

Adafruit BNO055 Absolute Orientation

Sensor

Created by Kevin Townsend

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor

Last updated on 2023-11-01 03:07:15 PM EDT

©Adafruit Industries Page 1 of 54

5

7

10

12

19

24

28

30

Table of Contents

Overview

• Data Output

• Related Resources

Pinouts

• Power Pins

• I2C Pins

• STEMMA QT version

• Other Pins

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Arduino Code

• Wiring for Arduino

• Software

• Adafruit Unified Sensor System

• 'sensorapi' Example

• Raw Sensor Data

• .getVector (adafruit_vector_type_t vector_type)

• .getQuat(void)

• .getTemp(void)

• 'rawdata' Example

WebSerial Visualizer

• Step 1 - Wire up the BNO055 to your Microcontroller using I2C

• Step 2 - Load the Sketch onto your device

• Step 3 - Install Chrome

• Step 4 - Enable Web Serial API if necessary

• Step 5 - Visit the Adafruit 3D Model viewer

• Step 6 - Calibration

• Step 7 - Euler Angles or Quaternions

Processing Test

• Requirements

• Opening the Processing Sketch

• Run the Bunny Sketch on the Uno

• Rabbit Disco!

Device Calibration

• Interpretting Data

• Generating Calibration Data

• Persisting Calibration Data

• Bosch Video

Python & CircuitPython

• CircuitPython Microcontroller Wiring - I2C

• CircuitPython Microcontroller Wiring - UART

• Python Computer Wiring - I2C

©Adafruit Industries Page 2 of 54

38

38

43

49

51

• Python Computer Wiring - UART

• CircuitPython Installation of BNO055 Library

• Python Installation of BNO055 Library

• CircuitPython & Python Usage

• Usage

• Full Example Code

Python Docs

WebGL Example

• Dependencies

• Download the WebGL Example

• Start Server

• Sensor Calibration

• Usage

• More Info

BNO055 Sensor Calibration, Target Angle Offset, and Tap Detection in

CircuitPython

• Overview

• BNo055 Sensor Calibration

• User Orientation Offset (Target Angle Offset)

• Tap Detection

• Additional Information

FAQs

Downloads

• Files

• Pre-Compiled Bunny Rotate Binaries

• Schematic

• Board Dimensions

• Schematic for STEMMA QT

• Fab Print for STEMMA QT

©Adafruit Industries Page 3 of 54

©Adafruit Industries Page 4 of 54

Overview

If you've ever ordered and wire up a 9-DOF sensor, chances are you've also realized

the challenge of turning the sensor data from an accelerometer, gyroscope and

magnetometer into actual "3D space orientation"! Orientation is a hard problem to

solve. The sensor fusion algorithms (the secret sauce that blends accelerometer,

magnetometer and gyroscope data into stable three-axis orientation output) can

be mind-numbingly difficult to get right and implement on low cost real time systems.

Bosch is the first company to get this right by taking a MEMS accelerometer,

magnetometer and gyroscope and putting them on a single die with a high speed

ARM Cortex-M0 based processor to digest all the sensor data, abstract the sensor

fusion and real time requirements away, and spit out data you can use in quaternions,

Euler angles or vectors.

The BNO055 I2C implementation violates the I2C protocol in some

circumstances. This causes it not to work well with certain chip families. It does

not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does

not work well with I2C multiplexers. Operation with SAMD51, RP2040, STM32F4,

and nRF52840 is more reliable.

©Adafruit Industries Page 5 of 54

The new version of the board includes SparkFun qwiic () compatible STEMMA QT () co

nnectors for the I2C bus so you don't even need to solder! Use a a plug-and-play

STEMMA QT cable to get 9 DoF data ASAP.

Rather than spending weeks or months fiddling with algorithms of varying accuracy

and complexity, you can have meaningful sensor data in minutes thanks to the

BNO055 - a smart 9-DOF sensor that does the sensor fusion all on its own!

Data Output

The BNO055 can output the following sensor data:

Absolute Orientation (Euler Vector, 100Hz)

Three axis orientation data based on a 360° sphere

Absolute Orientation (Quaterion, 100Hz)

Four point quaternion output for more accurate data manipulation

Angular Velocity Vector (100Hz)

Three axis of 'rotation speed' in rad/s

Acceleration Vector (100Hz)

Three axis of acceleration (gravity + linear motion) in m/s^2

Magnetic Field Strength Vector (20Hz)

Three axis of magnetic field sensing in micro Tesla (uT)

Linear Acceleration Vector (100Hz)

Three axis of linear acceleration data (acceleration minus gravity) in m/s^2

Gravity Vector (100Hz)

Three axis of gravitational acceleration (minus any movement) in m/s^2

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 54

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Temperature (1Hz)

Ambient temperature in degrees celsius

Related Resources

Datasheet ()

Adafruit BNO055 Library () (GitHub)

Comparing the BNO085 vs BNO055 () (Adafruit Forums)

Pinouts

•

•

•

•

©Adafruit Industries Page 7 of 54

http://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://github.com/adafruit/Adafruit_BNO055
https://forums.adafruit.com/viewtopic.php?t=182704

Note: The pin order on the STEMMA QT version of the board is not the same as the

original version. The pins are the same otherwise.

Power Pins

VIN: 3.3-5.0V power supply input

3VO: 3.3V output from the on-board linear voltage regulator, you can grab up to

about 50mA as necessary

GND: The common/GND pin for power and logic

I2C Pins

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin can

be used with 3V or 5V logic, and there's a 10K pullup on this pin.

SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin can

be used with 3V or 5V logic, and there's a 10K pullup on this pin.

The BNO055 I2C implementation violates the I2C protocol in some

circumstances. This causes it not to work well with certain chip families. It does

not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does

not work well with I2C multiplexers. Operation with SAMD51, RP2040, STM32F4,

and nRF52840 is more reliable.

•

•

•

•

•

©Adafruit Industries Page 8 of 54

STEMMA QT version

STEMMA QT () - These connectors allow you to connectors to dev boards with S

TEMMA QT connectors or to other things with various associated accessories ()

Other Pins

RST: Hardware reset pin. Set this pin low then high to cause a reset on the

sensor. This pin is 5V safe.

INT: The HW interrupt output pin, which can be configured to generate an

interrupt signal when certain events occur like movement detected by the

accelerometer, etc. (not currently supported in the Adafruit library, but the chip

and HW is capable of generating this signal). The voltage level out is 3V

ADR: Set this pin high to change the default I2C address for the BNO055 if you

need to connect two ICs on the same I2C bus.

PS0 and PS1: These pins can be used to change the mode of the device (it can

also do HID-I2C and UART) and also are provided in case Bosch provides a

firmware update at some point for the ARM Cortex M0 MCU inside the sensor.

They should normally be left unconnected.

•

•

•

•

•

©Adafruit Industries Page 9 of 54

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:

Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 10 of 54

https://learn.adafruit.com//assets/24657
https://learn.adafruit.com//assets/24657
https://learn.adafruit.com//assets/24658
https://learn.adafruit.com//assets/24658

And Solder!

Be sure to solder all pins for reliable

electrical contact.

Solder the longer power/data strip first

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 11 of 54

https://learn.adafruit.com//assets/24659
https://learn.adafruit.com//assets/24659
https://learn.adafruit.com//assets/24660
https://learn.adafruit.com//assets/24660
https://learn.adafruit.com//assets/24661
https://learn.adafruit.com//assets/24661
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/24662
https://learn.adafruit.com//assets/24662

You're done! Check your solder joints

visually and continue onto the next steps

Arduino Code

Wiring for Arduino

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For

another kind of microcontroller, just make sure it has I2C capability, then port the

code - its pretty simple stuff!

©Adafruit Industries Page 12 of 54

https://learn.adafruit.com//assets/24663
https://learn.adafruit.com//assets/24663

To connect the assembled BNO055

breakout to an Arduino Uno, follow the

wiring diagram.

Connect Vin (red wire, positive) to the

power supply, 3-5V is fine. Use the same

voltage that the microcontroller logic is

based off of. For most Arduinos, that is 5V

Connect GND (black wire, negative) to

common power/data ground

Connect the SCL (blue wire) pin to the I2C

clock SCL pin on your Arduino. On an UNO

& '328 based Arduino, this is also known

as A5, on a Mega it is also known as digital

21 and on a Leonardo/Micro, digital 3

Connect the SDA (yellow wire) pin to the

I2C data SDA pin on your Arduino. On an

UNO & '328 based Arduino, this is also

known as A4, on a Mega it is also known

as digital 20 and on a Leonardo/Micro,

digital 2

Software

The Adafruit_BNO055 driver () supports reading raw sensor data, or you can use the

Adafruit Unified Sensor () system to retrieve orientation data in a standard data

format.

If you're using a Genuino Zero or Arduino Zero with the built in EDBG interface

you may need to use I2C address 0x29 since 0x28 is 'taken' by the DBG chip

©Adafruit Industries Page 13 of 54

https://learn.adafruit.com//assets/24667
https://learn.adafruit.com//assets/24667
https://learn.adafruit.com//assets/125770
https://learn.adafruit.com//assets/125770
https://learn.adafruit.com//assets/125771
https://learn.adafruit.com//assets/125771
https://github.com/adafruit/Adafruit_BNO055
file:///home/using-the-adafruit-unified-sensor-driver/introduction

Open up the Arduino library manager:

Search for the Adafruit Sensor library and install it

Search for the Adafruit BNO055 library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Adafruit Unified Sensor System

Since the Adafruit_BNO055 driver is based on the Adafruit Unified Sensor system,

you can retrieve your three axis orientation data (in Euler angles) using the standard

types and functions described in the Adafruit Sensor learning guide () (.getEvent (), .ge

tSensor (), etc.).

This is probably the easiest option if all you care about is absolute orientation data

across three axis.

For example, the following code snippet shows the core of what is needed to start

reading data using the Unified Sensor System:

©Adafruit Industries Page 14 of 54

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getevent-sensors-event-t-star
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getsensor-sensor-t-star
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getsensor-sensor-t-star

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

#include <utility/imumaths.h>

Adafruit_BNO055 bno = Adafruit_BNO055(55);

void setup(void)

{

 Serial.begin(9600);

 Serial.println("Orientation Sensor Test"); Serial.println("");

 /* Initialise the sensor */

 if(!bno.begin())

 {

 /* There was a problem detecting the BNO055 ... check your connections */

 Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C ADDR!");

 while(1);

 }

 delay(1000);

 bno.setExtCrystalUse(true);

}

void loop(void)

{

 /* Get a new sensor event */

 sensors_event_t event;

 bno.getEvent(&event);

 /* Display the floating point data */

 Serial.print("X: ");

 Serial.print(event.orientation.x, 4);

 Serial.print("\tY: ");

 Serial.print(event.orientation.y, 4);

 Serial.print("\tZ: ");

 Serial.print(event.orientation.z, 4);

 Serial.println("");

 delay(100);

}

'sensorapi' Example

To test the Unified Sensor System output, open the sensorapi demo in the

Adafruit_BNO055 examples folder:

This should produce the following output on the Serial Monitor:

©Adafruit Industries Page 15 of 54

Raw Sensor Data

If you don't want to use the Adafruit Unified Sensor system (for example if you want to

access the raw accelerometer, magnetometer or gyroscope data directly before the

sensor fusion algorithms process it), you can use the raw helper functions in the

driver.

The key raw data functions are:

getVector (adafruit_vector_type_t vector_type)

getQuat (void)

getTemp (void)

.getVector (adafruit_vector_type_t vector_type)

The .getVector function accepts a single parameter (vector_type), which indicates

what type of 3-axis vector data to return.

The vector_type field can be one of the following values:

VECTOR_MAGNETOMETER (values in uT, micro Teslas)

VECTOR_GYROSCOPE (values in rps, radians per second)

VECTOR_EULER (values in Euler angles or 'degrees', from 0..359)

VECTOR_ACCELEROMETER (values in m/s^2)

VECTOR_LINEARACCEL (values in m/s^2)

VECTOR_GRAVITY (values in m/s^2)

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 54

For example, to get the Euler angles vector, we could run the following code:

imu::Vector<3> euler = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

/* Display the floating point data */

Serial.print("X: ");

Serial.print(euler.x());

Serial.print(" Y: ");

Serial.print(euler.y());

Serial.print(" Z: ");

Serial.print(euler.z());

Serial.println("");

.getQuat(void)

The .getQuat function returns a Quaternion, which is often easier and more accurate

to work with than Euler angles when doing sensor fusion or data manipulation with

raw sensor data.

You can get a quaternion data sample via the following code:

imu::Quaternion quat = bno.getQuat();

/* Display the quat data */

Serial.print("qW: ");

Serial.print(quat.w(), 4);

Serial.print(" qX: ");

Serial.print(quat.x(), 4);

Serial.print(" qY: ");

Serial.print(quat.y(), 4);

Serial.print(" qZ: ");

Serial.print(quat.z(), 4);

Serial.println("");

.getTemp(void)

The .getTemp helper returns the current ambient temperature in degrees celsius, and

can be read via the following function call:

/* Display the current temperature */

int8_t temp = bno.getTemp();

Serial.print("Current Temperature: ");

Serial.print(temp);

Serial.println(" C");

Serial.println("");

©Adafruit Industries Page 17 of 54

'rawdata' Example

To test the raw data ouput, open the rawdata demo in the Adafruit_BNO055

examples folder:

This should produce the following output on the Serial Monitor:

By default, the sketch generates Euler angle absolute orientation data, but you can

easily modify the data displayed by changing the value provided to .getVector below:

 // Possible vector values can be:

 // - VECTOR_ACCELEROMETER - m/s^2

 // - VECTOR_MAGNETOMETER - uT

 // - VECTOR_GYROSCOPE - rad/s

 // - VECTOR_EULER - degrees

 // - VECTOR_LINEARACCEL - m/s^2

 // - VECTOR_GRAVITY - m/s^2

 imu::Vector<3> euler = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

 /* Display the floating point data */

 Serial.print("X: ");

 Serial.print(euler.x());

 Serial.print(" Y: ");

 Serial.print(euler.y());

 Serial.print(" Z: ");

 Serial.print(euler.z());

 Serial.println("");

©Adafruit Industries Page 18 of 54

WebSerial Visualizer

That raw data is all fine and good, but we want to see what they mean in 3D space,

right? Traditionally, a Processing sketch would be used to read the serial data and

convert it to a 3D rotation - but thanks to Web Serial API we can use any Chrome

browser - a lot easier than installing Processing! ()

Step 1 - Wire up the BNO055 to your Microcontroller

using I2C

First wire up a BNO055 to your board exactly as shown on the previous pages using

the I2C interface. Here's an example of wiring a Feather M0 to the sensor with I2C:

Board 3V to sensor VIN

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA to sensor SDA

©Adafruit Industries Page 19 of 54

https://www.chromestatus.com/feature/6577673212002304
https://www.chromestatus.com/feature/6577673212002304
https://learn.adafruit.com//assets/91713
https://learn.adafruit.com//assets/91713

Step 2 - Load the Sketch onto your device

Continue by making sure you still have the Arduino IDE open and have the latest

version of the Adafruit BNO055 library installed. Open the sketch at Examples →

Adafruit BNO055 → webserial_3d

Upload the sketch to your Microcontroller Board.

Step 3 - Install Chrome

Start by installing the Chrome browser if you haven't yet. ()

Step 4 - Enable Web Serial API if necessary

At the time of this tutorial, you'll need to enable the Serial API, which is really easy.

Visit chrome://flags from within Chrome. Find and enable the Experimental Web

Platform features

As of Chrome 89, Web Serial is enabled by default.

©Adafruit Industries Page 20 of 54

https://www.google.com/chrome/

Restart Chrome

Step 5 - Visit the Adafruit 3D Model viewer

In Chrome, visit https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/ ()

Verify you have 9600 Baud selected (it only really matters for non-native-serial

devices but might as well make sure its right). If you changed it in the sketch, be sure

it matches.

Click Connect

When the security window pops up, pick the matching Serial/COM port for your board

running the AHRS sketches. Make sure the serial port isn't open in Arduino or

something else.

©Adafruit Industries Page 21 of 54

https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/

You'll see the serial port monitor on the bottom and a 3D bunny on the top. Try

rotating and twisting the sensor to see it move!

Step 6 - Calibration

The devices will need to be calibrated each time it is powered up. You can see the

Device Calibration page for more details on performing the actual calibration, but the

WebSerial interface provides a convenient way to check the current calibration status.

©Adafruit Industries Page 22 of 54

When you first connect, you'll see that

most of the calibration registers show as

Uncalibrated.

Once you have gone through the

calibration steps, you will see that they are

all fully calibrated.

Step 7 - Euler Angles or Quaternions

The WebSerial interface is also able to use both Euler Angles and Quaternions. Euler

angles represent the X, Y, and Z axes and are easier to understand, but also have the

disadvantage of "Gimbal Lock" at certain angles. To get around that, quaternions can

be used. The angle type selection is at the top.

You can choose between using Euler Angles and Quaternions.

©Adafruit Industries Page 23 of 54

https://learn.adafruit.com//assets/91717
https://learn.adafruit.com//assets/91717
https://learn.adafruit.com//assets/91718
https://learn.adafruit.com//assets/91718

Try playing around with both by moving the bunny around and see if you can see the

differences!

Processing Test

Processing is a language similar to Arduino but aimed at graphics on computers.

Programs, like Arduino, are also called sketches. More at processing.org ().

To help you visualize the data, we've put together a basic Processing sketch that

loads a 3D model (in the .obj file format) and renders it using the data generated by

the BNO055 sketch on the Uno. The "bunny" sketch on the uno published data over

UART, which the Processing sketch reads in, rotating the 3D model based on the

incoming orientation data.

We DO NOT RECOMMEND using Processing for visualization, as its not easy.

Check the previous page for how to use a Chrome browser

©Adafruit Industries Page 24 of 54

https://processing.org/

Requirements

Processing 2.x ()

Note that you can try later Processing versions like 3.0+ too. On some

platforms Processing 2.2.1 has issues with supporting 3D acceleration (you

might see 'NoClassDefFoundError: processing/awt/PGraphicsJava2D'

errors). In those cases grab the later Processing 3.0+ release and use it

instead of 2.x.

Saito's OBJ Loader () library for Processing (included as part of the Adafruit repo

since Google Code is now 'End of Life').

G4P GUI library () for Processing (download the latest version here () and copy

the zip into the processing libraries folder along with the OBJ loader library

above). Version 3.5.2 was used in this guide.

The OBJ library is required to load 3D models. It isn't strictly necessary and you could

also render a boring cube in Processing, but why play with cubes when you have

rabbits?!

Opening the Processing Sketch

The processing sketch to render the 3D model is contained in the sample folder as

the ahrs sketch for the Uno.

•

◦

•

•

©Adafruit Industries Page 25 of 54

https://processing.org/releases
https://github.com/adafruit/Adafruit_BNO055/tree/master/OBJLoader
http://www.lagers.org.uk/g4p/
http://sourceforge.net/projects/g4p/files/?source=navbar

With Processing open, navigate to you Adafruit_BNO055 library folder (ex.: 'libraries/

Adafruit_BNO055'), and open 'examples/bunny/processing/cuberotate/

cuberotate.pde'. You should see something like this in Processing:

Run the Bunny Sketch on the Uno

Make sure that the "bunny" example sketch is running on the Uno, and that the Serial

Monitor is closed.

With the sample sketch running on the Uno, click the triangular 'play' icon in

Processing to start the sketch.

Note: Verify your serial port number function: setSerialPort is correct for your

computer, if you get an error, you likely have the wrong port selected.

©Adafruit Industries Page 26 of 54

Rabbit Disco!

You should see a rabbit similar to the following image:

Before the rabbit will rotate you will need to click the : to the right of the serial port

name. This will open a list of available serial ports, and you will need to click the

appropriate serial port that your Arduino uses (check the Arduino IDE to see the port

name if you're unsure). The chosen serial port should be remembered if you later run

the sketch again.

As you rotate your breakout board, the rabbit should rotate to reflect the movement

of the breakout in 3D-space, as seen in the video below

©Adafruit Industries Page 27 of 54

Also notice in the upper right corner of the dialog box at the top that the calibration of

each sensor is displayed. It's important to calibrate the BNO055 sensor so that the

most accurate readings are retrieved. Each sensor on the board has a separate

calibration status from 0 (uncalibrated) up to 3 (fully calibrated). Check out the video

and information from this guide for how to best calibrate the BNO055 sensor ().

Device Calibration

The BNO055 includes internal algorithms to constantly calibrate the gyroscope,

accelerometer and magnetometer inside the device.

The exact nature of the calibration process is a black box and not fully documented,

but you can read the calibration status of each sensor using the .getCalibration

function in the Adafruit_BNO055 () library. An example showing how to use this

function can be found in the sensorapi demo, though the code is also shown below

for convenience sake.

The four calibration registers -- an overall system calibration status, as well individual

gyroscope, magnetometer and accelerometer values -- will return a value between '0'

(uncalibrated data) and '3' (fully calibrated). The higher the number the better the data

will be.

/**/

/*

 Display sensor calibration status

*/

/**/

void displayCalStatus(void)

{

©Adafruit Industries Page 28 of 54

file:///home/bno055-absolute-orientation-sensor-with-raspberry-pi-and-beaglebone-black/webgl-example#sensor-calibration
file:///home/bno055-absolute-orientation-sensor-with-raspberry-pi-and-beaglebone-black/webgl-example#sensor-calibration
https://github.com/adafruit/Adafruit_BNO055

 /* Get the four calibration values (0..3) */

 /* Any sensor data reporting 0 should be ignored, */

 /* 3 means 'fully calibrated" */

 uint8_t system, gyro, accel, mag;

 system = gyro = accel = mag = 0;

 bno.getCalibration(&system, &gyro, &accel, &mag);

 /* The data should be ignored until the system calibration is > 0 */

 Serial.print("\t");

 if (!system)

 {

 Serial.print("! ");

 }

 /* Display the individual values */

 Serial.print("Sys:");

 Serial.print(system, DEC);

 Serial.print(" G:");

 Serial.print(gyro, DEC);

 Serial.print(" A:");

 Serial.print(accel, DEC);

 Serial.print(" M:");

 Serial.println(mag, DEC);

}

Interpretting Data

The BNO055 will start supplying sensor data as soon as it is powered on. The

sensors are factory trimmed to reasonably tight offsets, meaning you can get valid

data even before the calibration process is complete, but particularly in NDOF mode y

ou should discard data as long as the system calibration status is 0 if you have the

choice.

The reason is that system cal '0' in NDOF mode means that the device has not yet

found the 'north pole', and orientation values will be off The heading will jump to an

absolute value once the BNO finds magnetic north (the system calibration status

jumps to 1 or higher).

Generating Calibration Data

To generate valid calibration data, the following criteria should be met:

Gyroscope: The device must be standing still in any position

Magnetometer: In the past 'figure 8' motions were required in 3 dimensions, but

with recent devices fast magnetic compensation takes place with sufficient

normal movement of the device

When running in NDOF mode, any data where the system calibration value is '0'

should generally be ignored

•

•

©Adafruit Industries Page 29 of 54

Accelerometer: The BNO055 must be placed in 6 standing positions for +X, -X,

+Y, -Y, +Z and -Z. This is the most onerous sensor to calibrate, but the best

solution to generate the calibration data is to find a block of wood or similar

object, and place the sensor on each of the 6 'faces' of the block, which will help

to maintain sensor alignment during the calibration process. You should still be

able to get reasonable quality data from the BNO055, however, even if the

accelerometer isn't entirely or perfectly calibrated.

Persisting Calibration Data

Once the device is calibrated, the calibration data will be kept until the BNO is

powered off.

The BNO doesn't contain any internal EEPROM, though, so you will need to perform a

new calibration every time the device starts up, or manually restore previous

calibration values yourself.

Bosch Video

Here's a video from the BNO055 makers on calibration!

Python & CircuitPython

It's easy to use the BNO055 sensor with Python and CircuitPython, and the Adafruit

CircuitPython BNO055 () library. This library allows you to easily write Python code

that reads the acceleration and orientation of the sensor.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring - I2C

First wire up a BNO055 to your board exactly as shown on the previous pages for

Arduino using the I2C interface. Here's an example of wiring a Feather M4 to the

sensor with I2C:

•

©Adafruit Industries Page 30 of 54

https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to sensor VIN (red wire for

STEMMA QT)

Board GND to sensor GND (black wire for

STEMMA QT)

Board SCL to sensor SCL (yellow wire for

STEMMA QT)

Board SDA to sensor SDA (blue wire for

STEMMA QT)

CircuitPython Microcontroller Wiring - UART

Here's an example of wiring a Feather M4 to the sensor with UART:

©Adafruit Industries Page 31 of 54

https://learn.adafruit.com//assets/92540
https://learn.adafruit.com//assets/92540
https://learn.adafruit.com//assets/92541
https://learn.adafruit.com//assets/92541
https://learn.adafruit.com//assets/109158
https://learn.adafruit.com//assets/109158

Board 3V to sensor VIN

Board GND to sensor GND

Board TX to sensor SCL

Board RX to sensor SDA

sensor PS1 to sensor VIN

Python Computer Wiring - I2C

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with I2C:

©Adafruit Industries Page 32 of 54

https://learn.adafruit.com//assets/109160
https://learn.adafruit.com//assets/109160
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor VIN (red wire for STEMMA

QT)

Pi GND to sensor GND (black wire for

STEMMA QT)

Pi SCL to sensor SCL (yellow wire for

STEMMA QT)

Pi SDA to sensor SDA (blue wire for

STEMMA QT)

Older versions of the Raspberry Pi firmware do not have I2C clock stretching

support so they don't work well with the BNO. Please ensure your firmware is

updated to the latest version before continuing and slow down the I2C as

explained here https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-

clock-stretching

©Adafruit Industries Page 33 of 54

https://learn.adafruit.com//assets/59115
https://learn.adafruit.com//assets/59115
https://learn.adafruit.com//assets/92542
https://learn.adafruit.com//assets/92542
https://learn.adafruit.com//assets/92543
https://learn.adafruit.com//assets/92543
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching

Python Computer Wiring - UART

Here's the Raspberry Pi wired with UART:

Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi TXD to sensor SCL

Pi RXD to sensor SDA

sensor PS1 to sensor VIN

CircuitPython Installation of BNO055

Library

Next you'll need to install the Adafruit CircuitPython BNO055 () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). For example the Circuit Playground Express guide has a great page on how to

install the library bundle () for express boards.

The lib folder on your CIRCUITPY drive should contain at least the following libraries:

adafruit_bno055.mpy

adafruit_bus_device

adafruit_register

You will also need to configure the Pi to enable the UART and disable the login

console from using it.

•

•

•

©Adafruit Industries Page 34 of 54

https://learn.adafruit.com//assets/90659
https://learn.adafruit.com//assets/90659
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/adafruit-circuit-playground-express/installing-libraries
file:///home/adafruit-circuit-playground-express/installing-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_bno055.mpy, adafruit_bus_device, and adafruit_register files and folders copied

over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of BNO055 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-bno055

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

To use this sensor, you must enable i2c slowdown on the Raspberry Pi device tree

overlay. Check out this guide for instructions! ()

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the acceleration,

orientation (in Euler angles), and more from the board's Python REPL. The difference

between I2C and UART is only with the initialization. After that, you can use the

sensor the same with either connection.

The BNO055 CircuitPython library is large, and cannot be imported on a SAMD21

due to lack of RAM space.

•

Older versions of the Raspberry Pi firmware do not have I2C clock stretching

support so they don't work well with the BNO. Please ensure your firmware is

updated to the latest version before continuing and slow down the I2C as

explained here https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-

clock-stretching

©Adafruit Industries Page 35 of 54

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching

I2C Initialization

If you are using the I2C connection, create you sensor object as follows:

import board

import busio

import adafruit_bno055

i2c = busio.I2C(board.SCL, board.SDA)

sensor = adafruit_bno055.BNO055_I2C(i2c)

UART Initialization - CircuitPython

If you are using the UART connection with a board (like a Feather) running

CircuitPython, create your sensor object as follows:

import board

import busio

import adafruit_bno055

uart = busio.UART(board.TX, board.RX)

sensor = adafruit_bno055.BNO055_UART(uart)

UART Initialization - Python

Check how you specific board supports UART and where the port entry is created and

named. For the Raspberry Pi, this is done using the pyserial module and the UART

used is /dev/serial0 . Then you create your sensor object as follows:

import serial

import adafruit_bno055

uart = serial.Serial("/dev/serial0")

sensor = adafruit_bno055.BNO055_UART(uart)

Usage

Now you're ready to read values from the sensor using any of these properties:

temperature - The sensor temperature in degrees Celsius.

acceleration - This is a 3-tuple of X, Y, Z axis accelerometer values in meters per

second squared.

magnetic - This is a 3-tuple of X, Y, Z axis magnetometer values in microteslas.

gyro - This is a 3-tuple of X, Y, Z axis gyroscope values in degrees per second.

euler - This is a 3-tuple of orientation Euler angle values.

quaternion - This is a 4-tuple of orientation quaternion values.

•

•

•

•

•

•

©Adafruit Industries Page 36 of 54

linear_acceleration - This is a 3-tuple of X, Y, Z linear acceleration values (i.e.

without effect of gravity) in meters per second squared.

gravity - This is a 3-tuple of X, Y, Z gravity acceleration values (i.e. without the

effect of linear acceleration) in meters per second squared.

That's all there is to using the BNO055 sensor with CircuitPython!

Here's a complete example that prints each of the properties every second. Save this

as code.py on your board and look for the output in the serial REPL.

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import adafruit_bno055

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

sensor = adafruit_bno055.BNO055_I2C(i2c)

If you are going to use UART uncomment these lines

uart = board.UART()

sensor = adafruit_bno055.BNO055_UART(uart)

last_val = 0xFFFF

def temperature():

 global last_val # pylint: disable=global-statement

 result = sensor.temperature

 if abs(result - last_val) == 128:

 result = sensor.temperature

 if abs(result - last_val) == 128:

 return 0b00111111 & result

 last_val = result

 return result

•

•

©Adafruit Industries Page 37 of 54

while True:

 print("Temperature: {} degrees C".format(sensor.temperature))

 """

 print(

 "Temperature: {} degrees C".format(temperature())

) # Uncomment if using a Raspberry Pi

 """

 print("Accelerometer (m/s^2): {}".format(sensor.acceleration))

 print("Magnetometer (microteslas): {}".format(sensor.magnetic))

 print("Gyroscope (rad/sec): {}".format(sensor.gyro))

 print("Euler angle: {}".format(sensor.euler))

 print("Quaternion: {}".format(sensor.quaternion))

 print("Linear acceleration (m/s^2): {}".format(sensor.linear_acceleration))

 print("Gravity (m/s^2): {}".format(sensor.gravity))

 print()

 time.sleep(1)

Python Docs

Python Docs ()

WebGL Example

Included with the BNO055 library is an example of how to send orientation readings

to a webpage and use it to rotate a 3D model. Follow the steps below to setup and

run this example.

This example is for use with Raspberry Pi and other Linux computers - flask doesn't

run on CircuitPython yet!

Dependencies

In addition to the BNO055 libary, you'll need to install the flask Python web

framework ().

Connect to your board in a command terminal and run the following commands:

sudo apt-get update

sudo apt-get install python3-flask

You will also need to be using a web browser that supports WebGL () on your

computer or laptop. I recommend and have tested the code for this project with the

latest version of Chrome ().

©Adafruit Industries Page 38 of 54

https://circuitpython.readthedocs.io/projects/bno055/en/latest/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://caniuse.com/#feat=webgl
https://www.google.com/chrome/browser/desktop/

Download the WebGL Example

The example can be found in the library repo here (). There are various ways you can

get all the code. The easiest is probably to just clone the repo to your Pi:

git clone https://github.com/adafruit/Adafruit_CircuitPython_BNO055.git

And then you can navigate to the examples folder in the repo. Or copy the example to

another location, etc.

Start Server

Navigate to the webgl_demo example folder that you downloaded above. Then you

can start the server by running:

sudo python3 server.py

You should see text like the following after the server starts running:

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

* Restarting with stat

Now open a web browser on your computer and navigate to your board's IP address

or hostname on port 5000. For example on a Raspberry Pi http://raspberrypi.local:

5000/ () might work, or on a BeagleBone Black http://beaglebone:5000/ () is the URL

to try. If neither URL works you'll need to look up the IP address of your device () and

then access it on port 5000. For example if your board has the IP address 192.168.1.5

you would access http://192.168.1.5:5000/ ().

Once the page loads you should see something like the following:

©Adafruit Industries Page 39 of 54

https://github.com/adafruit/Adafruit_CircuitPython_BNO055/tree/master/examples
http://raspberrypi:5000/
http://raspberrypi:5000/
http://beaglebone:5000/
https://www.raspberrypi.org/documentation/troubleshooting/hardware/networking/ip-address.md
http://192.168.1.5:5000/

If you move the BNO055 sensor you should see the 3D model move too. However

when the demo first runs the sensor will be uncalibrated and likely not providing good

orientation data. Follow the next section to learn how to calibrate the sensor.

Sensor Calibration

This feature is currently not active. Once the library has been updated to allow

calibration data to be saved and loaded, this section will get updated.

For now, just have fun spinning the little 3D rabbit around.

Usage

You can line up the axes of the sensor and 3D model by using the Straighten button.

 First you'll need to place the BNO sensor in a very specific orientation. Place the

sensor flat in front of you and with the row of SDA, SCL, etc. pins facing away from

you like shown below:

©Adafruit Industries Page 40 of 54

Then click the Straighten button and you should see the 3D model snap into its

normal position:

Now move the BNO055 sensor around and you should see your movements exactly

matched by the 3D model!

You can also change the 3D model by clicking the Model drop down on the right and

changing to a different model, like a cat statue:

©Adafruit Industries Page 41 of 54

That's all there is to using the BNO055 WebGL demo!

To stop the server go back to the terminal where it was started and press Ctrl-C.

More Info

Describing how all of the WebGL code works is a little too complex for this guide,

however the high level components of the example are:

flask web service framework (): This is a great, simple web framework that is

used by server.py to serve the main index.html page and expose a few web

service endpoints to read BNO sensor data and save/load calibration data.

HTML5 server sent events (): This is how data is sent from the server to the

webpage. With SSE a connection is kept open and data is pushed to the client

web page. BNO sensor readings are taken and sent over SSE where they're use

to update the orientation of the model. This page () has a little more info on how

to use HTML5 SSE with the flask framework (although it uses a more complex

multiprocessing framework called gevent () that isn't necessary for simple apps

like this demo).

Three.js (): This is the JavaScript library that handles all the 3D model rendering.

Bootstrap () & jQuery (): These are a couple other JavaScript libraries that are

used for the layout and some core functionality of the page.

That's all there is to using the BNO055 WebGL demo. Enjoy using the BNO055

absolute orientation sensor in your own projects!

•

•

•

•

©Adafruit Industries Page 42 of 54

http://flask.pocoo.org/
http://www.html5rocks.com/en/tutorials/eventsource/basics/
http://flask.pocoo.org/snippets/116/
http://www.gevent.org/
http://threejs.org/
http://getbootstrap.com/
https://jquery.com/

BNO055 Sensor Calibration, Target Angle

Offset, and Tap Detection in CircuitPython

Overview

This page of notes by CGrover () was used to develop BNO055 9-DoF sensor

algorithms for the PowerWash Simulator Controller project and discusses three

essential characteristics of the sensor.

First, the relative and absolute calibration of the sensor can be performed to improve

initial sensor stability and positioning. Stand-alone sensor calibrator code is shown

and was submitted to the driver library's examples folder.

Next we'll talk about how to measure and adjust for user position orientation without

changing the sensor's absolute position calibration.

Finally, since tap detection is not native to the BNO055 chip, an example of how to

detect single and double-taps with the accelerometer component of the sensor is

described.

BNo055 Sensor Calibration

The sensor's offset registers each contain (0, 0, 0) after power-on, indicating that

one or more of the sensor components isn't fully calibrated. If left alone, the sensor

would eventually calibrate as its internal background calibration routine watches the

sensor's movement. It can take a long time to calibrate the sensor in this manner

unless the user executes a calibration dance just after power-up.

The preferred approach is to conduct a calibration dance using a separate module

that provides offset values that can be inserted into the project code to preset the

sensor's offset registers just after power-up. Presetting the magnetometer is

important since reliable absolute positioning is dependent on the magnetometer

knowing its geographic location relative to magnetic north. Presetting the gyroscope

and accelerometer registers isn't as critical, but is a good practice.

©Adafruit Industries Page 43 of 54

https://adafruit-playground.com/u/CGrover

Here's the stand-alone calibrator method that's included in the driver library's

examples folder:

SPDX-FileCopyrightText: 2023 JG for Cedar Grove Maker Studios

SPDX-License-Identifier: MIT

"""

`bno055_calibrator.py`

===

A CircuitPython module for calibrating the BNo055 9-DoF sensor. After manually

calibrating the sensor, the module produces calibration offset tuples for use

in project code.

* Author(s): JG for Cedar Grove Maker Studios

Implementation Notes

Hardware:

* Adafruit BNo055 9-DoF sensor

Software and Dependencies:

* Driver library for the sensor in the Adafruit CircuitPython Library Bundle

* Adafruit CircuitPython firmware for the supported boards:

 https://circuitpython.org/downloads

"""

import time

import board

import adafruit_bno055

pylint: disable=too-few-public-methods

class Mode:

 CONFIG_MODE = 0x00

 ACCONLY_MODE = 0x01

 MAGONLY_MODE = 0x02

 GYRONLY_MODE = 0x03

 ACCMAG_MODE = 0x04

 ACCGYRO_MODE = 0x05

 MAGGYRO_MODE = 0x06

 AMG_MODE = 0x07

 IMUPLUS_MODE = 0x08

 COMPASS_MODE = 0x09

 M4G_MODE = 0x0A

 NDOF_FMC_OFF_MODE = 0x0B

 NDOF_MODE = 0x0C

Uncomment these lines for UART interface connection

uart = board.UART()

sensor = adafruit_bno055.BNO055_UART(uart)

Instantiate I2C interface connection

i2c = board.I2C() # For board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For the built-in STEMMA QT connection

sensor = adafruit_bno055.BNO055_I2C(i2c)

sensor.mode = Mode.NDOF_MODE # Set the sensor to NDOF_MODE

print("Magnetometer: Perform the figure-eight calibration dance.")

while not sensor.calibration_status[3] == 3:

 # Calibration Dance Step One: Magnetometer

 # Move sensor away from magnetic interference or shields

 # Perform the figure-eight until calibrated

 print(f"Mag Calib Status: {100 / 3 * sensor.calibration_status[3]:3.0f}%")

 time.sleep(1)

print("... CALIBRATED")

time.sleep(1)

©Adafruit Industries Page 44 of 54

print("Accelerometer: Perform the six-step calibration dance.")

while not sensor.calibration_status[2] == 3:

 # Calibration Dance Step Two: Accelerometer

 # Place sensor board into six stable positions for a few seconds each:

 # 1) x-axis right, y-axis up, z-axis away

 # 2) x-axis up, y-axis left, z-axis away

 # 3) x-axis left, y-axis down, z-axis away

 # 4) x-axis down, y-axis right, z-axis away

 # 5) x-axis left, y-axis right, z-axis up

 # 6) x-axis right, y-axis left, z-axis down

 # Repeat the steps until calibrated

 print(f"Accel Calib Status: {100 / 3 * sensor.calibration_status[2]:3.0f}%")

 time.sleep(1)

print("... CALIBRATED")

time.sleep(1)

print("Gyroscope: Perform the hold-in-place calibration dance.")

while not sensor.calibration_status[1] == 3:

 # Calibration Dance Step Three: Gyroscope

 # Place sensor in any stable position for a few seconds

 # (Accelerometer calibration may also calibrate the gyro)

 print(f"Gyro Calib Status: {100 / 3 * sensor.calibration_status[1]:3.0f}%")

 time.sleep(1)

print("... CALIBRATED")

time.sleep(1)

print("\nCALIBRATION COMPLETED")

print("Insert these preset offset values into project code:")

print(f" Offsets_Magnetometer: {sensor.offsets_magnetometer}")

print(f" Offsets_Gyroscope: {sensor.offsets_gyroscope}")

print(f" Offsets_Accelerometer: {sensor.offsets_accelerometer}")

Dance Step One: The Figure-Eight

To calibrate the magnetometer, wave the sensor slowly in a figure-8 pattern until

the REPL says "CALIBRATED."

Dance Step Two: The Six-Step Rotate

The accelerometer is then calibrated by holding it on an edge facing you for a

few seconds then rotating it clockwise 90 degrees, wait, and repeat for a total of

4 positions. Then place it face-up on a flat surface and hold it there for a few

seconds. Finally, flip it face down and hold it to complete the accelerometer

calibration.

Dance Step Three: The Look Up and Wait

The last step is for the gyroscope. All it needs is to be held still for a few

seconds in a face-up position. The accelerometer calibration usually takes care

of the gyroscope calibration.

•

•

•

©Adafruit Industries Page 45 of 54

After all three calibration dances complete, the preset offset values will appear in the

REPL.

Repeating the calibration process produces some variance in the offset values, but

the scale and magnitude are usually close. Since the sensor is continuously

calibrating, close is good enough for most projects. The primary benefit of calibrating

the sensor once using the stand-alone code is that the project application begins with

a useful orientation from the get-go and won't require a calibration dance recital for

each power-on startup.

Optional: Preserving Calibration between Power On/Off Cycles

Rather than the copy/paste method described above, storing and reusing

configuration offsets from one power-on/off session to the next is possible since the

offset register properties can be read and changed. After conducting a single stand-

alone calibration, store the calibration offset registers into the NVM memory or an SD

card file for use during subsequent power-on startups. You may also want to consider

updating the NVM or file periodically during regular use as the offset registers are

continually adjusted by the internal background calibration task.

User Orientation Offset (Target Angle Offset)

A user orientation offset to correct for the alignment of the display in relationship

with the sensor will usually be needed by a project, initiated with a button press or

other event like an accelerometer double-tap. Changing the target angle offset

doesn't recalibrate the sensor, it just uses the current Euler angle to provide the offset

for future position readings.

The target angle offset used to reorient the sensor

(heading, roll, pitch)

target_angle_offset = (0, 0, 0)

The project's main while loop

while True:

 # Get the Euler angle values from the sensor

 # The Euler angle limits are: +180 to -180 pitch, +360 to -360 heading, +90 to

-90 roll

 sensor_euler = sensor.euler

 print(f"Euler angle: {sensor_euler}")

 # Adjust the Euler angle values with the target_angle_offset

 heading, roll, pitch = [position - target_angle_offset[idx] for idx, position

The sensor components (particularly the magnetometer) will gradually deviate

from the preset offset by a few counts during operation. The automatic

background calibration process is designed to accommodate the drift and

maintain the accuracy of the sensors.

©Adafruit Industries Page 46 of 54

in enumerate(sensor_euler)]

 # Scale the heading for horizontal movement range

 horizontal_mov = int(map_range(heading, -20, 20, -30, 30))

 print(f"mouse x: {horizontal_mov}")

 # Scale the roll for vertical movement range

 vertical_mov = int(map_range(roll, -25, 25, 30, 30))

 print(f"mouse y: {vertical_mov}")

 # Translate to stuff needed for HID

 mouse.move(x=horizontal_mov)

 mouse.move(y=vertical_mov)

 # Check the "reorient" button was pressed

 if reorientation_button:

 print(f"Reorient the sensor")

 # Use the current Euler angle values to reorient the target angle

 target_angle_offset = [angle for angle in sensor_euler]

Tap Detection

Here's a fairly simple non-blocking single and double tap detection scheme that takes

advantage of the BNO055's 100Hz-ish measurement data rate. The accelerometer's

data rate acts like a high pass filter when measuring the delta between two

measurements.

The tap sensitivity threshold can be set to accommodate the sensor's mechanical

mounting scheme; 1.0 is overly sensitive, 5.0 is typical, and 10 is somewhat numb. The

tap debounce setting can also vary somewhat depending on the sensor mount; 0.1

seconds works for nicely for sensors that are securely attached, 0.3 is typical if the

sensor is suspended in foam, and 0.5 may be needed if mounted loosely. Adjust

these values for your project's particulars.

Single-Tap Detection

def euclidean_distance(reference, measured):

 """Calculate the Euclidean distance between reference and measured points

 in a universe. The point position tuples can be colors, compass,

 accelerometer, absolute position, or almost any other multiple value data

 set.

 reference: A tuple or list of reference point position values.

 measured: A tuple or list of measured point position values."""

 # Create list of deltas using list comprehension

 deltas = [(reference[idx] - count) for idx, count in enumerate(measured)]

 # Resolve squared deltas to a Euclidean difference and return the result

 return math.sqrt(sum([d ** 2 for d in deltas]))

Set the tap detector parameters

TAP_THRESHOLD = 6 # Tap sensitivity threshold; depends on the physical sensor mount

TAP_DEBOUNCE = 0.3 # Time for accelerometer to settle after tap (seconds)

The project's main while loop

while True:

 # Detect a single tap on any axis of the BNo055 accelerometer

©Adafruit Industries Page 47 of 54

 accel_sample_1 = sensor.acceleration # Read one sample

 accel_sample_2 = sensor.acceleration # Read the next sample

 if euclidean_distance(accel_sample_1, accel_sample_2) >= TAP_THRESHOLD:

 # The difference between two consecutive samples exceeded the threshold

 # (equivalent to a high-pass filter)

 print(f"SINGLE tap detected")

 #

 # Perform the single-tap task here

 #

 time.sleep(TAP_DEBOUNCE) # Debounce delay

Double-Tap Detection

def euclidean_distance(reference, measured):

 """Calculate the Euclidean distance between reference and measured points

 in a universe. The point position tuples can be colors, compass,

 accelerometer, absolute position, or almost any other multiple value data

 set.

 reference: A tuple or list of reference point position values.

 measured: A tuple or list of measured point position values."""

 # Create list of deltas using list comprehension

 deltas = [(reference[idx] - count) for idx, count in enumerate(measured)]

 # Resolve squared deltas to a Euclidean difference and return the result

 return math.sqrt(sum([d ** 2 for d in deltas]))

Set the BNo055 tap detector parameters and initialize tap event history list

TAP_THRESHOLD = 6 # Tap sensitivity threshold; depends on the physical sensor mount

TAP_DEBOUNCE = 0.1 # Time for accelerometer to settle after tap (seconds)

TAP_TIMEOUT = 1500 # Remove tap event from history timeout (milliseconds)

tap_events = [] # Initialize the tap event history list

The project's main while looop

while True:

 # Detect a tap on any axis of the BNo055 accelerometer

 accel_sample_1 = sensor.acceleration # Read one sample

 accel_sample_2 = sensor.acceleration # Read the next sample

 if euclidean_distance(accel_sample_1, accel_sample_2) >= TAP_THRESHOLD:

 # The difference between two consecutive samples exceeded the threshold

 # (equivalent to a high-pass filter)

 print(f"SINGLE tap detected {ticks_ms()}")

 tap_events.append(ticks_ms() + TAP_TIMEOUT) # save tap expiration time in

event stack

 time.sleep(TAP_DEBOUNCE) # Debounce delay

 # Clean up tap event history after timeout period expires

 if len(tap_events) > 0:

 # Check for expired events

 if tap_events[0] <= ticks_ms():

 # The oldest event has expired

 tap_events = tap_events[1:] # Remove the oldest event

 # Check see if two taps are in the event history list

 if len(tap_events) == 2:

 # Double-tap: execute the task and clear event history

 print(f"DOUBLE tap detected {ticks_ms()}")

 #

 # Perform the double-tap task here

 #

 tap_events = [] # Clear event history

©Adafruit Industries Page 48 of 54

Additional Information

A very good calibration reference by MathWorks, but the axis orientation doesn't

represent the default setting: https://www.mathworks.com/help/supportpkg/arduinoio/

ug/calibrate-sensors.html ()

Bosch:

https://www.youtube.com/watch?v=Bw0WuAyGsnY ()

BNO055 Sensor CircuitPython Driver GitHub:

https://github.com/adafruit/Adafruit_CircuitPython_BNO055 ()

BNO055 Sensor ReadTheDocs:

https://docs.circuitpython.org/projects/bno055/en/latest/ ()

FAQs

Can I manually set the calibration constants?

Yes you can save and restore the calibration of the sensor, check out the

restore_offsets example: https://github.com/adafruit/Adafruit_BN ... ffsets.ino ()

One thing to keep in mind though is that the sensor isn't necessarily 'plug and play'

with loading the calibration data, in particular the magnetometer needs to be

recalibrated even if the offsets are loaded. The magnetometer calibration is very

dynamic so saving the values once might not really help when they're reloaded

and the EMF around the sensor has changed.

For further details check out the datasheet and Bosch's info on the sensor for

calibration info: https://www.bosch-sensortec.com/en/home ... 1/bno055_4 ()

Does the device make any assumptions about its initial

orientation?

You can customize how the axes are oriented (i.e. swap them around, etc.) but the

Adafruit Arduino library doesn't expose it right now. Check out section 3.4 Axis

Remap of the BNO055 datasheet for info on the registers to adjust its orientation:

https://www.adafruit.com/datasheets/BST ... 000_12.pdf ()

©Adafruit Industries Page 49 of 54

https://www.mathworks.com/help/supportpkg/arduinoio/ug/calibrate-sensors.html
https://www.mathworks.com/help/supportpkg/arduinoio/ug/calibrate-sensors.html
https://www.youtube.com/watch?v=Bw0WuAyGsnY
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://docs.circuitpython.org/projects/bno055/en/latest/
https://github.com/adafruit/Adafruit_BNO055/blob/master/examples/restore_offsets/restore_offsets.ino
https://www.bosch-sensortec.com/en/homepage/products_3/sensor_hubs/iot_solutions/bno055_1/bno055_4
https://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

Another thing to be aware of is that until the sensor calibrates it has a relative

orientation output (i.e. orientation will be relative to where the sensor was when it

powered on).

A system status value of '0' in NDOF mode means that the device has not yet

found the 'north pole', and orientation values will be relative not absolute. Once

calibration and setup is complete (system status > '0') the heading will jump to an

absolute value since the BNO has found magnetic north (the system calibration

status jumps to 1 or higher). See the Device Calibration page in this learning guide

for further details.

Why doesn't Euler output seem to match the Quaternion

output?

The Euler angles coming out of the chip are based on 'automatic orientation

detection', which has the drawback of not being continuous for all angles and

situations.

According to Bosch BNO055 Euler angle output should only be used for

eCompass, where pitch and roll stay below 45 degrees.

For absolute orientation, quaternions should always be used, and they can be

converted to Euler angles at the last moment via the .toEuler() helper function in

quaternion.h ().

Why do I get Input/Output or I2C errors when trying to

use the sensor in CircuitPython?

The BNO055 I2C implementation violates the I2C protocol in some circumstances.

This causes it not to work well with certain chip families. It does not work well with

Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does not work well with

I2C multiplexers. Operation with SAMD51, RP2040, STM32F4, and nRF52840 is

more reliable.

I'm sometimes losing data over I2C, what can I do about

this?

Depending on your system setup, you might need to adjust the pullups on the SCL

and SDA lines to be a bit stronger. The BNO055 has very tight timing requirements

on the I2C bus, requiring short setup and rise times on the signals. By default the

breakout board has 10K pullups, which might be too weak on some setups. You can

shorten the rise times and extend the setup time on the I2C lines with 'stronger'

©Adafruit Industries Page 50 of 54

https://github.com/adafruit/Adafruit_BNO055/blob/master/utility/quaternion.h

pullups. To do this simply add a 3.3K pullup on SCL and a 2.2K pullup on the SDA

line with a breadboard or perma-proto board, which will override to weaker 10K

pullups that are populated by default. See the image below for details:

I have some high frequency (> 2MHz) wires running near

the BNO055 and I'm getting unusual results/hanging

behavior

Turns out the BNO0055 breakout board is quite sensitive to RF interference from

nearby wires with higher frequency square waves. ()

Try to keep high frequency lines/wires away from the BNO055!

Downloads

Files

Arduino Library ()

EagleCAD PCB files on GitHub ()

BNO055 Stemma 3D models on GitHub ()

BNO055 Datasheet () (2016)

BNO055 Datasheet () (10/2021)

Fritzing object in the Adafruit Fritzing Library ()

bst-bno055-ds000.pdf

•

•

•

•

•

•

©Adafruit Industries Page 51 of 54

https://forum.pjrc.com/threads/40635-I2S-audio-output-and-problems-w-I2C-IMU?p=177616&viewfull=1#post177616
https://forum.pjrc.com/threads/40635-I2S-audio-output-and-problems-w-I2C-IMU?p=177616&viewfull=1#post177616
https://github.com/adafruit/Adafruit_BNO055
https://github.com/adafruit/Adafruit-BNO055-Breakout-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/4646%20BNO055%20Stemma
https://cdn-learn.adafruit.com/assets/assets/000/036/832/original/BST_BNO055_DS000_14.pdf
https://cdn-learn.adafruit.com/assets/assets/000/125/776/original/bst-bno055-ds000.pdf?1698865246
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/125/776/original/bst-bno055-ds000.pdf?1698865246

Pre-Compiled Bunny Rotate Binaries

The following binary images can be used in place of running the Processing Sketch,

and may help avoid the frequent API and plugin changes.

For OS X download cuberotate.app.zip, which was built on OS X 10.11.6 based on

Processing 2.2.1:

cuberotate.app.zip

Schematic

The latest version of the Adafruit BNO055 breakout can be seen below (click the

image or click here () to view the schematic in full resolution):

Board Dimensions

The BNO055 breakout has the following dimensions (in inches):

©Adafruit Industries Page 52 of 54

https://cdn-learn.adafruit.com/assets/assets/000/041/883/original/cuberotate.app.zip?1495478847
https://cdn-learn.adafruit.com/assets/assets/000/024/546/original/sensors_BNO055_REV-C.png?1429569060

Schematic for STEMMA QT

©Adafruit Industries Page 53 of 54

