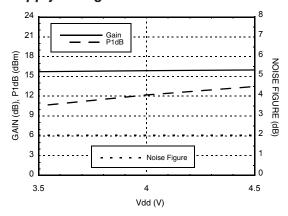



## GaAs HEMT MMIC LOW NOISE AMPLIFIER, 2 - 12 GHz


#### Output IP3 vs. Temperature




#### **Power Compression @ 12 GHz**



#### Reverse Isolation vs. Temperature



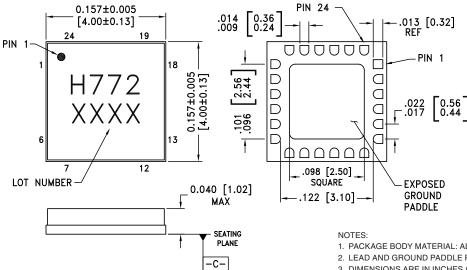
# Gain, Noise Figure & Power vs. Supply Voltage @ 12 GHz







## GaAs HEMT MMIC LOW NOISE AMPLIFIER, 2 - 12 GHz


#### **Absolute Maximum Ratings**

| Drain Bias Voltage                                             | +5V            |
|----------------------------------------------------------------|----------------|
| Drain Bias Current                                             | 60 mA          |
| RF Input Power                                                 | 5 dBm          |
| Gate Bias Voltage                                              | -1 to 0.3 V    |
| Continuous Pdiss (T = 85 °C)<br>(derate 5.8 mW/°C above 85 °C) | 0.55 W         |
| Thermal Resistance (Channel to ground paddle)                  | 172 °C/W       |
| Channel Temperature                                            | 180 °C         |
| Storage Temperature                                            | -65 to +150 °C |
| Operating Temperature                                          | -40 to +85 °C  |



#### **Outline Drawing**

#### **BOTTOM VIEW**



- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

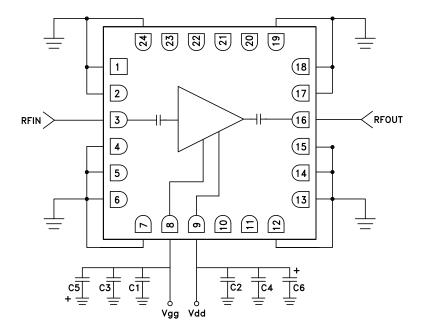
## Package Information

| Part Number | Package Body Material | Lead Finish      | MSL Rating          | Package Marking [2] |
|-------------|-----------------------|------------------|---------------------|---------------------|
| HMC772LC4   | Alumina, White        | Gold over Nickel | MSL3 <sup>[1]</sup> | H772<br>XXXX        |

<sup>[1]</sup> Max peak reflow temperature of 260 °C

<sup>[2] 4-</sup>Digit lot number XXXX






# GaAs HEMT MMIC LOW NOISE AMPLIFIER, 2 - 12 GHz

#### **Pin Descriptions**

| Pin Number                           | Function | Description                                                                                                                                              | Interface Schematic |
|--------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1, 2, 4 - 7, 12 - 15,<br>17 - 19, 24 | GND      | These pins and ground paddle must be connected to RF/DC ground.                                                                                          | GND<br>=            |
| 3                                    | RFIN     | This pin is AC coupled and matched to 50 Ohms.                                                                                                           | RFIN O—  —          |
| 8                                    | Vgg      | Gate control for amplifier. Please follow "MMIC Amplifier Biasing Procedure" application note. See application circuit for required external components. | Vgg ○               |
| 9                                    | Vdd      | Power Supply Voltage for the amplifier. See application circuit for required external components.                                                        | Vdd O—V             |
| 10, 11, 20 - 23                      | N/C      | The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.                 |                     |
| 16                                   | RFOUT    | This pin is AC coupled and matched to 50 Ohms.                                                                                                           | —  —O RFOUT         |

## **Application Circuit**

