POLY-FUSE® Resettable PTCs

Axial Lead Battery Strap Type > VT Series

VT Series

Description

The new VT Series device provides reliable, noncycling protection against overcharging and short circuits events for rechargeable battery cells where resettable protection is desired.

Features

- RoHS compliant and lead-free
- Weldable Nickel terminals
- Slim, low profile design
- Compact design saves board space
- Low resistance

Agency Approvals

AGENCY	AGENCY FILE NUMBER
c FL L® us	E183209
△ TÜV	R50119583

Applications

- Rechargeable battery cell protection
 - Mobile phones
 - Laptop computers

Electrical Characteristics

Part Number	l hold	l trip	V _{max}	P d may		Maximum Time To Trip		Resistance			Agency Approvals	
rait Number	(A)	(Å)	(Vdc)	(A)	max. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	$R_{typ} \ (\Omega)$	R $_{1\text{max}}$ (Ω)	c 71 2 us	Д TÜV
16VT210S	2.10	4.70	16	100	1.5	10.00	5.00	0.018	0.030	0.060	Х	Х

I $_{\rm hold}$ = Hold current: maximum current device will pass without tripping in 20°C still air.

Caution: Operation beyond the specified rating may result in damage and possible arcing

Temperature Rerating

			Ambient (Operation Te	mperature				
	-40°C	-20°C	0°C	25°C	40°C	50°C	60°C	70°C	85°C
Part Number		Hold Current (A)							
16VT210S	4.10	3.50	2.90	2.10	1.60	1.30	1.00	0.70	0.10

WARNING

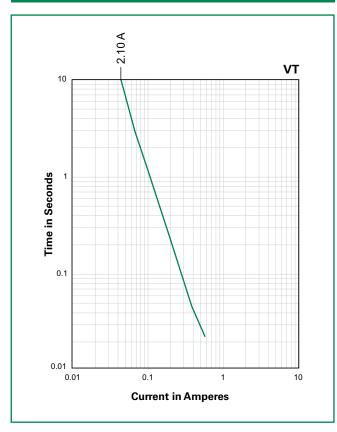
- · Users shall independently assess the suitability of these devices for each of their applications
- · Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- · These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- · These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

 I_{trip} = Trip current: minimum current at which the device will trip in 20°C still air.

V max = Maximum voltage device can withstand without damage at rated current (I max)

 I_{max} = Maximum fault current device can withstand without damage at rated voltage (V_{max})

 $P_{_{A}}$ = Power dissipated from device when in the tripped state at 20°C still air.


R min = Minimum resistance of device in initial (un-soldered) state.

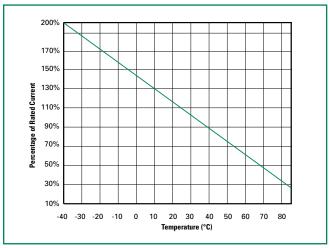
 R_{tvo} = Typical resistance of device in initial (un-soldered) state.

R $_{_{1max}}$ = Maximum resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Additional Information



Sample

Temperature Rerating Curve

Note:

Typical Temperature rerating curve, refer to table for derating data

Physical Specifications

Terminal Material	0.13mm nominal thickness, quarter-hard Nickel
Insulating Material	Polyester tape

Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Passive Aging	+70°C, 1000 hours, -/+10% typical resistance change
Humidity Aging	+85°C, 85%R.H., 7 days, -/+5% typical resistance change
Thermal Shock	MIL-STD-202, Method 107, +85°C/-40°C 20 times -30% typical resistance change
Vibration	MIL-STD-883, Method 2007, Condition A, No change