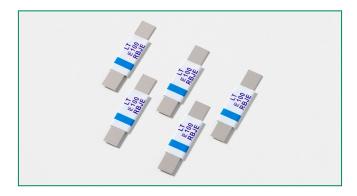
Axial Lead Battery Strap Type > LT Series



LT Series

Agency Approvals

AGENCY	AGENCY FILE NUMBER				
c 'FLL ' us	E183209				
<u> </u>	R50119583				

Description

The new LT Series device provides reliable, noncycling protection against overcharging and short circuits events for rechargeable battery cells where resettable protection is desired.

Features

- RoHS compliant and lead-free
- Weldable Nickel terminals
- Compact design saves board space
- Low resistance
- Provides overcurrent protection at 100°C trip temperature

Applications

- Rechargeable battery cell protection
 - Mobile phones
 - Laptop computers

Electrical Characteristics

Part Number	_{hold}	l trip	V _{max}	l _{max}	Pd	Maximum Time To Trip		Resistance			Agency Approvals	
ran Number	(A)	(Å)	(Vdc)	(A)	max. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R _{typ} (Ω)	R_{1max} (Ω)	c FL 'us	Д TÜV
24LT100	1.0	2.5	24	100	1.5	5.00	7.00	0.070	0.130	0.260	Х	Х

 I_{hold} = Hold current: maximum current device will pass without tripping in 20°C still air.

Caution: Operation beyond the specified rating may result in damage and possible arcing

Temperature Rerating

Ambient Operation Temperature									
	-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C	85°C
Part Number	Hold Current (A)								
24LT100	1.86	1.60	1.40	1.00	0.80	0.70	0.60	0.44	0.23

WARNING

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- . These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

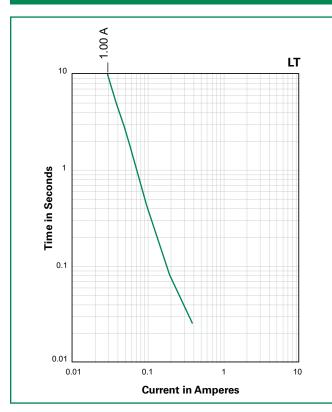
I trip = Trip current: minimum current at which the device will trip in 20°C still air.

 V_{max} = Maximum voltage device can withstand without damage at rated current (I max)

I max = Maximum fault current device can withstand without damage at rated voltage (Vmax)

P_d = Power dissipated from device when in the tripped state at 20°C still air.

R min = Minimum resistance of device in initial (un-soldered) state.


R $_{typ}$ = Typical resistance of device in initial (un-soldered) state.

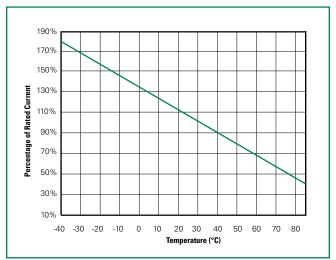
R $_{\rm 1max}$ = Maximum resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

POLY-FUSE® Resettable PTCs

Axial Lead Battery Strap Type > LT Series

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.


Additional Information

Temperature Rerating Curve

Note:

Typical Temperature rerating curve, refer to table for derating data

Physical Specifications

Terminal Material	0.13mm nominal thickness, quarter-hard Nickel
Insulating Material	Polyester tape

Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	+70°C, 1000 hours -/+10% typical resistance change
Humidity Aging	+85°C, 85%R.H.,7days, -/+5% typical resistance change
Vibration	MIL-STD-883, Condition A, No change