Adafruit BNOO55 Absolute Orientation
Sensor

Created by Kevin Townsend

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor

©Adafruit Industries Page 1 of 54

Table of Contents

Overview 5

« Data Output
« Related Resources

Pinouts 7

« Power Pins

« 12C Pins

- STEMMA QT version
« Other Pins

Assembly 10

« Prepare the header strip:
« Add the breakout board:
« And Solder!

Arduino Code 12

« Wiring for Arduino

« Software

« Adafruit Unified Sensor System

« 'sensorapi' Example

- Raw Sensor Data

- .getVector (adafruit_vector_type_t vector_type)
« .getQuat(void)

. .getTemp(void)

- 'rawdata' Example

WebSerial Visualizer 19

« Step 1- Wire up the BNOO55 to your Microcontroller using 12C
« Step 2 - Load the Sketch onto your device

« Step 3 - Install Chrome

« Step 4 - Enable Web Serial API if necessary

« Step 5 - Visit the Adafruit 3D Model viewer

« Step 6 - Calibration

« Step 7 - Euler Angles or Quaternions

Processing Test 24

« Requirements

« Opening the Processing Sketch

» Run the Bunny Sketch on the Uno
» Rabbit Disco!

Device Calibration 28

« Interpretting Data

« Generating Calibration Data
« Persisting Calibration Data
« Bosch Video

Python & CircuitPython 30

« CircuitPython Microcontroller Wiring - 12C
« CircuitPython Microcontroller Wiring - UART
« Python Computer Wiring - 12C

©Adafruit Industries Page 2 of 54

« Python Computer Wiring - UART

« CircuitPython Installation of BNOOS55 Library
« Python Installation of BNOOS55 Library

« CircuitPython & Python Usage

- Usage

« Full Example Code

Python Docs 38

WebGL Example 38

« Dependencies

« Download the WebGL Example
« Start Server

« Sensor Calibration

« Usage

« More Info

BNOOS55 Sensor Calibration, Target Angle Offset, and Tap Detection in
CircuitPython 43

« Overview

« BNoO55 Sensor Calibration

« User Orientation Offset (Target Angle Offset)
« Tap Detection

« Additional Information

FAQs 49
Downloads 51
- Files

« Pre-Compiled Bunny Rotate Binaries

« Schematic

« Board Dimensions
« Schematic for STEMMA QT
« Fab Print for STEMMA QT

©Adafruit Industries Page 3 of 54

©Adafruit Industries Page 4 of 54

Overview

9 ﬂxxs ﬁbs.
Onemauon

< T M v

If you've ever ordered and wire up a 9-DOF sensor, chances are you've also realized
the challenge of turning the sensor data from an accelerometer, gyroscope and
magnetometer into actual "3D space orientation"! Orientation is a hard problem to
solve. The sensor fusion algorithms (the secret sauce that blends accelerometer,
magnetometer and gyroscope data into stable three-axis orientation output) can

be mind-numbingly difficult to get right and implement on low cost real time systems.

Bosch is the first company to get this right by taking a MEMS accelerometer,
magnetometer and gyroscope and putting them on a single die with a high speed
ARM Cortex-MO based processor to digest all the sensor data, abstract the sensor
fusion and real time requirements away, and spit out data you can use in quaternions,
Euler angles or vectors.

The BNOO55 12C implementation violates the 12C protocol in some
circumstances. This causes it not to work well with certain chip families. It does
not work well with Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does
not work well with 12C multiplexers. Operation with SAMD51, RP2040, STM32F4,
and nRF52840 is more reliable.

©Adafruit Industries Page 5 of 54

The new version of the board includes SparkFun qwiic () compatible STEMMA QT () co
nnectors for the 12C bus so you don't even need to solder! Use a a plug-and-play
STEMMA QT cable to get 9 DoF data ASAP.

Rather than spending weeks or months fiddling with algorithms of varying accuracy
and complexity, you can have meaningful sensor data in minutes thanks to the
BNOOS5 - a smart 9-DOF sensor that does the sensor fusion all on its own!

Data Output

The BNOOS5 can output the following sensor data:

« Absolute Orientation (Euler Vector, 100Hz)
Three axis orientation data based on a 360° sphere
+ Absolute Orientation (Quaterion, 100Hz)
Four point quaternion output for more accurate data manipulation
« Angular Velocity Vector (100Hz)
Three axis of 'rotation speed' in rad/s
« Acceleration Vector (100H2)
Three axis of acceleration (gravity + linear motion) in m/s”*2
« Magnetic Field Strength Vector (20Hz)
Three axis of magnetic field sensing in micro Tesla (uT)
« Linear Acceleration Vector (100Hz)
Three axis of linear acceleration data (acceleration minus gravity) in m/s*2
« Gravity Vector (100Hz)
Three axis of gravitational acceleration (minus any movement) in m/s"2

©Adafruit Industries Page 6 of 54

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

« Temperature (1Hz)
Ambient temperature in degrees celsius

Related Resources

« Datasheet ()
« Adafruit BNOOS5 Library () (GitHub)
« Comparing the BNOO85 vs BNOO55 () (Adafruit Forums)

Pinouts

wrvesrcige,

1entation

0
< o
n
vl
X
i
(0))

T I TS SN PP SRR S S r—

©Adafruit Industries Page 7 of 54

http://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://github.com/adafruit/Adafruit_BNO055
https://forums.adafruit.com/viewtopic.php?t=182704

Note: The pin order on the STEMMA QT version of the board is not the same as the
original version. The pins are the same otherwise.

Power Pins

« VIN: 3.3-5.0V power supply input

« 3VO: 3.3V output from the on-board linear voltage regulator, you can grab up to
about 50mA as necessary

« GND: The common/GND pin for power and logic

|2C Pins

« SCL - 12C clock pin, connect to your microcontrollers 12C clock line. This pin can
be used with 3V or 5V logic, and there's a 10K pullup on this pin.

« SDA - 12C data pin, connect to your microcontrollers I12C data line. This pin can
be used with 3V or 5V logic, and there's a 10K pullup on this pin.

©Adafruit Industries Page 8 of 54

STEMMA QT version

« STEMMA QT () - These connectors allow you to connectors to dev boards with S
TEMMA QT connectors or to other things with various associated accessories ()

Other Pins

« RST: Hardware reset pin. Set this pin low then high to cause a reset on the
sensor. This pin is 5V safe.

« INT: The HW interrupt output pin, which can be configured to generate an
interrupt signal when certain events occur like movement detected by the
accelerometer, etc. (not currently supported in the Adafruit library, but the chip
and HW is capable of generating this signal). The voltage level out is 3V

« ADR: Set this pin high to change the default I2C address for the BNOOS55 if you
need to connect two ICs on the same 12C bus.

The default I)C address of the BNO055 device is 0101001b (0x29). The alternative address
0101000b (0x28), in 12C mode the input pin COM3 can be used to select between the
primary and alternative 12C address as shown in Table 4-7.

Table 4-7:12C address selection

12C COM3_state 12C address
configuration
Slave HIGH 0x29
Slave LOW 0x28

« PSO and PS1: These pins can be used to change the mode of the device (it can
also do HID-12C and UART) and also are provided in case Bosch provides a
firmware update at some point for the ARM Cortex MO MCU inside the sensor.
They should normally be left unconnected.

©Adafruit Industries Page 9 of 54

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204

Assembly

9 ﬁxxs ﬁbs
Onematlon

Sliiiiiiillligges:iiiiiiiiiiniiz Prepare the header strip:

e e it ey s cutthe strip to length if necessary. It will

e ——— be easier to solder if you insert it into a

e ::',:,::"" Sl S ttebibig breadboard - long pins down

A= Ty

1 0 N " 1 8

f. " % L I

- ' " ° * Add the breakout board:

il &2 * * ¥ Place the breakout board over the pins so
gg that the short pins poke through the

* 0w B%ds = + 5 Dbreakout pads

L B I | L I I |

- I n L I I |

- ' = . "0

L I I} L IR I |

©Adafruit Industries Page 10 of 54

https://learn.adafruit.com//assets/24657
https://learn.adafruit.com//assets/24657
https://learn.adafruit.com//assets/24658
https://learn.adafruit.com//assets/24658

Be sure to solder all pins for reliable

electrical contact.

—
)
O
o
n
©
c
<

.
.
.
.
.

Solder the longer power/data strip first

sess esvewm

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

Page 11 of 54

©Adafruit Industries

https://learn.adafruit.com//assets/24659
https://learn.adafruit.com//assets/24659
https://learn.adafruit.com//assets/24660
https://learn.adafruit.com//assets/24660
https://learn.adafruit.com//assets/24661
https://learn.adafruit.com//assets/24661
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/24662
https://learn.adafruit.com//assets/24662

. e e e &P
® & =5 & = §
® & 8 8 = Q
- = = = .Z

You're done! Check your solder joints
visually and continue onto the next steps

Axis Abs.

S-

[
o
)
c
@
N
O}

e o W W e owm

A T
B e = - = =
/ % 5 8 & =8

Arduino Code

Wiring for Arduino

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For
another kind of microcontroller, just make sure it has 12C capability, then port the
code - its pretty simple stuff!

©Adafruit Industries Page 12 of 54

https://learn.adafruit.com//assets/24663
https://learn.adafruit.com//assets/24663

To connect the assembled BNOO55
breakout to an Arduino Uno, follow the
wiring diagram.

Connect Vin (red wire, positive) to the
power supply, 3-5V is fine. Use the same
voltage that the microcontroller logic is
based off of. For most Arduinos, that is 5V
Connect GND (black wire, negative) to
common power/data ground

Connect the SCL (blue wire) pin to the 12C
clock SCL pin on your Arduino. On an UNO
& '328 based Arduino, this is also known
as A5, on a Mega it is also known as digital
21 and on a Leonardo/Micro, digital 3

;.= 90909000 ogagage

Connect the SDA (yellow wire) pin to the
I2C data SDA pin on your Arduino. On an
UNO & '328 based Arduino, this is also
known as A4, on a Mega it is also known
as digital 20 and on a Leonardo/Micro,
digital 2

Software

The Adafruit_BNOOS5S5 driver () supports reading raw sensor data, or you can use the
Adafruit Unified Sensor () system to retrieve orientation data in a standard data
format.

©Adafruit Industries Page 13 of 54

https://learn.adafruit.com//assets/24667
https://learn.adafruit.com//assets/24667
https://learn.adafruit.com//assets/125770
https://learn.adafruit.com//assets/125770
https://learn.adafruit.com//assets/125771
https://learn.adafruit.com//assets/125771
https://github.com/adafruit/Adafruit_BNO055
file:///home/using-the-adafruit-unified-sensor-driver/introduction

Open up the Arduino library manager:

(55 demo | Arduine
File Edit Tools Help
Verify/Compile Ctrl+R A
Upload Ctrl+U Manage Libraries...
demo Upload Using Programmer Ctrl+Shift+U
// Demg Export compiled Binary Ctrl+Alt+S SR rn ol
' #includ Show Sketch Folder Crl+K Arduino libraries
:i:zizj Include Library) ArduTnoHttpCIlent
i Add File... ArduinoSound
// we light one pixel at a time, this is our iR
“imeD & miwaln — A Rridne

Search for the Adafruit Sensor library and install it

o o Library Manager
Type All E Topic All a Adafruit_Sensor
Adafruit Unified Sensor by Adafruit Ve 1.0.2 INSTALLED

Required for all Adafruit Unified Sensor based libraries. A unified sensor abstraction layer used by many Adafruit sensor libraries.

Search for the Adafruit BNOOS5 library and install it

@ Library Manager X
Type Al v | Topic |All + | \adafruit bno055
Adafruit BNOO55 by Adafruit Version 1.1.6 INSTALLED A
Library for the Adafruit BNOO55 Absolute Ori ion Sensor. Desi d specifically to work vith the Adafruit BNOOSS Breakout,

and is based on Adafruit's Unified Sensor Library.
More info

Select version + Install

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Adafruit Unified Sensor System

Since the Adafruit_BNOO55 driver is based on the Adafruit Unified Sensor system,
you can retrieve your three axis orientation data (in Euler angles) using the standard
types and functions described in the Adafruit Sensor learning guide () (.getEvent (), .ge

tSensor (), etc.).

This is probably the easiest option if all you care about is absolute orientation data

across three axis.

For example, the following code snippet shows the core of what is needed to start

reading data using the Unified Sensor System:

©Adafruit Industries

Page 14 of 54

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getevent-sensors-event-t-star
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getsensor-sensor-t-star
file:///home/using-the-adafruit-unified-sensor-driver/how-does-it-work#void-getsensor-sensor-t-star

#include <Wire.h>

#include <Adafruit Sensor.h>
#include <Adafruit BNOO55.h>
#include <utility/imumaths.h>

Adafruit BNOO55 bno = Adafruit BN0O55(55);

void setup(void)

{
Serial.begin(9600);
Serial.println("Orientation Sensor Test"); Serial.println("");

/* Initialise the sensor */
if('bno.begin())

/* There was a problem detecting the BN0OO55 ... check your connections */
Serial.print("Ooops, no BN0O55 detected ... Check your wiring or I2C ADDR!");
while(1);

}

delay(1000);

bno.setExtCrystalUse(true);
}

void loop(void)

{
/* Get a new sensor event */
sensors_event t event;
bno.getEvent(&event);

/* Display the floating point data */
Serial.print("X: ");
Serial.print(event.orientation.x, 4);
Serial.print("\tY: ");
Serial.print(event.orientation.y, 4);
Serial.print("\tzZ: ");
Serial.print(event.orientation.z, 4);
Serial.println("");

delay(100);

'sensorapi' Example

To test the Unified Sensor System output, open the sensorapi demo in the
Adafruit_BNOO55 examples folder:

" Adafruit BNO055 e
Adafruit CC3100
Adafruit_DHT_Unified

AAafriiit NAtQtar

bunny
rawdata

sensorapi

!

>
| 2
>
~

This should produce the following output on the Serial Monitor:

©Adafruit Industries Page 15 of 54

ec e /dev/tty.usbmodem141121
|

Send
X: 359.8125 Y: 11.8125 2: 56.0000
X: 359.4375 Y: 13.8750 2: 45.1250
X: 359.1875 Y: 14.3750 2: 35.6250
X: 357.7500 Y: 14.6875 2: 29.6250
X: 355.6250 Y: 13.3750 2: 31.7500
X: 352.0625 Y: 13.0625 2: 44.0000
X: 349.7500 Y: 13.6250 2: 49.5000
X: 348.8125 Y: 14.1250 2: 56.2500
X: 347.1250 Y: 13.8125 2: 72.7500
X: 337.9375 Y: 16.5625 2: 99.4375
X: 325.0000 Y: 20.6250 2: 119.7500
X: 3206250 Y: 22.4375 2: 124.1875
X: 319.5000 Y: 23.6250 2: 124.0000
X: 325.6875 Y: 23.3125 2: 116.1250
X: 333.5625 Y: 21.0000 2: 107.7500
X: 344.0625 Y: 15.5625 2: 97.8125
X: 358.9375 Y: 5.0625 2: 87.1875
X: 15.6250 Y: -10.7500 Z: 85.5625
X: 35.6250 Y: -28.8750 Z: 71.8125
X: 43.0000 Y: -35.5625 Z: 56.7500
X: 43.8750 Y: -36.5625 Z: 46.4375
X: 321.2500 Y: -33.8125 Z: 43.6250
X: 317.3125 Y: -29.2500 Z: 38.625
X: 312.8125 Y: -23.5625 Z: 37.6250
X: 304.6875 Y: -14.5000 Z: 43.9375
X: 296.1875 Y: -4.0000 2: 54.0000
X: 290.3125 Y: 1.1250 2: 67.4375
X: 285.5625 Y: 4.3750 2: 75.0000
X: 283.7500 Y: 5.3125 2: 80.0625
X: 283.0000 Y: 5.0000 2: 84.9375
X: 284.2500 Y: 3.0625 2: 86.6875
X: 287.6875 Y: 0.1875 2: 80.5625
X: 291.5000 Y: -3.2500 2: 73.4375
X: 294.5000 Y: -6.2500 2: 65.8125 v
__ Autoscroll No line ending ‘5‘] 9600 baud _ﬂ

Raw Sensor Data

If you don't want to use the Adafruit Unified Sensor system (for example if you want to
access the raw accelerometer, magnetometer or gyroscope data directly before the
sensor fusion algorithms process it), you can use the raw helper functions in the
driver.

The key raw data functions are:

« getVector (adafruit_vector_type_t vector_type)
« getQuat (void)
« getTemp (void)

.getVector (adafruit_vector_type_t vector_type)

The .getVector function accepts a single parameter (vector_type), which indicates
what type of 3-axis vector data to return.

The vector_type field can be one of the following values:

« VECTOR_MAGNETOMETER (values in uT, micro Teslas)

+« VECTOR_GYROSCOPE (values in rps, radians per second)

« VECTOR_EULER (values in Euler angles or 'degrees’, from 0..359)
« VECTOR_ACCELEROMETER (values in m/s*2)

« VECTOR_LINEARACCEL (values in m/s"2)

« VECTOR_GRAVITY (values in m/s"2)

©Adafruit Industries Page 16 of 54

For example, to get the Euler angles vector, we could run the following code:

mu::Vector<3> euler = bno.getVector(Adafruit BNOO55::VECTOR EULER);

/* Display the floating point data */
Serial.print("X: ");
Serial.print(euler x());
Serial.print(" ");
Serial.print(euler y());
Serial.print(" ")
Serial.print(euler.z());
Serial.println("");

.getQuat(void)

The .getQuat function returns a Quaternion, which is often easier and more accurate
to work with than Euler angles when doing sensor fusion or data manipulation with
raw sensor data.

You can get a quaternion data sample via the following code:

imu::Quaternion quat = bno.getQuat();

/* Display the quat data */
Serial.print("gW: ");
Serial.print(quat.w(

(), 4);
Serial.print(" gX: ");
Serial.print(quat.x(), 4);
Serial.print(" qY: ");
Serial.print(quat.y(), 4);
Serial.print(" qZ: ");
Serial.print(quat.z(), 4);

Serial.println("");

.getTemp(void)

The .getTemp helper returns the current ambient temperature in degrees celsius, and
can be read via the following function call:

/* Display the current temperature */
int8 t temp = bno.getTemp();

Serial.print("Current Temperature: ");
Serial.print(temp);

Serial.println(" C");
Serial.println("");

©Adafruit Industries Page 17 of 54

'rawdata' Example

To test the raw data ouput, open the rawdata demo in the Adafruit_BNOO055
examples folder:

Adafruit_BNOO055
Adafruit_CC3100
Adafruit_DHT_Unified

AAAfviiid MALCias

r v vVig

bunny
rawdata
sensorapi

This should produce the following output on the Serial Monitor:

/dev/tty.usbmodem141121

LN

R T

X: 324.88 Y: 12.50 Z: 94.12
X: 337.56 Y: 2.94 2: 87.75
X: 358.38 ¥: -10.38 Z: 84.44
X: 15.75 Y: -22.19 Z: 78.00
X: 16.81 Y: -24.31 Z: 75.81
X: 11.63 Y: -20.50 Z: 85.62
X: 348.38 Y: 0.63 Z: 99.75
X: 334,38 ¥: 12.88 Z: 111.44
X: 309.94 Y: 24.62 2: 119.81
X: 203.44 Y: 30.19 Z: 114.37
X: 200.00 Y: 34.13 Z: 107.00
X: 221.44 Y: 23.25 2: 83.87
X: 240.63 Y: 9.44 Z: 69.87
X: 261.38 Y: -1.56 Z: 58.94
X: 280.69 Y: -10.38 Z: 48.69
X: 293.44 Y: -20.69 Z: 52.13
X: 304,69 Y: -34.13 Z: 64.56
X: 223.50 Y: -46.25 Z: 74.81
X: 234.81 Y: -57.69 Z: 86.50
X: 241.88 Y: -61.63 Z: 97.69
X: 240.13 Y: -59.94 Z: 102.25
X: 228.50 Y: -51.63 2: 98.37
X: 298.13 ¥: -33.19 Z: 96.81
X: 278.63 Y: -16.31 Z: 95.81
X: 260.25 Y: -0.44 Z: 97.44
X: 247.69 Y: 10.81 2: 97.25
X: 239.31 Y: 18.94 Z: 97.44
X: 235.81 Y: 22.06 Z: 98.81
X: 242.44 Y: 17.06 2: 94.94
X: 266.25 Y: -3.56 Z: 82.19
X: 279.69 Y: -15.69 Z: 76.37
X: 285.31 Y: -20.69 2: 80.87
X: 273.81 Y: -8.00 Z: 92.19
X: 272.88 Y: -7.44 Z: 97.06

__ Autoscroll

Send

No line ending ﬂ 9600 baud

ﬂ

By default, the sketch generates Euler angle absolute orientation data, but you can
easily modify the data displayed by changing the value provided to .getVector below:

//

imu::

Possible vector values
- VECTOR_ACCELEROMETER

VECTOR_MAGNETOMETER
VECTOR_GYROSCOPE
VECTOR EULER

VECTOR LINEARACCEL
VECTOR_GRAVITY

Vector<3> euler

can be:

m/s”2
uT
rad/s
degrees
m/s”2
m/s”2

bno.getVector(Adafruit BNO055::VECTOR EULER);

/* Display the floating point data */
Serial.print("X: ");

Serial.print
Serial.print
Serial.print
Serial.print

euler.x());

Y "),

euler.y());
0);

— p— p— p—

"oz, ||).

Serial.print(euler.z())
Serial.println("");

©Adafruit Industries

Page 18 of 54

WebSerial Visualizer

Adafruit 3D Model Viewer

Disconnect 90008ad v Oualemions v ¥ Dark Mode

¥ Ausoscroll @ Show Timestamp Clear

That raw data is all fine and good, but we want to see what they mean in 3D space,
right? Traditionally, a Processing sketch would be used to read the serial data and
convert it to a 3D rotation - but thanks to Web Serial APl we can use any Chrome

browser - a lot easier than installing Processing! ()

Step 1 - Wire up the BNOOS55 to your Microcontroller
using 12C

First wire up a BNOOGS55 to your board exactly as shown on the previous pages using
the 12C interface. Here's an example of wiring a Feather MO to the sensor with 12C:

M eeatrul 'oo;'o..

.ﬂ' "00000000
00000000 | pZO4 Board 3V to sensor VIN

e A L A L 2 A 1

100000000 1| - Board GND to sensor GND
0000004 ’ v Board SCL to sensor SCL
Board SDA to sensor SDA

©Adafruit Industries Page 19 of 54

https://www.chromestatus.com/feature/6577673212002304
https://www.chromestatus.com/feature/6577673212002304
https://learn.adafruit.com//assets/91713
https://learn.adafruit.com//assets/91713

Step 2 - Load the Sketch onto your device

Continue by making sure you still have the Arduino IDE open and have the latest
version of the Adafruit BNOOSS5 library installed. Open the sketch at Examples =
Adafruit BNOOS55 = webserial_3d

& Arduino T Edit Sketch Tools Help
0 New %N a ske

Open... #0 Temboo >
Open Recent > WIFININA >
sketch_jun03a Sketchbook > RETIRED >

oid setup() {

7/ put your se Close %w| Examples for Adafruit Feather MO
Save %S Adafruit Zero DMA Library >
} Save As... oxs 12 >
SAMD_AnalogCorrection »
void loop() { Page Setup ©%P spu >
// put your ma prine ®P Servo >
} SPI >
USBHost >
Wire >
Adafruit ADT7410 Library >
Adafruit ADXL343 >
Adafruit AHRS >
Adafruit APDS9960 Library >
Adafruit Arcada Library »
Adafruit BluefruitLE nRF51 >
Adafruit BME280 Library >
Adafruit BMPO85 Unified >
Adafruit BMP280 Library >
bunny
Adafruit BusiO > position
Adafruit Circuit Playground »> rawdata
Adafruit DPS310 > read_all_data
Adafruit EPD > restore_offsets
Adafruit FreeTouch Library » sensorapi
Adafruit FXAS21002C >
Adafruit FXOS8700 »> examples_processing >
Adafruit GFX Library »
Adafruit HTS221 >
Adafruit HX8357 Library »
Adafruit ICM20649 >
Adafruit ILI9341 >
Adafruit ImageReader Library »>

Upload the sketch to your Microcontroller Board.

Step 3 - Install Chrome

Start by installing the Chrome browser if you haven't yet. ()

Step 4 - Enable Web Serial API if necessary

As of Chrome 89, Web Serial is enabled by default.

At the time of this tutorial, you'll need to enable the Serial API, which is really easy.

Visit chrome://flags from within Chrome. Find and enable the Experimental Web
Platform features

©Adafruit Industries Page 20 of 54

https://www.google.com/chrome/

Available Unavailable

@ Experimental Web Platform features

that are in development. — Mac, Windows, Enabled v

@ Use Windows Runtime MIDI API

L: “.’.’u*t; ows Runtime MIDI API for WebMIDI (effective only on Windows 10 or later). - Enabled v
Wini s

#use-winrt-midi-api

Restart Chrome

Step 5 - Visit the Adafruit 3D Model viewer

In Chrome, visit https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/ ()

Verify you have 9600 Baud selected (it only really matters for non-native-serial
devices but might as well make sure its right). If you changed it in the sketch, be sure
it matches.

Click Connect

Adafruit 3D Model Viewer

Connect 9600 Baud v |Quaternions v ¥ Dark Mode

When the security window pops up, pick the matching Serial/COM port for your board
running the AHRS sketches. Make sure the serial port isn't open in Arduino or
something else.

©Adafruit Industries Page 21 of 54

https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/

'S C (O @& adafruit-3dmodel-viewer.glitch.me

...model-viewer.glitch.me wants to connect to a serial port

Adafruit Feather M4 (tty.usbmodem14201)

Adafruit Feather M4 (cu.usbmodem14201)

Connect

tty.Bluetooth-Incoming-Port

cu.Bluetooth-Incoming-Port

You'll see the serial port monitor on the bottom and a 3D bunny on the top. Try
rotating and twisting the sensor to see it move!

Adafruit 3D Model Viewer

Disconnect | (9600Baud v |Quatemions v/ ¥ Dark Mode

Autoscroll @ Show Timestamp | Clear

Step 6 - Calibration

The devices will need to be calibrated each time it is powered up. You can see the
Device Calibration page for more details on performing the actual calibration, but the
WebSerial interface provides a convenient way to check the current calibration status.

©Adafruit Industries Page 22 of 54

When you first connect, you'll see that
most of the calibration registers show as
Uncalibrated.

Once you have gone through the
calibration steps, you will see that they are
all fully calibrated.

Step 7 - Euler Angles or Quaternions

The WebSerial interface is also able to use both Euler Angles and Quaternions. Euler
angles represent the X, Y, and Z axes and are easier to understand, but also have the
disadvantage of "Gimbal Lock" at certain angles. To get around that, quaternions can
be used. The angle type selection is at the top.

Adafruit 3D Model Viewer

Connect 9600 Baud v |Quaternions v ¥ Dark Mode

You can choose between using Euler Angles and Quaternions.

©Adafruit Industries Page 23 of 54

https://learn.adafruit.com//assets/91717
https://learn.adafruit.com//assets/91717
https://learn.adafruit.com//assets/91718
https://learn.adafruit.com//assets/91718

Adafruit 3D Model Viewer

Connect |9600Baud v [T Dark Mode

Euler Angles

Try playing around with both by moving the bunny around and see if you can see the
differences!

Processing Test

We DO NOT RECOMMEND using Processing for visualization, as its not easy.
Check the previous page for how to use a Chrome browser

Processing is a language similar to Arduino but aimed at graphics on computers.
Programs, like Arduino, are also called sketches. More at processing.org ().

To help you visualize the data, we've put together a basic Processing sketch that
loads a 3D model (in the .obj file format) and renders it using the data generated by
the BNOOGS5 sketch on the Uno. The "bunny" sketch on the uno published data over
UART, which the Processing sketch reads in, rotating the 3D model based on the
incoming orientation data.

©Adafruit Industries Page 24 of 54

https://processing.org/

Proces§1ng 2

An open p}o]ed initiated by Ben Fry and Casey Reas
Supported by programmers like you and the nonprofit
Processing Foundation, 501(;.‘)13)_. (

~.\

© 2004-2013 Ben Fry and Casey Reas
= 0 2001—2004 Musac.husetts Institute of Technology

/1T \

/

Requirements

« Processing 2.x ()

o Note that you can try later Processing versions like 3.0+ too. On some
platforms Processing 2.2.1 has issues with supporting 3D acceleration (you
might see 'NoClassDefFoundError: processing/awt/PGraphicsJava2D'
errors). In those cases grab the later Processing 3.0+ release and use it
instead of 2.x.

- Saito's OBJ Loader () library for Processing (included as part of the Adafruit repo
since Google Code is now 'End of Life').

« G4P GUI library () for Processing (download the latest version here () and copy
the zip into the processing libraries folder along with the OBJ loader library
above). Version 3.5.2 was used in this guide.

The OBJ library is required to load 3D models. It isn't strictly necessary and you could
also render a boring cube in Processing, but why play with cubes when you have
rabbits?!

Opening the Processing Sketch

The processing sketch to render the 3D model is contained in the sample folder as
the ahrs sketch for the Uno.

©Adafruit Industries Page 25 of 54

https://processing.org/releases
https://github.com/adafruit/Adafruit_BNO055/tree/master/OBJLoader
http://www.lagers.org.uk/g4p/
http://sourceforge.net/projects/g4p/files/?source=navbar

With Processing open, navigate to you Adafruit_BNOOS5S5 library folder (ex.: 'libraries/
Adafruit_BNOO55'), and open 'examples/bunny/processing/cuberotate/
cuberotate.pde’. You should see something like this in Processing:

.
B3 cuberotate | Processing 2.2.1

[ESRIERTS)

File Edit Sketch Tools Help

rt processing.serial.x;

ort java.awt.datatransfer.*;
¢ java.awt.Toolkit;

¢ processing.opengl.+*;

¢ saito.objloader.+;

ort g4p_controls.;

printSerial = false;

< | 0

float roll = 0.0F;

float pitch = 0.0F;

float yaw = 0.0F;

float temp = 0.0F;

float alt = 0.0F;

0BJModel model;

// Serial port state.

Serial port;

String buffer = "";

final String serialConfigFile = "serialconfig.

A

Run the Bunny Sketch on the Uno

Make sure that the "bunny" example sketch is running on the Uno, and that the Serial

Monitor is closed.

With the sample sketch running on the Uno, click the triangular 'play' icon in

Processing to start the sketch.

Note: Verify your serial port number function: setSerialPort is correct for your

computer, if you get an error, you likely have the wrong port selected.

©Adafruit Industries

Page 26 of 54

Rabbit Disco!

You should see a rabbit similar to the following image:

rd cuberotate l = '&q

Configuration (click to hide/show)

Serial port: COM215

Print serial data

Before the rabbit will rotate you will need to click the : to the right of the serial port
name. This will open a list of available serial ports, and you will need to click the
appropriate serial port that your Arduino uses (check the Arduino IDE to see the port
name if you're unsure). The chosen serial port should be remembered if you later run

the sketch again.

As you rotate your breakout board, the rabbit should rotate to reflect the movement
of the breakout in 3D-space, as seen in the video below

©Adafruit Industries Page 27 of 54

Also notice in the upper right corner of the dialog box at the top that the calibration of
each sensor is displayed. It's important to calibrate the BNOOS5 sensor so that the
most accurate readings are retrieved. Each sensor on the board has a separate
calibration status from O (uncalibrated) up to 3 (fully calibrated). Check out the video
and information from this guide for how to best calibrate the BNOOS55 sensor ().

Device Calibration

The BNOOSS includes internal algorithms to constantly calibrate the gyroscope,
accelerometer and magnetometer inside the device.

The exact nature of the calibration process is a black box and not fully documented,
but you can read the calibration status of each sensor using the .getCalibration
function in the Adafruit_BNOOS55 () library. An example showing how to use this
function can be found in the sensorapi demo, though the code is also shown below
for convenience sake.

The four calibration registers -- an overall system calibration status, as well individual
gyroscope, magnetometer and accelerometer values -- will return a value between 'O’
(uncalibrated data) and '3' (fully calibrated). The higher the number the better the data
will be.

/KRR sk sk ko sk sk sk ok sk sk sk sk sk ok ok sk sk sk ok sk sk sk ok sk sk ko sk sk ok sk sk stk sk sk stk sk sk ok sk sk sk ok sk sk sk okok sk sk skokkskok /
/*

Display sensor calibration status
*/

/**/

void displayCalStatus(void)
{

©Adafruit Industries Page 28 of 54

file:///home/bno055-absolute-orientation-sensor-with-raspberry-pi-and-beaglebone-black/webgl-example#sensor-calibration
file:///home/bno055-absolute-orientation-sensor-with-raspberry-pi-and-beaglebone-black/webgl-example#sensor-calibration
https://github.com/adafruit/Adafruit_BNO055

/* Get the four calibration values (0..3) */

/* Any sensor data reporting 0 should be ignored, */

/* 3 means 'fully calibrated" */

uint8 t system, gyro, accel, mag;

system = gyro = accel = mag =

bno.getCalibration(&system, &gyro, &accel, &mag);

/* The data should be ignored until the system calibration is > 0 */
Serial.print("\t");
if (!system)

Serial.print("! ");

}

/* Display the individual values */
Serial.print("Sys:");
Serial.print(system DEC) ;
Serial.print(" ");
Serial.print(gyro, DEC) ;
Serial.print(" A:");
Serial.print(accel DEC);
Serial.print(" M:");
Serial.println(mag, DEC);

Interpretting Data

The BNOOS5 will start supplying sensor data as soon as it is powered on. The
sensors are factory trimmed to reasonably tight offsets, meaning you can get valid
data even before the calibration process is complete, but particularly in NDOF mode y
ou should discard data as long as the system calibration status is O if you have the
choice.

The reason is that system cal '0' in NDOF mode means that the device has not yet
found the 'north pole', and orientation values will be off The heading will jump to an
absolute value once the BNO finds magnetic north (the system calibration status
jumps to 1 or higher).

When running in NDOF mode, any data where the system calibration value is 'O’

should generally be ignored

Generating Calibration Data

To generate valid calibration data, the following criteria should be met:

« Gyroscope: The device must be standing still in any position

- Magnetometer: In the past 'figure 8' motions were required in 3 dimensions, but
with recent devices fast magnetic compensation takes place with sufficient
normal movement of the device

©Adafruit Industries Page 29 of 54

« Accelerometer: The BNOO55 must be placed in 6 standing positions for +X, -X,
+Y, -Y, +Z and -Z. This is the most onerous sensor to calibrate, but the best
solution to generate the calibration data is to find a block of wood or similar
object, and place the sensor on each of the 6 'faces' of the block, which will help
to maintain sensor alignment during the calibration process. You should still be
able to get reasonable quality data from the BNOO55, however, even if the
accelerometer isn't entirely or perfectly calibrated.

Persisting Calibration Data

Once the device is calibrated, the calibration data will be kept until the BNO is
powered off.

The BNO doesn't contain any internal EEPROM, though, so you will need to perform a

new calibration every time the device starts up, or manually restore previous
calibration values yourself.

Bosch Video

Here's a video from the BNOO55 makers on calibration!

Python & CircuitPython

It's easy to use the BNOOS5 sensor with Python and CircuitPython, and the Adafruit
CircuitPython BNOOSS5 () library. This library allows you to easily write Python code
that reads the acceleration and orientation of the sensor.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library ().

CircuitPython Microcontroller Wiring - 12C

First wire up a BNOOS55 to your board exactly as shown on the previous pages for
Arduino using the 12C interface. Here's an example of wiring a Feather M4 to the
sensor with 12C:

©Adafruit Industries Page 30 of 54

https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

ooooooooooooooooooooooooo
ooooooooooooooooooooooooo

Board 3V to sensor VIN (red wire for
STEMMA QT)

Board GND to sensor GND (black wire for
> STEMMA QT)

» w.\:-fmmm.:u.-] Board SCL to sensor SCL (yellow wire for
STEMMA QT)

Board SDA to sensor SDA (blue wire for
STEMMA QT)

CircuitPython Microcontroller Wiring - UART

Here's an example of wiring a Feather M4 to the sensor with UART:

©Adafruit Industries Page 31 of 54

https://learn.adafruit.com//assets/92540
https://learn.adafruit.com//assets/92540
https://learn.adafruit.com//assets/92541
https://learn.adafruit.com//assets/92541
https://learn.adafruit.com//assets/109158
https://learn.adafruit.com//assets/109158

Board 3V to sensor VIN
Board GND to sensor GND
Board TX to sensor SCL
Board RX to sensor SDA
sensor PS1to sensor VIN

.. —_
AL ASSOCMO M mx T D4

Python Computer Wiring - 12C

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported ().

Here's the Raspberry Pi wired with 12C:

©Adafruit Industries Page 32 of 54

https://learn.adafruit.com//assets/109160
https://learn.adafruit.com//assets/109160
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor VIN (red wire for STEMMA
QT)

Pi GND to sensor GND (black wire for
STEMMA QT)

Pi SCL to sensor SCL (yellow wire for
STEMMA QT)

Pi SDA to sensor SDA (blue wire for
STEMMA QT)

©Adafruit Industries Page 33 of 54

https://learn.adafruit.com//assets/59115
https://learn.adafruit.com//assets/59115
https://learn.adafruit.com//assets/92542
https://learn.adafruit.com//assets/92542
https://learn.adafruit.com//assets/92543
https://learn.adafruit.com//assets/92543
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching

Python Computer Wiring - UART

Here's the Raspberry Pi wired with UART:

Pi 3V3 to sensor VIN

Pi GND to sensor GND
Pi TXD to sensor SCL

Pi RXD to sensor SDA
sensor PS1to sensor VIN

CircuitPython Installation of BNOO55
Library

Next you'll need to install the Adafruit CircuitPython BNOOSS () library on your
CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your
board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library bundle
(). For example the Circuit Playground Express guide has a great page on how to
install the library bundle () for express boards.

The lib folder on your CIRCUITPY drive should contain at least the following libraries:

« adafruit_bno055.mpy
- adafruit_bus_device
- adafruit_register

©Adafruit Industries Page 34 of 54

https://learn.adafruit.com//assets/90659
https://learn.adafruit.com//assets/90659
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/adafruit-circuit-playground-express/installing-libraries
file:///home/adafruit-circuit-playground-express/installing-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit
_bno055.mpy, adafruit_bus_device, and adafruit_register files and folders copied
over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of BNOOS5 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling 12C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

« sudo pip3 install adafruit-circuitpython-bno055

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

To use this sensor, you must enable i2c slowdown on the Raspberry Pi device tree
overlay. Check out this guide for instructions! ()

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the acceleration,
orientation (in Euler angles), and more from the board's Python REPL. The difference
between I12C and UART is only with the initialization. After that, you can use the
sensor the same with either connection.

©Adafruit Industries Page 35 of 54

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/i2c-clock-stretching

12C Initialization
If you are using the I12C connection, create you sensor object as follows:

import board

import busio

import adafruit bno055

i2c = busio.I2C(board.SCL, board.SDA)
sensor = adafruit bno055.BN0055 I2C(i2c)

UART Initialization - CircuitPython

If you are using the UART connection with a board (like a Feather) running
CircuitPython, create your sensor object as follows:

import board

import busio

import adafruit bno055

uart = busio.UART(board.TX, board.RX)
sensor = adafruit bno055.BN0055 UART (uart)

UART Initialization - Python

Check how you specific board supports UART and where the port entry is created and
named. For the Raspberry Pi, this is done using the pyserial module and the UART
usedis /dev/serial@ . Then you create your sensor object as follows:

import serial

import adafruit bno055

uart = serial.Serial("/dev/serial0")
sensor = adafruit bno055.BN0055 UART (uart)

Usage

Now you're ready to read values from the sensor using any of these properties:

- temperature - The sensor temperature in degrees Celsius.

acceleration - This is a 3-tuple of X, Y, Z axis accelerometer values in meters per
second squared.

« magnetic - This is a 3-tuple of X, Y, Z axis magnetometer values in microteslas.

- gyro - This is a 3-tuple of X, Y, Z axis gyroscope values in degrees per second.

- euler - This is a 3-tuple of orientation Euler angle values.

« quaternion - This is a 4-tuple of orientation quaternion values.

©Adafruit Industries Page 36 of 54

« linear_acceleration - This is a 3-tuple of X, Y, Z linear acceleration values (i.e.
without effect of gravity) in meters per second squared.

. gravity - This is a 3-tuple of X, Y, Z gravity acceleration values (i.e. without the
effect of linear acceleration) in meters per second squared.

>>> print('Temperature:
perature: 23 degrees C
print('Accelerometer (m/s”2): {}'.format(sensor.acceleration))
lerometer (m/s”2): (0.0, -0.6, 9.47)
>>> print('Magnetometer (microteslas): {}'.format(sensor.magnetic))
Magnetometer (microteslas): (-16.75, -7.1875, -42.0625)
> print('Gyroscope (deg/sec): {}'.format(sensor.gyro))
Gyroscope (deg/sec): (-0.00109083, 0.00218166, 0.0)
> print('Euler angle: {}'.format(sensor.euler))

r angle: (117.937, .25, 3.187

[
L
-0
>>> print('Quaternion: {}'.format(sensor.quaternion))
aternion: (0.514832, -0.0124512, 0251465, -0.856812)
print('Linear acceleration (m/s”2): {}'.format(sensor.linear_acceleration))
near acceleration (m/s”*2): (0.01, 0.0, -0.31)
> print('Gravity (m/s”2): {}'.format(sensor.gravity))
Gravity (m/s”2): (-0.04, -0.54, 9.79)

That's all there is to using the BNOOS5 sensor with CircuitPython!

Here's a complete example that prints each of the properties every second. Save this
as code.py on your board and look for the output in the serial REPL.

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit bno055

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA I2C() # For using the built-in STEMMA QT connector on a
microcontroller

sensor = adafruit bno055.BN0055 I2C(i2c)

If you are going to use UART uncomment these lines
uart = board.UART()
sensor = adafruit bno055.BN0055 UART (uart)

last val OxFFFF

def temperature():

global last val # pylint: disable=global-statement
result = sensor.temperature
if abs(result - last val) == 128:

result = sensor.temperature

if abs(result - last val) == 128:

return 0b00111111 & result

last val = result
return result

©Adafruit Industries Page 37 of 54

while True:
print("Temperature: {} degrees C".format(sensor.temperature))
print(

"Temperature: {} degrees C".format(temperature())

) # Uncomment if using a Raspberry Pi
print("Accelerometer (m/s”2): {}".format(sensor.acceleration))
print("Magnetometer (microteslas): {}".format(sensor.magnetic))
print("Gyroscope (rad/sec): {}".format(sensor.gyro))
print("Euler angle: {}".format(sensor.euler))
print("Quaternion: {}".format(sensor.quaternion))
print("Linear acceleration (m/s”2): {}".format(sensor.linear acceleration))
print("Gravity (m/s”2): {}".format(sensor.gravity))
print()

time.sleep(1)

Python Docs

Python Docs ()

WebGL Example

Included with the BNOOS5 library is an example of how to send orientation readings
to a webpage and use it to rotate a 3D model. Follow the steps below to setup and
run this example.

This example is for use with Raspberry Pi and other Linux computers - flask doesn't
run on CircuitPython yet!

Dependencies

In addition to the BNOOS5 libary, you'll need to install the flask Python web
framework ().

Connect to your board in a command terminal and run the following commands:

sudo apt-get update
sudo apt-get install python3-flask

You will also need to be using a web browser that supports WebGL () on your
computer or laptop. | recommend and have tested the code for this project with the
latest version of Chrome ().

©Adafruit Industries Page 38 of 54

https://circuitpython.readthedocs.io/projects/bno055/en/latest/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://caniuse.com/#feat=webgl
https://www.google.com/chrome/browser/desktop/

Download the WebGL Example

The example can be found in the library repo here (). There are various ways you can
get all the code. The easiest is probably to just clone the repo to your Pi:

git clone https://github.com/adafruit/Adafruit CircuitPython BN0055.git

And then you can navigate to the examples folder in the repo. Or copy the example to
another location, etc.

Start Server

Navigate to the webgl_demo example folder that you downloaded above. Then you
can start the server by running:

sudo python3 server.py

You should see text like the following after the server starts running:

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat

Now open a web browser on your computer and navigate to your board's IP address
or hostname on port 5000. For example on a Raspberry Pi http://raspberrypi.local:
5000/ () might work, or on a BeagleBone Black http://beaglebone:5000/ () is the URL
to try. If neither URL works you'll need to look up the IP address of your device () and
then access it on port 5000. For example if your board has the IP address 192.168.1.5
you would access http://192.168.1.5:5000/ ().

Once the page loads you should see something like the following:

©Adafruit Industries Page 39 of 54

https://github.com/adafruit/Adafruit_CircuitPython_BNO055/tree/master/examples
http://raspberrypi:5000/
http://raspberrypi:5000/
http://beaglebone:5000/
https://www.raspberrypi.org/documentation/troubleshooting/hardware/networking/ip-address.md
http://192.168.1.5:5000/

Adafruit BNO055 Absolute Orientation Sensor Demo

Orientation (degrees): Calibration: Actions:
Heading = 359.9375 (O=uncalibrated, 3=tully calibrated) Model:
Roll = -0.6875 System = 0 Bunny
Pitch = -89.25 Gyro=3
Accelerometer = 0
Magnetometer = 0 -
Load Calibrasion

If you move the BNOOS55 sensor you should see the 3D model move too. However
when the demo first runs the sensor will be uncalibrated and likely not providing good
orientation data. Follow the next section to learn how to calibrate the sensor.

Sensor Calibration

This feature is currently not active. Once the library has been updated to allow
calibration data to be saved and loaded, this section will get updated.

For now, just have fun spinning the little 3D rabbit around.

Usage

You can line up the axes of the sensor and 3D model by using the Straighten button.
First you'll need to place the BNO sensor in a very specific orientation. Place the
sensor flat in front of you and with the row of SDA, SCL, etc. pins facing away from
you like shown below:

©Adafruit Industries Page 40 of 54

Then click the Straighten button and you should see the 3D model snap into its
normal position:

Adafruit BNOO55 Absolute Orientation Sensor Demo

Orientation (degrees): Calibration: Actions:
Heading = 99.5625 (O=uncalibrated, 3=fully calibrated) Model:
Roll = -0.4375 System =3 Bunny
Pitch = -89.375 Gyro=3
Accelerometer = 3
Magnetometer = 3 m

Now move the BNOO55 sensor around and you should see your movements exactly
matched by the 3D model!

You can also change the 3D model by clicking the Model drop down on the right and
changing to a different model, like a cat statue:

©Adafruit Industries Page 41 of 54

Adafruit BNOO55 Absolute Orientation Sensor Demo

Orientation (degrees): Calibration: Actions:
Heading = 39.8125 (O=uncalibrated, 3=fully calibrated) Model:
Roll =-0.375 System =3 Cat Statue
Pitch = -89.625 Gyro=3
Accelerometer =0
Magnetometer = 3
Load Calibration

That's all there is to using the BNOO55 WebGL demo!

To stop the server go back to the terminal where it was started and press Ctrl-C.

More Info

Describing how all of the WebGL code works is a little too complex for this guide,
however the high level components of the example are:

. flask web service framework (): This is a great, simple web framework that is
used by server.py to serve the main index.html page and expose a few web
service endpoints to read BNO sensor data and save/load calibration data.

« HTMLS server sent events (): This is how data is sent from the server to the
webpage. With SSE a connection is kept open and data is pushed to the client
web page. BNO sensor readings are taken and sent over SSE where they're use
to update the orientation of the model. This page () has a little more info on how
to use HTMLS5 SSE with the flask framework (although it uses a more complex
multiprocessing framework called gevent () that isn't necessary for simple apps
like this demo).

« Three.js (): This is the JavaScript library that handles all the 3D model rendering.

« Bootstrap () & jQuery (): These are a couple other JavaScript libraries that are
used for the layout and some core functionality of the page.

That's all there is to using the BNOO55 WebGL demo. Enjoy using the BNOO55
absolute orientation sensor in your own projects!

©Adafruit Industries Page 42 of 54

http://flask.pocoo.org/
http://www.html5rocks.com/en/tutorials/eventsource/basics/
http://flask.pocoo.org/snippets/116/
http://www.gevent.org/
http://threejs.org/
http://getbootstrap.com/
https://jquery.com/

BNOOL5 Sensor Calibration, Target Angle
Offset, and Tap Detection in CircuitPython

Sensor Mode: 12 NDOF_MODE
alibration Status (sys, gyro, accel, mag): (3, 3, 3, 3)
alibrated: True

Df fsets_Magnetometer: (413, 381, 173)
Df fsets_Gyroscope: (-2, -1, -1)
Df fsets_Accelerometer: (-29, 52, -25)

Overview

This page of notes by CGrover () was used to develop BNOO55 9-DoF sensor
algorithms for the PowerWash Simulator Controller project and discusses three
essential characteristics of the sensor.

First, the relative and absolute calibration of the sensor can be performed to improve
initial sensor stability and positioning. Stand-alone sensor calibrator code is shown
and was submitted to the driver library's examples folder.

Next we'll talk about how to measure and adjust for user position orientation without
changing the sensor's absolute position calibration.

Finally, since tap detection is not native to the BNOO55 chip, an example of how to
detect single and double-taps with the accelerometer component of the sensor is
described.

BNoO55 Sensor Calibration

The sensor's offset registers each contain (0, 0, 0) after power-on, indicating that
one or more of the sensor components isn't fully calibrated. If left alone, the sensor
would eventually calibrate as its internal background calibration routine watches the
sensor's movement. It can take a long time to calibrate the sensor in this manner
unless the user executes a calibration dance just after power-up.

The preferred approach is to conduct a calibration dance using a separate module
that provides offset values that can be inserted into the project code to preset the
sensor's offset registers just after power-up. Presetting the magnetometer is
important since reliable absolute positioning is dependent on the magnetometer
knowing its geographic location relative to magnetic north. Presetting the gyroscope
and accelerometer registers isn't as critical, but is a good practice.

©Adafruit Industries Page 43 of 54

https://adafruit-playground.com/u/CGrover

Here's the stand-alone calibrator method that's included in the driver library's
examples folder:

SPDX-FileCopyrightText: 2023 JG for Cedar Grove Maker Studios
SPDX-License-Identifier: MIT

"bno055 calibrator.py’

A CircuitPython module for calibrating the BNo055 9-DoF sensor. After manually
calibrating the sensor, the module produces calibration offset tuples for use
in project code.

* Author(s): JG for Cedar Grove Maker Studios

Implementation Notes

**Hardware: **

* Adafruit BNo055 9-DoF sensor

Software and Dependencies:

* Driver library for the sensor in the Adafruit CircuitPython Library Bundle

* Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads

import time
import board
import adafruit bno055

pylint: disable=too-few-public-methods
class Mode:
CONFIG_MODE = 0x00

ACCONLY_MODE = 0x01
MAGONLY_MODE = 0x02
GYRONLY MODE = 0x03

ACCMAG_MODE = 0x04
ACCGYRO_MODE = 0x05
MAGGYRO MODE = 0x06
AMG_MODE = 0x07

IMUPLUS MODE = 0x08
COMPASS_MODE = 0x09
M4G_MODE = 0xOA
NDOF_FMC_OFF MODE = Ox0B
NDOF_MODE = 0x0C

Uncomment these lines for UART interface connection
uart = board.UART()
sensor = adafruit bno055.BN0055 UART(uart)

Instantiate I2C interface connection

i2c = board.I2C() # For board.SCL and board.SDA

i2c = board.STEMMA I2C() # For the built-in STEMMA QT connection
sensor = adafruit bno055.BN0055 I2C(i2c)

sensor.mode = Mode.NDOF MODE # Set the sensor to NDOF_MODE

print("Magnetometer: Perform the figure-eight calibration dance.")
while not sensor.calibration status[3] ==
Calibration Dance Step One: Magnetometer
Move sensor away from magnetic interference or shields
Perform the figure-eight until calibrated
print(f"Mag Calib Status: {100 / 3 * sensor.calibration status[3]:3.0f}%")
time.sleep(1l)
print("... CALIBRATED")
time.sleep(1l)

©Adafruit Industries Page 44 of 54

print("Accelerometer: Perform the six-step calibration dance.")
while not sensor.calibration status[2] ==
Calibration Dance Step Two: Accelerometer

Place sensor board into six stable positions for a few seconds each:
1) x-axis right, y-axis up, z-axis away
2) x-axis up, y-axis left, z-axis away

3) x-axis left, y-axis down, z-axis away

4) x-axis down, y-axis right, z-axis away

5) x-axis left, y-axis right, z-axis up

6) x-axis right, y-axis left, z-axis down

Repeat the steps until calibrated
print(f"Accel Calib Status: {100 / 3 * sensor.calibration status[2]:3.0f}%")
time.sleep(1l)

print("... CALIBRATED")

time.sleep(1)

HoHHHHHHHE

print("Gyroscope: Perform the hold-in-place calibration dance.")
while not sensor.calibration status[l] ==
Calibration Dance Step Three: Gyroscope
Place sensor in any stable position for a few seconds
(Accelerometer calibration may also calibrate the gyro)
print(f"Gyro Calib Status: {100 / 3 * sensor.calibration status[1]:3.0f}%")
time.sleep(1)
print("... CALIBRATED")
time.sleep(1)

print ("\nCALIBRATION COMPLETED")

print("Insert these preset offset values into project code:")
print(f" Offsets Magnetometer: {sensor.offsets magnetometer}")
print(f" Offsets Gyroscope: {sensor.offsets gyroscope}")
print(f" Offsets Accelerometer: {sensor.offsets accelerometer}")

Dance Step One: The Figure-Eight

- To calibrate the magnetometer, wave the sensor slowly in a figure-8 pattern until
the REPL says "CALIBRATED."

Dance Step Two: The Six-Step Rotate

« The accelerometer is then calibrated by holding it on an edge facing you for a
few seconds then rotating it clockwise 90 degrees, wait, and repeat for a total of
4 positions. Then place it face-up on a flat surface and hold it there for a few
seconds. Finally, flip it face down and hold it to complete the accelerometer
calibration.

Dance Step Three: The Look Up and Wait

« The last step is for the gyroscope. All it needs is to be held still for a few
seconds in a face-up position. The accelerometer calibration usually takes care
of the gyroscope calibration.

©Adafruit Industries Page 45 of 54

After all three calibration dances complete, the preset offset values will appear in the
REPL.

Repeating the calibration process produces some variance in the offset values, but
the scale and magnitude are usually close. Since the sensor is continuously
calibrating, close is good enough for most projects. The primary benefit of calibrating
the sensor once using the stand-alone code is that the project application begins with
a useful orientation from the get-go and won't require a calibration dance recital for
each power-on startup.

The sensor components (particularly the magnetometer) will gradually deviate

from the preset offset by a few counts during operation. The automatic
background calibration process is designed to accommodate the drift and
maintain the accuracy of the sensors.

Optional: Preserving Calibration between Power On/Off Cycles

Rather than the copy/paste method described above, storing and reusing
configuration offsets from one power-on/off session to the next is possible since the
offset register properties can be read and changed. After conducting a single stand-
alone calibration, store the calibration offset registers into the NVM memory or an SD
card file for use during subsequent power-on startups. You may also want to consider
updating the NVM or file periodically during regular use as the offset registers are
continually adjusted by the internal background calibration task.

User Orientation Offset (Target Angle Offset)

A user orientation offset to correct for the alignment of the display in relationship

with the sensor will usually be needed by a project, initiated with a button press or
other event like an accelerometer double-tap. Changing the target angle offset
doesn't recalibrate the sensor, it just uses the current Euler angle to provide the offset
for future position readings.

The target angle offset used to reorient the sensor
(heading, roll, pitch)
target _angle offset = (0, 0, 0)

The project's main while loop
while True:

Get the Euler angle values from the sensor

The Euler angle limits are: +180 to -180 pitch, +360 to -360 heading, +90 to
-90 roll

sensor_euler = sensor.euler

print(f"Euler angle: {sensor_euler}")

Adjust the Euler angle values with the target angle offset

heading, roll, pitch = [position - target angle offset[idx] for idx, position

©Adafruit Industries Page 46 of 54

in enumerate(sensor_euler)]

Scale the heading for horizontal movement range
horizontal mov = int(map range(heading, -20, 20, -30, 30))
print(f"mouse x: {horizontal mov}")

Scale the roll for vertical movement range
vertical mov = int(map_range(roll, -25, 25, 30, 30))
print(f"mouse y: {vertical mov}")

Translate to stuff needed for HID
mouse.move (x=horizontal mov)
mouse.move (y=vertical mov)

Check the "reorient" button was pressed

if reorientation button:
print(f"Reorient the sensor")
Use the current Euler angle values to reorient the target angle
target _angle offset = [angle for angle in sensor_euler]

Tap Detection

Here's a fairly simple non-blocking single and double tap detection scheme that takes
advantage of the BNOO55's 100Hz-ish measurement data rate. The accelerometer's
data rate acts like a high pass filter when measuring the delta between two
measurements.

The tap sensitivity threshold can be set to accommodate the sensor's mechanical
mounting scheme; 1.0 is overly sensitive, 5.0 is typical, and 10 is somewhat numb. The
tap debounce setting can also vary somewhat depending on the sensor mount; 0.1
seconds works for nicely for sensors that are securely attached, 0.3 is typical if the
sensor is suspended in foam, and 0.5 may be needed if mounted loosely. Adjust
these values for your project's particulars.

Single-Tap Detection

def euclidean distance(reference, measured):
"""Calculate the Euclidean distance between reference and measured points
in a universe. The point position tuples can be colors, compass,
accelerometer, absolute position, or almost any other multiple value data
set.
reference: A tuple or list of reference point position values.
measured: A tuple or list of measured point position values."""

Create list of deltas using list comprehension

deltas = [(reference[idx] - count) for idx, count in enumerate(measured)]
Resolve squared deltas to a Euclidean difference and return the result
return math.sqrt(sum([d ** 2 for d in deltas]))

Set the tap detector parameters
TAP_THRESHOLD = 6 # Tap sensitivity threshold; depends on the physical sensor mount
TAP DEBOUNCE = 0.3 # Time for accelerometer to settle after tap (seconds)

The project's main while loop

while True:
Detect a single tap on any axis of the BNo055 accelerometer

©Adafruit Industries Page 47 of 54

accel sample 1 sensor.acceleration # Read one sample
accel sample 2 = sensor.acceleration # Read the next sample
if euclidean distance(accel sample 1, accel sample 2) >= TAP_THRESHOLD:
The difference between two consecutive samples exceeded the threshold
(equivalent to a high-pass filter)
print(f"SINGLE tap detected")
#
Perform the single-tap task here
#
time.sleep(TAP DEBOUNCE) # Debounce delay

Double-Tap Detection

def euclidean distance(reference, measured):
"""Calculate the Euclidean distance between reference and measured points
in a universe. The point position tuples can be colors, compass,
accelerometer, absolute position, or almost any other multiple value data
set.
reference: A tuple or list of reference point position values.
measured: A tuple or list of measured point position values."""

Create list of deltas using list comprehension

deltas = [(reference[idx] - count) for idx, count in enumerate(measured)]
Resolve squared deltas to a Euclidean difference and return the result
return math.sqrt(sum([d ** 2 for d in deltas]))

Set the BNo055 tap detector parameters and initialize tap event history list
TAP_THRESHOLD = 6 # Tap sensitivity threshold; depends on the physical sensor mount
TAP _DEBOUNCE = 0.1 # Time for accelerometer to settle after tap (seconds)
TAP_TIMEOUT = 1500 # Remove tap event from history timeout (milliseconds)
tap_events = [] # Initialize the tap event history list

The project's main while looop
while True:
Detect a tap on any axis of the BNo055 accelerometer
accel sample 1 = sensor.acceleration # Read one sample
accel sample 2 = sensor.acceleration # Read the next sample
if euclidean distance(accel sample 1, accel sample 2) >= TAP THRESHOLD:
The difference between two consecutive samples exceeded the threshold
(equivalent to a high-pass filter)
print(f"SINGLE tap detected {ticks ms()}")
tap_events.append(ticks ms() + TAP_TIMEOUT) # save tap expiration time in
event stack
time.sleep(TAP_DEBOUNCE) # Debounce delay

Clean up tap event history after timeout period expires
if len(tap_events) > 0:
Check for expired events
if tap_events[0] <= ticks ms():
The oldest event has expired
tap_events = tap events[l:] # Remove the oldest event

Check see if two taps are in the event history list
if len(tap_events) ==
Double-tap: execute the task and clear event history
print(f"DOUBLE tap detected {ticks ms()}")
#
Perform the double-tap task here
#
tap events = [] # Clear event history

©Adafruit Industries Page 48 of 54

Additional Information

A very good calibration reference by MathWorks, but the axis orientation doesn't
represent the default setting: https://www.mathworks.com/help/supportpkg/arduinoio/
ug/calibrate-sensors.html ()

Bosch:

https://www.youtube.com/watch?v=BwOWuAyGsnY ()

BNOOS55 Sensor CircuitPython Driver GitHub:

https://github.com/adafruit/Adafruit_CircuitPython_BNOO55 ()

BNOO55 Sensor ReadTheDocs:

https://docs.circuitpython.org/projects/bno055/en/latest/ ()

FAQSs

Can | manually set the calibration constants?

Yes you can save and restore the calibration of the sensor, check out the
restore_offsets example: https://github.com/adafruit/Adafruit_BN ... ffsets.ino ()

One thing to keep in mind though is that the sensor isn't necessarily 'plug and play'
with loading the calibration data, in particular the magnetometer needs to be
recalibrated even if the offsets are loaded. The magnetometer calibration is very
dynamic so saving the values once might not really help when they're reloaded
and the EMF around the sensor has changed.

For further details check out the datasheet and Bosch's info on the sensor for
calibration info: https://www.bosch-sensortec.com/en/home ... 1/bno055_4 ()

Does the device make any assumptions about its initial
orientation?

You can customize how the axes are oriented (i.e. swap them around, etc.) but the
Adafruit Arduino library doesn't expose it right now. Check out section 3.4 Axis
Remap of the BNOOS5 datasheet for info on the registers to adjust its orientation:
https://www.adafruit.com/datasheets/BST ... 000_12.pdf ()

©Adafruit Industries Page 49 of 54

https://www.mathworks.com/help/supportpkg/arduinoio/ug/calibrate-sensors.html
https://www.mathworks.com/help/supportpkg/arduinoio/ug/calibrate-sensors.html
https://www.youtube.com/watch?v=Bw0WuAyGsnY
https://github.com/adafruit/Adafruit_CircuitPython_BNO055
https://docs.circuitpython.org/projects/bno055/en/latest/
https://github.com/adafruit/Adafruit_BNO055/blob/master/examples/restore_offsets/restore_offsets.ino
https://www.bosch-sensortec.com/en/homepage/products_3/sensor_hubs/iot_solutions/bno055_1/bno055_4
https://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

Another thing to be aware of is that until the sensor calibrates it has a relative
orientation output (i.e. orientation will be relative to where the sensor was when it
powered on).

A system status value of '0' in NDOF mode means that the device has not yet
found the 'north pole', and orientation values will be relative not absolute. Once
calibration and setup is complete (system status > '0') the heading will jump to an
absolute value since the BNO has found magnetic north (the system calibration
status jumps to 1 or higher). See the Device Calibration page in this learning guide
for further details.

Why doesn't Euler output seem to match the Quaternion
output?

The Euler angles coming out of the chip are based on 'automatic orientation
detection', which has the drawback of not being continuous for all angles and
situations.

According to Bosch BNOO55 Euler angle output should only be used for
eCompass, where pitch and roll stay below 45 degrees.

For absolute orientation, quaternions should always be used, and they can be
converted to Euler angles at the last moment via the .toEuler() helper function in
quaternion.h ().

Why do | get Input/Output or 12C errors when trying to
use the sensor in CircuitPython?

The BNOOS55 12C implementation violates the 12C protocol in some circumstances.
This causes it not to work well with certain chip families. It does not work well with
Espressif ESP32, ESP32-S3, and NXP i.MX RT1011, and it does not work well with
[12C multiplexers. Operation with SAMD51, RP2040, STM32F4, and nRF52840 is
more reliable.

I'm sometimes losing data over I12C, what can | do about
this?

Depending on your system setup, you might need to adjust the pullups on the SCL
and SDA lines to be a bit stronger. The BNOOS5 has very tight timing requirements
on the I12C bus, requiring short setup and rise times on the signals. By default the
breakout board has 10K pullups, which might be too weak on some setups. You can
shorten the rise times and extend the setup time on the 12C lines with 'stronger’

©Adafruit Industries Page 50 of 54

https://github.com/adafruit/Adafruit_BNO055/blob/master/utility/quaternion.h

pullups. To do this simply add a 3.3K pullup on SCL and a 2.2K pullup on the SDA
line with a breadboard or perma-proto board, which will override to weaker 10K
pullups that are populated by default. See the image below for details:

® o o 0 0 0 0 0 0 0 ® o 0 0 0 0 0 0 0 0
® o o 0 0 0 0 0 0 ® o 0 0 0 0 0 0 0
® o o 0 0 0 0 0 0 o) ® o 0 0 0 0 0 0 e

LI L L I L B
L AL L L L B
® 0 0 0 00 0 0 0 00 08 e ® o 0 0 0 0 0 0 000 0
L L I B L B B B B B A L I B R B B
L I B L I L B

cosee Z.I.I.I.Z”Z\.Zl\‘\ ceces sesee

| have some high frequency (> 2MHz) wires running near
the BNOOGL5 and I'm getting unusual results/hanging
behavior

Turns out the BNOOOS55 breakout board is quite sensitive to RF interference from
nearby wires with higher frequency square waves. ()

Try to keep high frequency lines/wires away from the BNOO55!

Downloads

Files

« Arduino Library ()

« EagleCAD PCB files on GitHub ()

« BNOO55 Stemma 3D models on GitHub ()

« BNOOS55 Datasheet () (2016)

« BNOOS55 Datasheet () (10/2021)

« Fritzing object in the Adafruit Fritzing Library ()

bst-bno055-ds000.pdf

©Adafruit Industries Page 51 of 54

https://forum.pjrc.com/threads/40635-I2S-audio-output-and-problems-w-I2C-IMU?p=177616&viewfull=1#post177616
https://forum.pjrc.com/threads/40635-I2S-audio-output-and-problems-w-I2C-IMU?p=177616&viewfull=1#post177616
https://github.com/adafruit/Adafruit_BNO055
https://github.com/adafruit/Adafruit-BNO055-Breakout-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/4646%20BNO055%20Stemma
https://cdn-learn.adafruit.com/assets/assets/000/036/832/original/BST_BNO055_DS000_14.pdf
https://cdn-learn.adafruit.com/assets/assets/000/125/776/original/bst-bno055-ds000.pdf?1698865246
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/125/776/original/bst-bno055-ds000.pdf?1698865246

Pre-Compiled Bunny Rotate Binaries

The following binary images can be used in place of running the Processing Sketch,
and may help avoid the frequent APl and plugin changes.

For OS X download cuberotate.app.zip, which was built on OS X 10.11.6 based on

Processing 2.2.1:
cuberotate.app.zip

Schematic

The latest version of the Adafruit BNOO55 breakout can be seen below (click the
image or click here () to view the schematic in full resolution):

1 2 3 4] é

o i3

OO00e @

0 | | | *ﬂdafruit 0

BN0@SS_Rev-C)
saved! Sheet: 1/1

)) Drauing: KTOWN ['Adafruit Industries
i 2 3 % 5 5

Board Dimensions

The BNOOSS5 breakout has the following dimensions (in inches):

©Adafruit Industries Page 52 of 54

https://cdn-learn.adafruit.com/assets/assets/000/041/883/original/cuberotate.app.zip?1495478847
https://cdn-learn.adafruit.com/assets/assets/000/024/546/original/sensors_BNO055_REV-C.png?1429569060

W pSe.PS1)INT ADR

Pl

10N

n
n
<<

n
-t

X
<<

|
(o}

Orientat

1
—=_| i

|
VUin'3vo GND SDA SCL RST O%

Schematic for STEMMA QT

©Adafruit Industries Page 53 of 54

