

Description

The 250R Series is designed to protect against short duration high voltage fault currents (power cross or power induction surge) typically found in telecom applications (250Vrms). The series can be used to help telecom networking equipment meet the protection requirements specified in ITU K.20 and K.21.

Features

- 0.08 0.18 hold current range, 60VDC operating voltage
- 250VAC interrupt rating
- Fast time-to-trip
- Binned and sorted narrow resistance ranges available
- RoHS-compliant, Lead-Free and Halogen-Free*

Additional Information

Resources

Accessories Samples

Applications

- Customer Premises Equipment (CPE)
- Central Office (CO)/ telecom centers
- LAN/WAN equipment
- Access equipment

Agency Approvals

Agency	Agency File Number
c '911 ° us	E183209
\triangle	R50120008

Electrical Characteristics

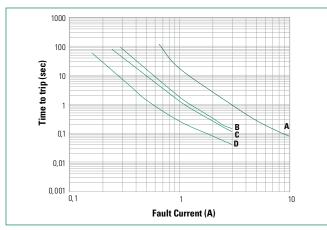
Part Number	I hold I trip		V	l max	Ρ,	Maximum Time To Trip		Resistance			Agency Approvals	
Part Number	(A)	(A)	V_{int}^{max}/V_{op}	(Ä)	(Ä) typ. (W) (Current (A)	Time (Sec.)	$R_{min}(\Omega)$	$R_{typ}(\Omega)$	$R_{1max}(\Omega)$	c FL °us	\triangle
250R080	0.08	0.16	250/60	3	1	0.35	4.0	14	22	33	Χ	Χ
250R120	0.12	0.24	250/60	3	1	1	2.5	4	8	16	Χ	Χ
250R120-RA	0.12	0.24	250/60	3	1	1	2.5	7	9	16	Χ	Χ
250R120-RC	0.12	0.24	250/60	3	1	1	3.0	5.4	7.5	14	Χ	Χ
250R120-R2	0.12	0.24	250/60	3	1	1	2.5	8	10.5	16	Χ	Χ
250R145	0.145	0.29	250/60	3	1	1	2.5	3	6	14	Χ	Χ
250R180	0.18	0.65	250/60	10	1.8	1	20	0.8	2.2	4	Χ	Χ

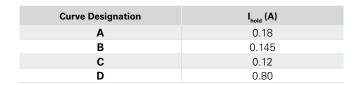
Note: Items with T at end of part number = pre-tripped device. See Part Ordering Number System section of this data sheet for additional information.

- I hold = Hold current: maximum current device will pass without tripping in 20°C still air.
- $t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device without damage at rated current (I max)$ $<math>t_{uip} = Trip current: minimum current at which the device without damage at rated current (I max)$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current: minimum current at which the device will trip in 20°C still air.$ $<math>t_{uip} = Trip current =$
- = Maximum fault current device can withstand without damage at rated voltage (V_max)
- P = Power dissipated from device when in the tripped state at 20°C still air.

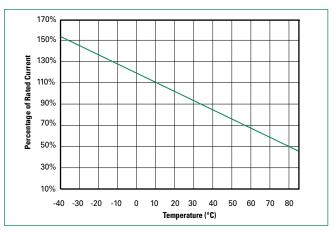
- \mathbf{R}_{\min} = Minimum resistance of device in initial (un-soldered) state.
- typ = Typical resistance of device in initial (un-soldered) state.
- R _{1max} = Maximum resistance of device at 20°C measured one hour after tripping.

* Effective February 11, 2010 onward, all 600R PTC products will be manufactured Halogen Free (HF). Existing Non-Halogen Free 600R PTC products may continue to be sold, until supplies are depleted. This change will have no effect on 600R product specifications or performance.


- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.


Temperature Rerating

Ambient Operation Temperature											
	-40°C	-40°C -20°C 0°C 20°C 40°C 50°C 60°C 70°C 85°									
Part Number		Hold Current (A)									
250R080	0.12	0.11	0.09	0.08	0.06	0.05	0.05	0.04	0.03		
250R120	0.18	0.16	0.14	0.12	0.10	0.09	0.08	0.06	0.05		
250R145	0.26	0.20	0.17	0.145	0.12	0.11	0.09	0.08	0.06		
250R180	0.28	0.23	0.21	0.18	0.16	0.13	0.10	0.11	0.083		


Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Temperature Rerating Curve

 $\textbf{Note:} \ \mathsf{Typical} \ \mathsf{Temperature} \ \mathsf{rerating} \ \mathsf{curve}, \ \mathsf{refer} \ \mathsf{to} \ \mathsf{table} \ \mathsf{for} \ \mathsf{derating} \ \mathsf{data}$

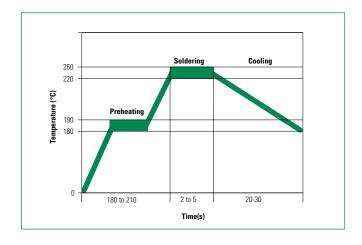
Agency Specification Selection Guide For Telecom and Networking Applications

Product	Lightning	Power Cross
250R120 250R145	ITU K.20/21/45 – 1.5kV 10/700μs ITU K.20/21/45 – 4kV 10/700μs*	ITU K.20/21/45 – 230Vac, 10 Ω ITU K.20/21/45 – 600Vac, 600 Ω
250R180	ITU K.20/21/45 – 1.5kV 10/700μs ITU K.20/21/45 – 4kV 10/700μs* Telcordia GR – 974 – 1.0kV 10/1000μs	ITU K.20/21/45 – 230Vac, 10Ω ITU K.20/21/45 – 600Vac, 600Ω Telcordia GR – 974- 283Vac, 10A

^{*}Devices should be independently evaluated and tested for use in any specific application

Protection Application Guide

Region/Specification	Application	Device Selection
South America/Asia/Europe ITU K.45	*Access network equipment, Remote terminal Repeaters, WAN equipment, Cross –connect	250R180 250R145 250R120
South America/Asia/Europe ITU K.21	Customer and IT equipment, Analog modems ADSL, xDSL, Phone sets, PBX systems, Internet appliances, POS terminals	250R180 250R145 250R120
South America/Asia/Europe ITU K.20	Central Office, POTS/ISDN linecards, T1/E1/J1 linecards, ADSL/VDSL splitters, CSU/DSU,	250R180 250R145 250R120
North America Telcordia GR-974	*Primary protection modules,	250R180 250R145
South America/Asia/Europe ITU K.20	MDF modules, Network interface	250R145 250R120
North America Telcordia GR-1089 South America/Asia/Europe ITU K.20 and K.21	*Intrabuilding communication systems, LAN, VOIP cards, Local loop handsets,	250R180 250R145 250R120
-	LAN Intrabuilding power cross, Protection, LAN equipment, IP phone	250R080


^{*}Resistance binned parts are recommended

Soldering Parameters - Wave Soldering

Condition	Wave Soldering
Peak Temp/ Duration Time	260°C ≦ 5 Sec
≧ 220°C	2 Sec ~ 20 Sec
Preheat 140°C~ 180°C	180 Sec ~ 210 Sec
Storage Condition	0°C~35°C, ≦ 70%RH

Note

- Recommended soldering methods: heat element oven or N₂ environment for lead–free
 Devices are designed to be wave soldered to the bottom side of the board.
- Devices are designed to be wave soldered to the bottom side of the bot
 Devices can be cleaned using standard industry methods and solvents.
- This profile can be used for lead-free device
- If soldering temperatures exceed the recommended profile, devices may not meet the performance requirements.

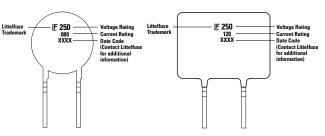
Physical Specifications

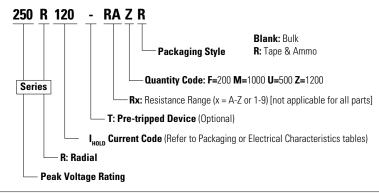
Lead Material	Tin-plated Copper
Soldering Characteristics	Solderability per MIL-STD-202, Method 208
Insulating Material	Cured, flame retardant epoxy polymer meets UL94V-0 requirements.
Device Labeling	Marked with 'LF', voltage, current rating, and date code.

Environmental Specifications

Operating Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	65°C/85°C, 1000 hours
Humidity Aging	+85°C, 85% R.H,.1000 hours
Thermal Shock	MIL-STD-202, Method 107 +125°C to -55°C 10 times
Solvent Resistance	MIL-STD-202, Method 215
Moisture Sesitivity Level	Level 1, J-STD-020

Part Marking System




Figure 1 Figure 2

		Α		В		С	С		D		E		Physical Characteristics		
Part Number	Figure	Inches	mm	Lead (dia)	Madadal									
		Max.	Max.	Max.	Max.	Max.	Max.	Min.	Min.	Тур.	Тур.	Inches	mm	Material	
250R080	1	0.23	5.8	0.39	9.9	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R120	2	0.27	6.8	0.43	11	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R120-RA	2	0.27	6.8	0.43	11	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R120-RC	2	0.27	6.8	0.43	11	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R120-R2	2	0.27	6.8	0.43	11	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R145	2	0.27	6.8	0.43	11	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	
250R180	1	0.37	9.5	0.47	12	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu	

WARNING:

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

Part Ordering Number System

