Axial Lead Battery Strap Type > VL Series

VL Series

Description

The new VL Series device provides reliable, noncycling protection against overcharging and short circuits events for rechargeable battery cells where resettable protection is desired.

Features

- RoHS compliant and lead-free
- Weldable Nickel terminals
- Compact design saves board space
- Low resistance
- Slim, low profile design

Applications

• Rechargeable battery cell protection

Agency Approvals

AGENCY	AGENCY FILE NUMBER
c FLL ° us	E183209
<u> </u>	R50119583

Electrical Characteristics

Part Number	l _{hold}	l trip	V _{max}	l max	P _d max.	Maximum Time To Trip		Resistance			Agency Approvals	
r art Number	(A)	(A)	(Vdc)	(A)	(W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R_{typ} (Ω)	R $_{1\text{max}}$ (Ω)	c 71 2 us	<u>△</u> TÜV
12VL175XL	1.75	4.20	12	100	1.4	8.75	5.00	0.017	0.031	0.062	х	Х

I hold = Hold current: maximum current device will pass without tripping in 20°C still air.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

Temperature Rerating

Ambient Operation Temperature								
	-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C
Part Number	Hold Current (A)							
12VL175XL	3.5	2.9	2.4	1.75	1.3	1.0	0.8	0.3

WARNING

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- . These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- · Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

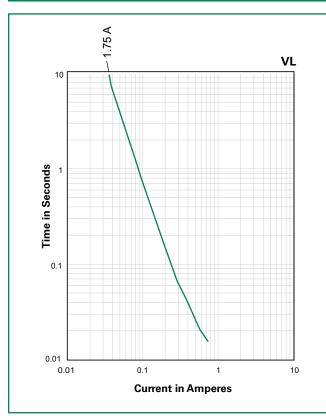
I trip = Trip current: minimum current at which the device will trip in 20°C still air.

V max = Maximum voltage device can withstand without damage at rated current (I max)

I may = Maximum fault current device can withstand without damage at rated voltage (Vmay)

 P_d = Power dissipated from device when in the tripped state at 20°C still air.

R min = Minimum resistance of device in initial (un-soldered) state.


R to = Typical resistance of device in initial (un-soldered) state

R _{tmax} = Maximum resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

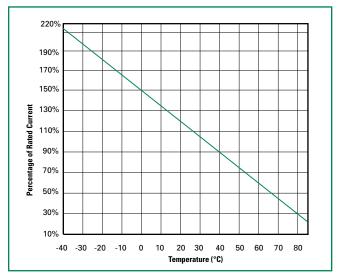
POLY-FUSE® Resettable PTCs

Axial Lead Battery Strap Type > VL Series

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Additional Information



Temperature Rerating Curve

Note:

Typical Temperature rerating curve, refer to table for derating data

Physical Specifications

Terminal Material	0.13mm nominal thickness, quarter-hard Nickel				
Insulating Material	Polyester tape				

Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Passive Aging	+60°C, 1000 hours -/+20% typical resistance change -40°C, 1000 hours -/+5% typical resistance change
Humidity Aging	+60°C, 95% R.H.,1000 hours, -/+10% typical resistance change
Thermal Shock	MIL-STD-202, Method 107, +85°C to -40°C 10 times -/+5% typical resistance change
Vibration	MIL-STD-883, Method 202, No change