

BASIC Stamp Syntax and Reference Manual

Version 2.2

Warranty
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase
price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the
RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose the following along with
the returned merchandise: your name, telephone number, shipping address, and a description of the problem. Parallax will
return your product or its replacement using the same shipping method used to ship the product to Parallax.

14-Day Money-Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full
refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is
void if the product has been altered or damaged. See the Warranty section above for instructions on returning a product to
Parallax.

Copyrights and Trademarks
This documentation is copyright 1994-2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by Parallax
Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication: Parallax Inc. grants the
user a conditional right to download, duplicate, and distribute this text without Parallax’s permission. This right is based on
the following conditions: the text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated
only for educational purposes when used solely in conjunction with Parallax products, and the user may recover from the
student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often
less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot, Todder, SumoBot, and SX-Key are registered trademarks of
Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that “(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark
name in each printed document or web page. HomeWork Board, Parallax, and the Parallax logo are trademarks of Parallax
Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state that
“(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed document
or web page. Other brand and product names are trademarks or registered trademarks of their respective holders.

ISBN #1-928982-32-8

Errata
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know
by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials and
documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and corrections for
a given text will be posted to our web site, www.parallax.com. Please check the individual product page’s free downloads
for an errata file.

Disclaimer of Liability
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or
any costs of recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is
also not responsible for any personal damage, including that to life and health, resulting from use of any of our products.
You take full responsibility for your BASIC Stamp application, no matter how life-threatening it may be.

Access Parallax via Internet
We maintain very a active web site for your convenience. These may be used to obtain software, communicate with
members of Parallax, and communicate with other customers. Access information is shown below:

Web: http://www.parallax.com
General e-mail: info@parallax.com
Tech. e-mail: support@parallax.com

Internet BASIC Stamp Discussion List
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their BASIC
Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators –Exclusively for educators and those who contribute to the development of Stamps
in Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for
educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who translate
our documentation to languages other than English. Parallax provides editable Word documents to our
translating partners and attempts to time the translations to coordinate with our publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue for a
robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-
Bot®, Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with Parallax
assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

Supported Hardware, Firmware and Software

This manual is valid with the following software and firmware versions:

BASIC Stamp Model Firmware Windows Interface
BASIC Stamp 1 1.4 2.2
BASIC Stamp 2 1.0 2.2
BASIC Stamp 2e 1.1 2.2
BASIC Stamp 2sx 1.1 2.2
BASIC Stamp 2p 1.4 2.2
BASIC Stamp 2pe 1.1 2.2
BASIC Stamp 2px 1.0 2.2

The information herein will usually apply to newer versions but may not apply to older versions. New software can be
obtained free on web site (www.parallax.com). If you have any questions about what you need to upgrade your product,
please contact Parallax.

Credits

Authorship and Editorial Review Team: Jeff Martin, Jon Williams, Ken Gracey, Aristides Alvarez, and Stephanie Lindsay;
Cover Art: Jen Jacobs; Technical Graphics, Rich Allred; with many thanks to everyone at Parallax Inc.

Contents

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 1

PREFACE .. 5

INTRODUCTION TO THE BASIC STAMP 7
BASIC STAMP MODEL COMPARISON TABLE ...8
BASIC STAMP 1 HARDWARE ...10
BASIC STAMP 2 HARDWARE ...13
BASIC STAMP 2E HARDWARE ...15
BASIC STAMP 2SX HARDWARE ...17
BASIC STAMP 2P HARDWARE ...19
BASIC STAMP 2PE HARDWARE ...21
BASIC STAMP 2PX HARDWARE ...23
GUIDELINES AND PRECAUTIONS ...25
BASIC STAMP PROGRAMMING CONNECTIONS..27

QUICK START GUIDE ... 29

USING THE BASIC STAMP EDITOR.. 35
THE PROGRAMMING ENVIRONMENT..35
COMPILER DIRECTIVES ..43
SPECIAL FUNCTIONS ...46
SETTING PREFERENCES ..55
ADVANCED COMPILATION TECHNIQUES ..68
FEATURES FOR DEVELOPERS...75

BASIC STAMP ARCHITECTURE.. 81
RAM ORGANIZATION (BS1)...81
RAM ORGANIZATION (BS2, BS2E, BS2SX, BS2P, BS2PE) ...82
DEFINING AND USING VARIABLES ...84

The Rules of Symbol Names ..86
Defining Array Variables ...87
Aliases and Variable Modifiers ...89

CONSTANTS AND COMPILE-TIME EXPRESSIONS...94
NUMBER REPRESENTATIONS..96
ORDER OF OPERATIONS ..102
INTEGER MATH RULES...103
UNARY OPERATORS ..105

Absolute Value (ABS) ...105
Cosine (COS) ...106
Decoder (DCD) ...106

Contents

Page 2 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Negative (-)...106
Encoder (NCD) ...107
Sine (SIN) ...107
Square Root (SQR) ..108

BINARY OPERATORS ...109
Add (+)..109
Subtract (-)..110
Multiply (*)...110
Multiply High (**)...111
Multiply Middle (*/) ..112
Divide (/) ...113
Modulus (//)...113
Arctangent (ATN)..114
Hypotenuse (HYP)..115
Minimum (MIN) ...115
Maximum (MAX)...116
Digit (DIG)...117
Shift Left (<<)..117
Shift Right (>>) ...117
Reverse (REV) ...118
And (&) ...118
Or (|) ...118
Xor (^) ...119
And Not (&/)..120
Or Not (|/)..120
Xor Not (^/) ...121

BASIC STAMP COMMAND REFERENCE 123
PBASIC LANGUAGE VERSIONS ...123
CATEGORICAL LISTING OF COMMANDS ...124
SYNTAX CONVENTIONS..128
AUXIO...129
BRANCH...133
BUTTON ...137
COMPARE..141
CONFIGPIN..143
COUNT ...149
DATA ..153
DEBUG ...159
DEBUGIN..171
DO...LOOP..175

Contents

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 3

DTMFOUT...179
EEPROM...183
END...187
EXIT ..189
FOR…NEXT ...191
FREQOUT...199
GET...203
GOSUB ...209
GOTO..213
HIGH ...215
I2CIN...217
I2COUT...225
IF…THEN..231
INPUT ...243
IOTERM ..247
LCDCMD...249
LCDIN ...257
LCDOUT ...263
LET..269
LOOKDOWN...271
LOOKUP ...277
LOW..281
MAINIO ...283
NAP...285
ON...289
OUTPUT ...293
OWIN ..295
OWOUT ..303
PAUSE..311
POLLIN ...313
POLLMODE ..319
POLLOUT ...325
POLLRUN ...331
POLLWAIT..335
POT...339
PULSIN ...343
PULSOUT ...347
PUT...351
PWM ...355
RANDOM ..359
RCTIME ..363
READ ..369

Contents

Page 4 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

RETURN...375
REVERSE...377
RUN ..381
SELECT...CASE ...387
SERIN...393
SEROUT...415
SHIFTIN..431
SHIFTOUT..435
SLEEP ..441
SOUND...445
STOP ..447
STORE..449
TOGGLE...455
WRITE ..459
XOUT..465

APPENDIX A: ASCII CHART .. 471

APPENDIX B: RESERVED WORDS.. 473

APPENDIX C: CONVERSION FORMATTERS 477

APPENDIX D: BASIC STAMP SCHEMATICS 481

Preface

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 5

Thank you for purchasing a Parallax BASIC Stamp® microcontroller
module. We have done our best to produce several full-featured, easy to
use development systems for BASIC Stamp microcontrollers. Depending
on the Starter Kit you purchased, your BASIC Stamp model, development
board and other contents will vary.

This manual is written for the latest available BASIC Stamp modules and
software as of February 2005. As the product-line evolves, new
information may become available. It is always recommended to visit the
Parallax web site, www.parallax.com, for the latest information.

This manual is intended to be a complete reference manual to the
architecture and command structure of the various BASIC Stamp models.
This manual is not meant to teach BASIC programming or electrical
design; though a person can learn a lot by paying close attention to the
details in this book.

If you have never programmed in the BASIC language or are unfamiliar
with electronics, it would be best to locate one or more of the books listed
on the following page for assistance. All are available, either to order or
to download, from www.parallax.com.

Books available in Adobe’s PDF format are published for free download
on the Parallax web site or on the CD-ROM which ships with our different
Starter Kits. Books available in print may be purchased directly from
Parallax or other distributors.

In addition, there are hundreds of great examples available on the Parallax
CD and web site (www.parallax.com). Also, Nuts & Volts Magazine
(www.nutsvolts.com / 1-800-783-4624) is a national electronic hobbyist's
magazine that features monthly articles featuring BASIC Stamp
applications. This is an excellent resource for beginners and experts alike!

Preface

Page 6 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 Availability

Book Part # Author and Publisher PDF In Print

What’s a Microcontroller? 28123 Andy Lindsay; Parallax Inc.;
ISBN 1-928982-02-6

Yes Yes

Robotics with the
Boe-Bot

28125 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-03-4

Yes Yes

IR Remote for the
Boe-Bot

70016 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-31-X

Yes Yes

Basic Analog and Digital 28129 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-04-2

Yes Yes

Applied Sensors 28127 Tracy Allen, PhD.; Parallax Inc.; ISBN 1-
928982-21-2

Yes Yes

Understanding Signals 28119
(With Full Kit)

Doug Pientak; Parallax Inc.;
ISBN 1-928982-23-9

Yes Yes

Industrial Control 27341 Marty Hebel / Will Devenport;
Parallax Inc.; ISBN 1-928982-08-5

Yes Yes

Elements of Digital Logic 70008 John Barrowman; Parallax Inc.; ISBN 1-
928982-20-4

Yes Yes

The Microcontroller Application
Cookbook Volumes 1 and 2

Vol. 1&2: 28113
Vol. 2: 28112

Matt Gilliland; Woodglen Press;
ISBN 0-616-11552-7 and 0-972-01590-6

No Yes

Al’s “World Famous” Stamp Project
of the Month Anthology

70013 Al Williams; Parallax Inc.;
ISBN 1-928982-25-5

Portions Yes

The Nuts and Volts of BASIC Stamps
Volumes 1, 2, 3, 4, and 5

Vol. 4: 70010
Vol. 5: 70015

Jon Williams, Scott Edwards and Lon
Glazner; Parallax, Inc.;

ISBN 1-928982-10-7, 1-928982-11-5,
1-928982-17-4, 1-928982-24-7

and 1-928982-30-1

Yes
(all)

Yes
(Vol 4 and

Vol 5)

StampWorks 27220 Jon Williams; Parallax, Inc.;
ISBN 1-928982-07-7

Yes Yes

Stamp 2 Communication and Control
Projects

70004 Thomas Petruzzellis; McGraw-Hill;
ISBN 0-071411-97-6

No Yes

Programming and Customizing the
BASIC Stamp Computer

27956 Scott Edwards; McGraw-Hill;
ISBN 0-071371-92-3

No Yes

BASIC Stamp 2p 70001 Claus Kuehnel and Klaus Zahnert;
Parallax, Inc.; ISBN 1-928982-19-0

Yes No

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 7

Welcome to the wonderful world of BASIC Stamp® microntrollers. BASIC
Stamp microcontrollers have been in use by engineers and hobbyists since
we first introduced them in 1992. As of November 2004, Parallax
customers have put well over three million BASIC Stamp modules into
use. Over this 12-year period, the BASIC Stamp line of controllers has
evolved into six models and many physical package types, explained
below.

General Operation Theory
BASIC Stamp modules are microcontrollers (tiny computers) that are
designed for use in a wide array of applications. Many projects that
require an embedded system with some level of intelligence can use a
BASIC Stamp module as the controller.

Each BASIC Stamp comes with a BASIC Interpreter chip, internal memory
(RAM and EEPROM), a 5-volt regulator, a number of general-purpose I/O
pins (TTL-level, 0-5 volts), and a set of built-in commands for math and
I/O pin operations. BASIC Stamp modules are capable of running a few
thousand instructions per second and are programmed with a simplified,
but customized form of the BASIC programming language, called
PBASIC.

PBASIC Language
We developed PBASIC specifically for the BASIC Stamp as a simple, easy
to learn language that is also well suited for this architecture, and highly
optimized for embedded control. It includes many of the instructions
featured in other forms of BASIC (GOTO, FOR...NEXT, IF...THEN…ELSE)
as well as some specialized instructions (SERIN, PWM, BUTTON, COUNT
and DTMFOUT). This manual includes an extensive section devoted to
each of the available instructions.

Hardware
At the time of this writing, there are currently seven models of the BASIC
Stamp; the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, and the BS2px. The tables
below are provided to easily compare their specifications, followed by
diagrams that detail the various package types of these modules.
Schematics for the SIP/DIP packages of all models can be found in
Appendix D.

Introduction to the BASIC Stamp

Page 8 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp Model Comparison Table

Products BS1 BS2 BS2e

Environment 0º - 70º C
(32º - 158º F) **

0º - 70º C (32º - 158º F) ** 0º - 70º C (32º - 158º F) **

Microcontroller Microchip PIC16C56a Microchip PIC16C57c Ubicom SX28AC

Processor Speed 4 MHz 20 MHz 20 MHz

Program Execution Speed ~2,000 instructions/sec.
~4,000

instructions/sec
~4,000 instructions/sec

RAM Size 16 Bytes (2 I/O, 14 Variable)
32 Bytes

(6 I/O, 26 Variable)
32 Bytes (6 I/O, 26 Variable)

Scratch PadRam N/A N/A 64 Bytes

EEPROM (Program) Size 256 Bytes,
~80 instructions

2K Bytes,
~500 instructions

8 x 2K Bytes,
~4,000 inst

Number of I/O Pins 8 16 + 2 Dedicated Serial 16 + 2 Dedicated Serial

Voltage Requirements 5 - 15 vdc 5 - 15 vdc 5 - 12 vdc

Current Draw@ 5 volts 1 mA Run,
 25 µA Sleep

3 mA Run,
50 µA Sleep

25 mA Run,
200 µA Sleep

Source/Sink Current per I/O 20 mA / 25 mA 20 mA / 25 mA 30 mA / 30 mA

Source/Sink
Current per unit

40 mA / 50 mA
40 mA / 50 mA
 per 8 I/O pins

60 mA / 60 mA
 per 8 I/O pins

PBASIC Commands* 32 42 45

PC Interface Serial
(w/BS1 Serial Adapter)

Serial
(9600 baud)

Serial (9600 baud)

Windows Text Editor
Version

Stampw.exe (v2.1 and up) Stampw.exe (v1.04 and up)
Stampw.exe

(v1.096 and up)
* PBASIC Command count totals include PBASIC 2.5 commands on all BS2 models.
** See below for industrial rated module information.

Industrial-Rated BASIC Stamp Modules
Some BASIC Stamp models come in Industrial-rated versions, with an
environmental temperature tolerance range of -40°C to +85°C . Contact
the Parallax Sales Team directly for the latest information regarding
industrial-rated product availability and specifications.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 9

BS2sx BS2p24 BS2p40 BS2pe BS2px

0º - 70º C
(32º - 158º F) **

0º - 70º C
(32º - 158º F) **

0º - 70º C
(32º - 158º F) **

0º - 70º C
(32º - 158º F) **

0º - 70º C
(32º - 158º F) **

Ubicom SX28AC Ubicom SX48AC Ubicom SX48AC Ubicom SX48AC Ubicom SX48AC

50 MHz 20 MHz Turbo 20 MHz Turbo 8 MHz Turbo 32 MHz Turbo

~10,000 instructions/sec. ~12,000 instructions/sec. ~12,000 instructions/sec. ~6000 instructions/sec. ~19,000 instructions/sec.

32 Bytes
(6 I/O, 26 Variable)

38 Bytes
(12 I/O, 26 Variable)

38 Bytes
(12 I/O, 26 Variable)

38 Bytes
(12 I/O, 26 Variable)

38 Bytes
(12 I/O, 26 Variable)

64 Bytes 128 Bytes 128 Bytes 128 Bytes 128 Bytes

8 x 2K Bytes,
~4,000 inst.

8 x 2K Bytes,
~4,000 inst.

8 x 2K Bytes,
~4,000 inst.

16 x 2K Bytes
(16 K for source)

8 x 2K Bytes,
~4,000 inst.

16 + 2 Dedicated Serial 16 + 2 Dedicated Serial 32 + 2 Dedicated Serial 16 + 2 Dedicated Serial 16 + 2 Dedicated Serial

5 - 12 vdc 5 - 12 vdc 5 - 12 vdc 5 - 12 vdc 5 - 12 vdc

60 mA Run,
500 µA Sleep

40 mA Run,
350 µA Sleep

40 mA Run,
350 µA Sleep

15 mA Run,
150 µA Sleep

55 mA Run,
450 µA Sleep

30 mA / 30 mA
30 mA /
30 mA

30 mA / 30 mA 30 mA / 30 mA 30 mA / 30 mA

60 mA / 60 mA
 per 8 I/O pins

60 mA / 60 mA
per 8 I/O pins

60 mA /60 mA
per 8 I/O pins

60 mA / 60 mA
per 8 I/O pins

60 mA / 60 mA
per 8 I/O pins

45 61 61 61 63

Serial (9600 baud) Serial (9600 baud)
Serial

(9600 baud)
Serial (9600 baud) Serial (19200 baud)

Stampw.exe
(v1.091 and up)

Stampw.exe
(v1.1 and up)

Stampw.exe
(v1.1 and up)

Stampw.exe
(v1.33 and up)

Stampw.exe
(v2.2 and up)

Phone: (916) 624-8333
Toll free in the US or Canada: 1-888-512-1024
Email: sales@parallax.com

Introduction to the BASIC Stamp

Page 10 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 1

Figure 1.1: BASIC Stamp 1
(Rev B) (Stock# BS1-IC).

Figure 1.2: BASIC Stamp 1 OEM
(Rev. A) (Stock# 27295).

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 11

Figure 1.3: BASIC Stamp 1
(Rev Dx) (Stock# 27100).

The BASIC Stamp 1 is available several physical packages. The BS1-IC
(Figure 1.1) uses surface mount components to fit in a small 14-pin SIP
package. The preassembled BASIC Stamp 1 OEM (Figure 1.2) features an
easier-to-trace layout meant to aid customers who wish to integrate the
BASIC Stamp 1 circuit directly into their design (as a lower-cost solution).
The BASIC Stamp 1 Rev. Dx (simply called the Rev. Dx), see Figure 1.3,
includes a prototyping area suitable for soldering electronic components.
These three packages are functionally equivalent, except that the Rev. Dx
does not have an available reset pin.

In addition to the packages shown, there are prototyping boards available
that feature a surface mounted BS1 and programming cable connector.
Please check www.parallax.com → Products → Development Boards for
product descriptions.

Introduction to the BASIC Stamp

Page 12 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Pin Name Description

1 VIN
Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on
BS1-IC rev. b), which is then internally regulated to 5 volts. May
be left unconnected if 5 volts is applied to the VDD (+5V) pin.

2 VSS
System ground: connects to BS1 Serial Adapter ground for
programming.

3 PCO PC Out: 4800 baud serial output (TTL level) to PC.
4 PCI PC In: 4800 baud serial input (TTL level) from PC.

5 VDD

5-volt DC input/output: (Also called +5V) if an unregulated voltage
is applied to the VIN pin, then this pin will output 5 volts. If no
voltage is applied to the VIN pin, then a regulated voltage
between 4.5V and 5.5V should be applied to this pin.

6 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

7-14 P0-P7
General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source).

Table 1.1: BASIC Stamp 1 Pin
Descriptions.

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 13

BASIC Stamp 2

Figure 1.4: BASIC Stamp 2
(Rev. G) (Stock# BS2-IC).

Figure 1.5: BASIC Stamp 2 OEM
(Rev. A2) (Stock# 27290 assembled,
or #27291 in kit form).

The BASIC Stamp 2 is available in several physical packages. The BS2-IC
(Figure 1.4) uses surface mount components to fit in a small 24-pin DIP
package. The BASIC Stamp 2 OEM (Figure 1.5) features an easier-to-trace
layout meant to aid customers who wish to integrate the BASIC Stamp 2
circuit directly into their design (as a lower-cost solution). The BASIC

Introduction to the BASIC Stamp

Page 14 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Stamp 2 OEM is available in either an assembled form or a kit form. These
three packages are functionally equivalent.

In addition to the dual-inline and OEM packages, there are prototyping
boards available that feature a surface mounted BS2. Please check
www.parallax.com → Products → Development Boards for product
descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source) if using the internal 5-volt regulator. The total
per 8-pin groups (P0 – P7 or P8 – 15) should not exceed 50 mA
(sink) and 40 mA (source) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN

Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on BS2-
IC Rev. e, f, and g), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

Table 1.2: BASIC Stamp 2 Pin
Descriptions.

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 15

BASIC Stamp 2e

Figure 1.6: BASIC Stamp 2e
(Rev. B) (Stock# BS2E-IC).

The BASIC Stamp 2e is available in the above 24-pin DIP package.

Table 1.3: BASIC Stamp 2e Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

Introduction to the BASIC Stamp

Page 16 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 17

BASIC Stamp 2sx

Figure 1.7: BASIC Stamp 2sx
(Rev. E) (Stock# BS2sx-IC)

Figure 1.8: BASIC Stamp 2sx OEM
(Rev. A2) (Stock# 27294)

The BASIC Stamp 2sx is available in the above two physical packages.
The BS2sx-IC (Figure 1.7) uses surface mount components to fit in a small
24-pin DIP package. The preassembled BASIC Stamp 2sx OEM (Figure
1.8) features an easier-to-trace layout meant to aid customers who wish to
integrate the BASIC Stamp 2sx circuit directly into their design (as a
lower-cost solution). The BASIC Stamp 2sx OEM is available in assembled
form only.

Introduction to the BASIC Stamp

Page 18 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25
pin 2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port
GND pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source
or sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to
the VIN pin, then this pin will output 5 volts. If no voltage is
applied to the VIN pin, then a regulated voltage between 4.5V
and 5.5V should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset.
Can be driven low to force a reset. This pin is internally pulled
high and may be left disconnected if not needed. Do not drive
high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN

Unregulated power in: accepts 5.5 - 12 VDC (7.5
recommended), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

Table 1.4: BASIC Stamp 2sx Pin
Descriptions

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 19

BASIC Stamp 2p

Figure 1.9: BASIC Stamp 2p24
(Rev. C) (Stock# BS2p24-IC)

This module is identical in function
to the BS2p40-IC, except that it has
16 I/O pins.

Figure 1.10: BASIC Stamp 2p40
(Rev. B) (Stock# BS2p40-IC)

This module is identical in function
to the BS2p24-IC, except that it has
32 I/O pins.

The BASIC Stamp 2p is available in the above two physical packages.
Both packages use surface mount components to fit in a small package.
The BS2p24-IC (Figure 1.9) is a 24-pin DIP package. The BS2p40-IC
(Figure 1.10) is a 40-pin DIP package. Both packages are functionally
equivalent accept that the BS2p40 has 32 I/O pins instead of 16.

Introduction to the BASIC Stamp

Page 20 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23 on BS2p24, or pin 39 on
BS2p40) connects to PC serial port GND pin (DB9 pin 5 / DB25
pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins (including X0-X15, if using the
BS2p40) should not exceed 75 mA (source or sink) if using the
internal 5-volt regulator. The total per 8-pin groups (P0 – P7, P8
– 15, X0 – X7 or X8 – X15) should not exceed 100 mA (source or
sink) if using an external 5-volt regulator.

{21-36} X0-X15

 (BS2p40 Only!) Auxiliary Bank of General-purpose I/O pins: each
can source and sink 30 mA. However, the total of all pins
(including P0 – P15) should not exceed 75 mA (source or sink) if
using the internal 5-volt regulator. The total per 8-pin groups (P0
– P7, P8 – 15, X0 – X7 or X8 – X15) should not exceed 100 mA
(source or sink) if using an external 5-volt regulator.

21 {37} VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 {38} RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 {39} VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 {40} VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

Table 1.5: BASIC Stamp 2p Pin
Connections

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 21

Basic Stamp 2pe

Figure 1.11: BASIC Stamp 2pe
(Rev. B) (Stock# BS2pe-IC)

The BASIC Stamp 2pe is available in the above 24-pin DIP physical
package.

Table 1.6: BASIC Stamp 2pe Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25 pin 3)
for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin
20) for programming.

4 VSS
System ground: (same as pin 23), connects to PC serial port GND pin
(DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin groups
P0 – P7 or P8 – 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the VIN
pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s ground
(GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

Introduction to the BASIC Stamp

Page 22 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 23

Basic Stamp 2px

Figure 1.12: BASIC Stamp 2px
(Rev. A) (Stock# BS2px-IC)

The BASIC Stamp 2px is available in the above 24-pin DIP physical
package.

Table 1.7: BASIC Stamp 2px Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25 pin 3)
for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin
20) for programming.

4 VSS
System ground: (same as pin 23), connects to PC serial port GND pin
(DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin groups
P0 – P7 or P8 – 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the VIN
pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s ground
(GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

Introduction to the BASIC Stamp

Page 24 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 25

Guidelines and Precautions
When using the BASIC Stamp, or any IC chip, please follow the
guidelines below.

1. Be alert to static sensitive devices and static-prone situations.
a. The BASIC Stamp, like other IC’s, can be damaged by

static discharge that commonly occurs touching
grounded surfaces or other conductors. Environmental
conditions (humidity changes, wind, static prone
surfaces, etc) play a major role in the presence of random
static charges. It is always recommended to use
grounding straps and anti-static or static dissipative mats
when handling devices like the BASIC Stamp. If the
items above are not available, be sure to touch a
grounded surface after you have approached the work
area and before you handle static sensitive devices.

2. Verify that all power is off before connecting/disconnecting.
a. If power is connected to the BASIC Stamp or any device it

is connected to while inserting or removing it from a
circuit, damage to the BASIC Stamp or circuit could
result.

3. Verify BASIC Stamp orientation before connection to
development boards and other circuits.

a. Like other IC’s, the BASIC Stamp should be inserted in a
specific orientation in relation to the development board
or circuit. Powering the circuit with an IC connected
backwards will likely damage the IC and/or other
components in the circuit. Most IC’s have some form of a
“pin 1 indicator” as do most IC sockets. This indicator
usually takes the form of a dot, a half-circle, or the
number 1 placed at or near pin 1 of the device.

The BS1-IC has a “1” and a half-circle indicator on the
backside of the module. Additionally, Figure 1.1 above
indicates the pin numbering and labels.

All BS2 series modules have a half-circle indicator on the
topside of the module (see Figure 1.13). This indicates
that pin number one is the first pin counterclockwise from
the notch. The socket that accepts this 24-pin module also

Introduction to the BASIC Stamp

Page 26 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

has a half-circle or notch on one end, indicating the correct
orientation. See Figure 1.14 for other examples.

Rev G

24

23

22

21

20

19

16

15

14

18

17

13

1

2

3

4

5

6

9

10

11

7

8

12

Figure 1.13: Pin 1 Indicators
BS2-IC shown in the correct
orientation in relation to a 24-pin
socket.

Note: The Half-Circle indicator is
also known as a Reference Notch

Figure 1.14: Additional
Examples of Pin 1 Indicators
(chip and socket shown in the
correct orientation in relation to
each other)

“Dot”
(Pin 1 indicator)

“1” printed on PC board
(Pin 1 indicator)

Insert pin 1
here

1

 Reference Notch
 Pin 1 (pin 1 indicator)

Insert pin 1 Reference
here Notch

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 27

BASIC Stamp Programming Connections

We suggest using a Parallax development board and cable for
programming BASIC Stamp modules. When these items are not available,
you may create your own board by duplicating the following diagrams
with your own circuits and cables.

Be very careful to follow these diagrams closely; it is quite common for
programming problems with the BASIC Stamp to be a result of a poorly
made custom cable or programming connections on your applications
board. With the programming connections for all the BS2 models, it is
possible to reverse a couple of wires and still get positive results using
some of the "connection" tests our Tech. Support team tries and yet you
still will not be able to communicate with the BASIC Stamp. It is vital that
you check your connections with a meter and verify the pin numbering to
avoid problems like this.

Figure 1.15: BS1 Programming
Connections with BS1 Serial
Adapter

Note: Though it is not shown, power
must be connected to the BS1 to
program it.

Introduction to the BASIC Stamp

Page 28 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 1.16: Programming and
Run-time Communication
Connections for all BS2 models.

Note: Though it is not shown, power
must be connected to the BASIC
Stamp to program it.

Also, the programming connections
are the same for the BS2p40.

2: Quick Start Guide

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 29

Quick Start Introduction

This chapter is a quick start guide to connecting the BASIC Stamp to the
PC and programming it. Without even knowing how the BASIC Stamp
functions, you should be able to complete the exercise below. This
exercise assumes you have a BASIC Stamp and an appropriate
development board. For the latest Parallax development board selection
and documentation, go to www.parallax.com → Products → Development
Boards. For a more detailed introduction to the BASIC Stamp Editor
software, see Chapter 3.

Equipment Needed

• BASIC Stamp module
• Compatible carrier board and programming cable
• Power supply (wall mount or battery) rated for your carrier board
• PC running Windows® 2000/XP, with

o Quantity of RAM recommended for the OS
o 3 MB of hard drive space
o CD-ROM drive or Internet access
o Available port compatible with your carrier board and

cable (serial or USB)

Connecting and Downloading

1) If the BASIC Stamp isn't already plugged into your development

board, insert it into the socket. Refer to Figure 1.13 and Figure 1.14 on
page 26 to make sure that you orient it correctly. For a complete
listing of Parallax development boards for the various BASIC Stamp
modules, go to www.parallax.com and look for Development Boards
on the Products menu.

2) If you are using a Parallax development board, follow the directions

that came with it to connect the board to the appropriate port in your
computer. Figure 2.1 below shows the proper sequence for setting up
with a BS1 and a BS1 Carrier Board. Figure 2.2 on page 31 shows the
proper sequence to connect any BS2. Note: if you are using your own

Quick Start Guide

Page 30 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

development board or a breadboard, carefully follow the
Programming Connections guidelines on page 27 before proceeding.

Figure 2.1: BS1-IC, BS1 Carrier
Board, and BS1 Serial Adapter

1) Insert the BASIC Stamp module
into its socket, being careful to
orient it properly.

2) Connect the 9-pin female end of
the serial cable to an available serial
port on your computer, then attach
the male end to the BS1 Serial
Adapter, Note: you cannot us a null
modem cable.

3) Plug the BS1 Serial Adapter into
the programming header on the BS1
Carrier Board.

4) Plug a 9 volt battery into the 9
VDC battery clip.

2: Quick Start Guide

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 31

Figure 2.2: BS2-IC and Board of
Education

1) Insert the BASIC Stamp module
into its socket, being careful to
orient it properly.

2) Connect the 9-pin female end of
the serial cable to an available serial
port on your computer, and then
connect the male end to the Board
of Education. Note: you cannot use
a null modem cable.

3) Plug in the 6-9 V 300mA center-
positive power supply into the barrel
jack.

OR

4) Plug a 9 volt battery into the 9
VDC battery clip.

A
lk

al
in

e
Ba

tte
ry

Po
w

er
ce

ll

2

1

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2

© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

3 4or

3) Install and run the BASIC Stamp Editor software.

a) If using the Parallax CD, go to the Software → BASIC Stamp →
Windows section to locate the latest version. Click the Install
button and follow the prompts to install and run.

b) If using the Parallax website, go to www.parallax.com →

Downloads → Basic Stamp Software and look in the Software for
Windows section for the latest version. Click the Download icon
and follow the prompts to install and run.

c) Test your PC’s connection to the BASIC Stamp by selecting Run →

Identify from the menu bar, as shown in Figure 2.3. If the BASIC
Stamp module is not found, check your power and cable
connections and retry.

Quick Start Guide

Page 32 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Select Run → Identify Verify that the BASIC Stamp was detected
on one of the COM ports.

Figure 2.3: Test your PC
connection to the BASIC Stamp.

4) Enter a $STAMP Directive into the Editor window by clicking on the

toolbar icon for the BASIC Stamp module you are using. (Hold the
cursor over the icons for flyover help labels.) The example below
shows the Stamp Directive that would be inserted for the BS2.

' {$STAMP BS2}

5) Enter a $PBASIC Directive into the Editor window with the toolbar

icon. For a BS1, you must use PBASIC 1.0. All BS2 series modules can
use PBASIC 2.0 or 2.5. The command set differences between PBASIC
2.0 and 2.5 are covered in Chapter 5.

Click on the icon that corresponds to your
BASIC Stamp model to automatically place
the $STAMP directive in your program.

Click on the icon for the PBASIC language
version that is compatible with your BASIC
Stamp model.

Figure 2.4: Entering the $STAMP
and $PBASIC directives from the
toolbar

The examples shown would be used
for programming a BS2 module in
PBASIC 2.5

You should now see both a $STAMP directive and $PBASIC directive
on your PC screen:

' {$STAMP BS2}
' {$PBASIC 2.5}

a) Note: These directives may be typed in from the keyboard, but
failure to type this line properly may cause the editor to fail to
recognize your BASIC Stamp during the next step.

2: Quick Start Guide

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 33

6) Type the line DEBUG “Hello World!” below the compiler directives:

' {$STAMP BS2}
' {$PBASIC 2.5}
DEBUG "Hello World!"

7) Download this program into the BASIC Stamp. You may select Run

→ Run from the menu bar, press CTRL-R from the keyboard, or click
on the Run ► icon on the toolbar.

Figure 2.5: To run your program,
you may use the task bar menu or
the Run icon.

 Selecting Run → Run Using the Run toolbar icon

a) If the program is typed correctly, a progress bar window should

appear (perhaps very briefly) showing the download progress.
Then a Debug Terminal window should appear and display
"Hello World!"

Figure 2.6: Debug Terminal
displaying program output

b) If there is a syntax error in the program, the editor will highlight

the text in question and display an error message. Review the
error, fix the code and then try downloading again.

Quick Start Guide

Page 34 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

c) If the error reported a connection problem with the BASIC Stamp,
make sure the first line of code indicates the proper module name
and verify the programming cable connections, module
orientation (in the socket) and that it is properly powered, then try
downloading again.

8) Congratulations! You've just written and downloaded your first

BASIC Stamp program! The "Hello World!" text that appeared on the
screen was sent from the BASIC Stamp, back up the programming
cable, to the PC.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 35

Introducing the BASIC Stamp Editor

This section describes the BASIC Stamp Editor for Windows version 2.2.
This software supports all 7 BASIC Stamp modules available as of
February 2005, and all 3 versions of the PBASIC programming language,
PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5.

The Programming Environment

The BASIC Stamp Windows Editor, shown in Figure 3.1, was designed to
be easy to use and mostly intuitive. Those that are familiar with standard
Windows software should feel comfortable using the BASIC Stamp
Windows Editor.

Figure 3.1: BASIC Stamp Windows
Editor.

The editor window consists of the main edit pane with an integrated
explorer panel to its left, as shown above.

The main edit pane can be used to view and modify up to 16 different
source code files at once. Each source code file that is loaded into the

THE EDITOR WINDOW.

THE MAIN EDIT PANE.

Using the BASIC Stamp Editor

Page 36 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

editor will have its own tab at the top of the page labeled with the name of
the file, as seen in Figure 3.2. The full file path of the currently displayed
source code appears in the title bar. Source code that has never been saved
to disk will default to “Untitled#”; where # is an automatically generated
number. A user can switch between source code files by simply pointing
and clicking on a file’s tab or by pressing Ctrl+Tab or Ctrl+Shift+Tab while
the main edit pane is active.

Figure 3.2: Example Editor Tabs.
Shown with 6 separate files open;
Title Bar shows current code’s file
path.

The status of the active source code is indicated in the status bar below the
main edit pane and integrated explorer panel. The status bar contains
information such as cursor position, file save status, download status and
syntax error/download messages. The example in Figure 3.3 indicates
that the source code tokenized successfully.

Figure 3.3: Status Bar beneath the
Main Edit Pane.

Each editor pane can be individually split into two views of the same
source code. This can be done via the Split button on the toolbar, pressing
Ctrl-L, or clicking and dragging the top or bottom border of the editor
pane with the mouse.

Once split, the top and bottom edit controls allow viewing of different
areas of the same source code; this can be handy when needing to keep
variable declarations or a particular routine in view while modifying a
related section of code elsewhere. Note that the Split button and Ctrl+L
shortcut act like a toggle function, splitting or un-splitting the edit pane.

SPLIT WINDOW VIEW.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 37

Figure 3.4: The Split Edit Pane
Feature displaying the beginning
and end of a long program at the
same time.

Within the edit pane, BASIC Stamp source code files are displayed with
syntax highlighting. Syntax Highlighting applies designated colors and
character case (upper, lower, capitalized) to reserved words in the PBASIC
language . This happens automatically as you type. Table 3.1 shows the
default syntax highlighting settings for each syntax element.

If you copy and paste a program into a blank edit pane, select Run →
Syntax Check or click on the toolbar checkmark icon to activate the syntax
highlighting in that file. The syntax highlighting settings can be changed
or customized via the Preferences → Editor Appearance tab; for details see
the Setting Preferences section which begins on page 55. Source code can
be printed to paper with the active syntax highlighting (and in color if
using a color printer).

SYNTAX HIGHLIGHTING.

NOTE: a complete list of reserved words
can be found in Appendix B.

Using the BASIC Stamp Editor

Page 38 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Syntax Element Text Color Character Case
Command Blue Upper Case
Comment Green No Change

Constant -Binary Default No Change
Constant - Decimal Default No Change

Constant - Hexadecimal Default No Change
Constant – Predefined Purple Upper case

Constant – String Red No Change
Operators Default Upper case

Declaration Default Upper Case
Directive, Conditional Compile Gray(Bold) Upper case

Directive, Editor Teal (Bold) Upper case
Directive, Target module Teal (Bold) Upper case
Input/Output Formatter Navy Upper case

Selection White on Navy No change
Search match Lime on black No change

Variable modifier Default Upper case
Variable – predefined Purple Upper case

Variable, type Default Capitalize

Table 3.1: Syntax Highlighting
Defaults for the PBASIC Scheme.

NOTE: The default edit pane has
a white background with black
characters.

Automatic line numbers can be enabled or disabled via the “Show Line
Numbers” checkbox on the Preferences → Editor Appearance tab. Line
numbers, when enabled, appear in a gutter (the gray area on the left of the
edit pane as shown in Figure 3.5). When printing, the line numbers may
be included if desired.

Figure 3.5: Automatic Line
Numbering appears in the gutter to
the left of the edit pane. Yellow
Bookmarks are visible on lines 5
and 9.

Bookmarks can be enabled or disabled via the “Show Bookmarks”
checkbox on the Preferences → Editor Appearance tab. The bookmarks
appear in the gutter as small numbered icons, providing a way to mark
lines or sections of code that you need to navigate to quickly or repeatedly.
You can define up to nine bookmarks by clicking on the gutter where you
want one placed, or by pressing Ctrl+B when the cursor is on the desired
line. You can instantly navigate to any defined bookmark by pressing
Ctrl+(#) (where # can be the 1 through 9 keys) or by selecting Go To

AUTOMATIC LINE NUMBERING.

BOOKMARKS.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 39

Bookmark from either the Edit menu or from the shortcut menu (right-
click) in the edit pane.

You can navigate through and edit your code in the edit pane with
keyboard shortcuts, most of which will be familiar to Windows users.

Table 3.2: Keyboard Shortcuts for
Editing and Navigation Functions.

Editing and Navigation Functions
Shortcut Key Function

Ctrl+A Select all text in current source code
Ctrl+B Set or clear bookmark on current source code line
Ctrl+(#) Go to bookmark #, where # can be 1 through 9
Ctrl+C Copy selected text to the clipboard
Ctrl+F Find or replace text
Ctrl+L Split or un-split edit pane
Ctrl+N Insert line
Ctrl+V Paste text from clipboard to selected area
Ctrl+X Cut selected text to the clipboard
Ctrl+Y Delete current line of code

Ctrl+Shift+Y Delete from cursor to end of current line
Ctrl+Z Undo last action (unlimited)

Ctrl+Shift+Z Redo last action (unlimited)
Tab Indent block (Inserts tab or space characters)

Shift+Tab Outdent block (Deletes tab or space characters)
F3 Find text again
F4 Replace current found selection

Ctrl+F4 Perform replace and find next
Ctrl+Home Jump to top of file
Ctrl+End Jump to end of file

Ctrl+PageUp Jump to top of screen
Ctrl+PageDown Jump to bottom of screen
Ctrl+CursorUp Move source view up one line without moving cursor

Ctrl+CursorDown Move source view down one line without moving cursor
F5 Open Preferences window

Some editing functions, specifically Cut, Copy, Paste, and Find/Replace,
can also be accessed from the edit pane’s shortcut menu (by right-clicking
in the edit pane).

The Find/Replace window allows you to set several search parameters.
Match whole or partial words, match case, and match with wildcard
options can be used singly or together. You can begin your search at the
cursor or at the top or bottom of the selection or the entire file, and search
in the forward (downward) or backward (upward) direction. You may
replace a single instance of a given item or all instances at once. Recent

THE FIND/REPLACE WINDOW.

EDITING YOUR CODE.

Using the BASIC Stamp Editor

Page 40 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Find and Replace items are saved in the Find: and Replace: field’s drop-
down lists.

Figure 3.6: The Find/Replace
Window.

The Find/Replace window will stay visible when using the Find Next and
Replace options for quick and convenient source code editing. Using the
Replace All function, however, will close the Find/Replace window and
perform the designated find/replace operation.

 The integrated explorer panel to the left of the main edit pane is divided
in to four portions: the Recent, Directory, File and Filter lists. The upper
portion is the Recent list, a drop-down list of default, favorite, and recently
visited directories.

If you select a directory from the Recent list drop down field, the
integrated explorer will automatically navigate to that directory. The
button to the left of the Recent list allows you to limit the Directory list
display below it to only the directories that are in the Recent list. This
makes it easy to find your commonly used source code directories among
a large set of directories and local and network hard drives. The Recent
list button behaves like a toggle switch: 1) selecting it switches to the
“Show Recent folders only” mode, 2) selecting it again switches back to
the “Show all folders” mode.

THE INTEGRATED EXPLORER PANEL.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 41

Figure 3.7: The Integrated Explorer
Panel’s Recent list (top), Directory
list (middle), and File list (bottom).

The Directory list, right below the Recent list, displays drives and
directories in a hierarchical tree fashion. If a directory is selected, the
Folders list displays the files in that directory.

The File list, below the Directory list, displays all the files in the selected
directory that match the selected filter (from the Filter list at the bottom.
see Figure 3.8). You can select one or more files from this list and double-
click, or drag-and-drop them over the editor pane, to open those files.

You may also open files with the Open From... option by selecting File →
Open From, or by pressing Ctrl+Shift+O. This allows quick access to any
directory for the default and favorite directories set within Preferences (see
page 60) as well as any recently used directory. The Save To... option
works similarly; select File → Save To or press Ctrl+Shift+S. These
features can be very helpful if you organize your files in many different
directories.

The Filter list at the bottom of the explorer panel (Figure 3.8), is a drop-
down list of file extension filters to apply to the File list. It works just like
the “Save as type:” field of a standard Open or Save dialog.

OPEN FROM... AND SAVE TO... OPTIONS.

THE DIRECTORY LIST.

THE FILTERS LIST.

THE FILE LIST.

Using the BASIC Stamp Editor

Page 42 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.8: The Filter List found at
the bottom of the Integrated
Explorer Panel.

The BASIC Stamp Editor automatically associates BASIC Stamp source
code file types (.bs1, .bs2, .bse, .bsx, .bsp, .bpe, and .bpx) with itself. This
feature can be configured through automatic prompts or through the
Preferences → Files & Directories tab. Also, when using any Explorer-
shell for file browsing, right-clicking on a BASIC Stamp source code file
provides you with an Open With Stamp Editor option.

The integrated explorer panel can be resized via the vertical splitter bar
that separates it and the edit pane. The Directory list and File list can be
resized via the horizontal splitter bar that separates them. The integrated
explorer can also be hidden or shown via the Explorer toolbar button, by
pressing Ctrl+E, or by resizing it to zero width using the vertical splitter
bar.

Table 3.3 lists keyboard shortcuts for several file functions.

File Functions
Shortcut Key Function

Ctrl+E Show/hide explorer panel
Ctrl+L Show/hide split view in edit pane
Ctrl+O Open a source code file into edit pane

Ctrl+Shift+O Open a source code file from a recent directory into edit pane
Ctrl+S Save current source code file to its current location on disk

Ctrl+Shift+S Save current source code file to a recent directory on disk
Ctrl+P Print current source code

Ctrl+Tab Switch to next open file page
Ctrl+Shift+Tab Switch to previous open file page

Table 3.3: Keyboard Shortcuts for
File Functions.

.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 43

Compiler Directives

The BASIC Stamp Editor supports all of the BASIC Stamp models, and all
versions of the PBASIC programming language. Compiler directives must
be placed in each program to indicate the desired BASIC Stamp model and
language version. In addition, it is sometimes useful to target a given
program to a particular communication port. The Directive menu contains
options for setting the $STAMP, $PBASIC, and $PORT directives. Since
the $STAMP and $PBASIC directives are used most often, they are most
easily inserted or modified with the toolbar buttons, as shown in Figure
3.9.

Figure 3.9: Toolbar icons make it
easy to insert or modify $STAMP
and $PBASIC directives directly in
your program.

A $STAMP directive is required in each PBASIC program. The editor
determines which BASIC Stamp model to target for compiling and
downloading based on this directive. Any code that is missing the
$STAMP directive, but whose filename contains a known BASIC Stamp
extension (.bs1, .bs2, .bse, .bsx, .bsp, .bpe, .bpx) will be recognized by that
extension and an appropriate $STAMP directive will be added
automatically when you run, tokenize, view the memory map or
download the program. If there is no file extension present, an error
message will prompt you to enter a $STAMP directive.

You may choose to manually type the $STAMP directive into the program
from the keyboard. This line should be entered into your code on a line by
itself, usually near the top. Note that the directive appears on a comment
line, as indicated by the apostrophe (').

' {$STAMP BS1} 'This indicates to use a BASIC Stamp 1 module
' {$STAMP BS2} 'This indicates to use a BASIC Stamp 2 module
' {$STAMP BS2e} 'This indicates to use a BASIC Stamp 2e module
' {$STAMP BS2sx} 'This indicates to use a BASIC Stamp 2sx module
' {$STAMP BS2p} 'This indicates to use a BASIC Stamp 2p module
' {$STAMP BS2pe} 'This indicates to use a BASIC Stamp 2pe module
' {$STAMP BS2px} 'This indicates to use a BASIC Stamp 2px module

COMPILER DIRECTIVES .

FORMAT OF THE $STAMP DIRECTIVE.

THE $STAMP DIRECTIVE.

Using the BASIC Stamp Editor

Page 44 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

If you choose to type the $STAMP directive, care must be taken, or it will
not be recognized. The directive itself must be enclosed in curly braces,
{…}, not parentheses (...) or square brackets [...]. There should not be
any spaces between the dollar sign ($) and the word STAMP; however, the
directive may contain additional spaces in certain other areas. For
example:

' { $STAMP BS2 }

-- or --

' {$STAMP BS2}

-- and --

' {$STAMP BS2 }

are all acceptable variations. However:

' {$ STAMP BS2}

-- and --

' {$STAMPBS2}

are not acceptable and will be ignored. If one of the above two lines were
entered into the source code, the editor would ignore it and, instead, rely
on the extension of the filename to determine the appropriate model.

The $STAMP directive is read and acted upon by the BASIC Stamp
Windows Editor any time a source code file is loaded, tokenized,
downloaded (run) or viewed in the Memory Map.

In some cases you may wish to write a program that can run on multiple
BASIC Stamp models. In this case, conditional compile directives can be
employed that will cause the editor to determine which Basic Stamp
model is detected, and then download only those program elements
applicable to that model. Many of the demo programs in Chapter 5 use
this technique. To read about conditional compilation, see the Advanced
Compilation Techniques section which begins on page 68.

The $PBASIC directive allows you to indicate which version of the
PBASIC language to use. At the time of this printing, the options are 1.0,
2.0 and 2.5. If no $PBASIC directive is present in the program, version 1.0
is assumed for BS1 module source code, and version 2.0 is assumed for

EXTRA SPACES ARE ALLOWED IN CERTAIN

AREAS.

THE $PBASIC DIRECTIVE.

PROGRAMS FOR MULTIPLE BASIC STAMP

MODELS – CONDITIONAL COMPILE.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 45

any BS2 model source code. A $PBASIC directive is required to use
version 2.5, which is compatible with all BS2 models.

PBASIC 2.5 has enhanced syntax options for several commands, as well as
some additional commands not available in PBASIC 2.0. Table 3.4 shows
the number of PBASIC commands that are available in each version of the
PBASIC language, on each BASIC Stamp model. Details about the syntax
differences among the three versions of PBASIC are denoted by icons in
the margins of Chapters 4 and 5; also refer to Table 5.1 on page 124 and
individual command syntax descriptions.

Table 3.4: Number of Available
Commands for each BASIC
Stamp Model with each version
of the PBASIC language .

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
PBASIC 1.0 32 - - - - - -
PBASIC 2.0 - 37 40 40 56 56 58
PBASIC 2.5 - 42 45 45 61 61 63

A categorical listing of all PBASIC commands is included at the beginning of Chapter 5,
followed by detailed descriptions of each command in alphabetical order.

Note that the syntax-highlighting feature of the BASIC Stamp Editor will
also adjust to the language version indicated by the $PBASIC directive.
The best way to select the $PBASIC directive is to use the toolbar icons, as
was shown in Figure 3.9. Like the $STAMP directive, you must use care if
you choose to type it in by hand. The syntax is:

' {$PBASIC 1.0} 'Default when a BASIC Stamp 1 module is detected
' {$PBASIC 2.0} 'Default when any BASIC Stamp 2 module is detected
' {$PBASIC 2.5} 'Required for PBASIC 2.5 command set & enhanced syntax

If you try to run a program that contains command syntax specific to
PBASIC 2.5 without including the corresponding compiler directive, you
will probably get an error message. In this case, insert a $PBASIC 2.5
directive and try running the program again.

The optional $PORT directive allows you to indicate a specific PC
communications port through which to download a program to a BASIC
Stamp module. The syntax is as follows:
' {$PORT COM#}

where # is a valid port number. When any PBASIC program containing
this directive is downloaded, all other ports will be ignored. This directive
is especially convenient when using two of the same BASIC Stamp models

THE $PORT DIRECTIVE.

Using the BASIC Stamp Editor

Page 46 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

(such as two BS2s) on two ports and you have two different PBASIC
programs to download (one to each BS2). Without this directive,
developing and downloading in this case would be a tedious task of
always answering the "which BASIC Stamp?" prompt.

The $PORT directive can be automatically inserted or modified by
selecting the appropriate port from the Directive → Port menu. The COM
ports listed in the Directive → Port menu are automatically updated any
time a change is made to the exiting computer hardware or to the available
ports list. See the Setting Preferences section which begins on page 55 for
more information.

Special Functions

The Identify function will identify which BASIC Stamp model, if any, is
detected on any available communications port. This information is
displayed in the Identification window (Figure 3.10), which can greatly aid
in troubleshooting your connection to your BASIC Stamp module.
Activate this function by selecting Run → Identify, by pressing Ctrl-I, or
pressing F6.

Figure 3.10: The Identification
Window.

The Port column shows the available ports (those that the BASIC Stamp
Editor is trying to access). You can modify the available Port List by
clicking on the Edit Port List button. Modifying this list only affects which
ports the BASIC Stamp Editor tries to use; it does not affect which serial
ports are installed on your computer. It is recommended that you delete
all known modem ports and any problematic ports from this list.

THE IDENTIFICATION FUNCTION .

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 47

The Device Type column shows the model of BASIC Stamp found on the
respective port. For example, in Figure 3.10 above, the BASIC Stamp
Editor found a BS2 on COM port 1 and a BS2sx on COM port 4.

The Version column displays the firmware version number of the BASIC
Stamp module that was found.

The Loopback column indicates whether or not a loopback connection was
found on the port. The loopback connection is created by BASIC Stamp
development boards, such as the Board of Education, across serial port
pins 6 and 7 (of a DB9). A “Yes” in this column is an indication that the
serial port and serial cable are properly connected to a BASIC Stamp
development board. Note that the Loopback column should always
indicate “No” when using a BS1 Serial Adapter, regardless of whether or
not the adapter is properly connected to a BASIC Stamp development
board.

The Echo column indicates whether or not a communication echo was
detected on the port’s transmit and receive pins (pins 2 and 3). All BASIC
Stamp 2 models create this echo naturally, even without power. BASIC
Stamp 1 modules do not create this echo. A “Yes” in this column is an
indication that the serial port and serial cable are properly connected to a
BASIC Stamp 2 (or higher) module, and if using a BASIC Stamp
development board, it’s an indication that the module is properly
connected to the development board.

For all BASIC Stamp 2 models, the Loopback and Echo columns are great
for doing some simple connection diagnosis when using a serial port. For
example, a Yes in both columns indicates the serial port and serial cable
are properly connected and that the BASIC Stamp is properly inserted into
its socket. See Table 3.5 below. Note that the Loopback column does not
give reliable results when using a USB to serial adapter, or a USB-based
development board. Usually this is not an error, and the Loopback status
can simply be ignored.

NOTE: when using a BS1 Serial
Adapter, the Loopback column of the
Identification window should always
indicate “No”.

Using the BASIC Stamp Editor

Page 48 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Loopback Echo Interpretation

Yes Yes

Serial port and serial cable properly connected. BASIC Stamp
properly inserted into socket. If no BASIC Stamp is detected, it is
probably because the BASIC Stamp is not connected to power.
Other causes could be: 1) low battery, 2) Reset pin of BASIC Stamp
is connected to Vdd (it should be left disconnected), 3) the BASIC
Stamp is damaged or 4) there is some other type of communication
error (software or hardware).

Yes No
Serial port and serial cable properly connected to the development
board. BASIC Stamp improperly inserted into socket (i.e.: inserted
backwards or not inserted at all).

No Yes

Serial port and serial cable may be improperly connected, or you
may not be using a standard BASIC Stamp development board.
The Echo indicates there may be a BASIC Stamp properly
connected to the port (the Loopback is not required for successful
connection) or there may be another device connected to the serial
port.

No No

Serial port and serial cable are not properly connected, or not
connected at all, to the BASIC Stamp 2 (and higher) modules.
Could also be an indication of a serial port hardware/software
problem. When using a BS1 Serial Adapter, this Loopback and
Echo is normal and expected.

Table 3.5: Using Loopback and
Echo to troubleshoot your serial
port (DB9) connection.

NOTE: When using a USB port,
the Loopback column does not
give reliable results. Usually this is
not an error and the Loopback
status can be ignored.

Selecting the “Ignore BS1 Modules unless downloading BS1 source code”
checkbox at the bottom of the Identification window optimizes
identification speed. All BS2 models can be identified very quickly. For
BASIC Stamp 1 modules, the identification process can take as much as
five seconds per communications port. Since the Identification function
checks all available serial ports for any possible model of BASIC Stamp,
the five-second timeout for BS1’s can be very inconvenient, especially if
you are not using a BS1.

When this checkbox is checked, the Identification function will not attempt
to locate BS1 modules, and thus saves time. If, however, you are
downloading BASIC Stamp 1 code, the Download function will attempt to
locate BS1 modules regardless of the setting of this checkbox. This feature
can also be found and modified via the Preferences → Editor Operation
tab.

Like the Identification function, the Download function provides
information to help guide you through the downloading process. After
entering the desired source code in the editor window, you may run it in
one of three ways: select Run → Run, press Ctrl+R on the keyboard, or
click on the “►” toolbar icon. This will tokenize and download the code

THE DOWNLOAD FUNCTION .

SPEED UP IDENTIFICATION WITH THE

“IGNORE BS1 MODULES” CHECKBOX.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 49

to the BASIC Stamp module (assuming the code is correct and the BASIC
Stamp is properly connected). The Download Progress window looks
similar to the Identify window with the exception of the additional
Download Status progress bar, and the indicator LED by the port
transmitting the data.

Figure 3.11: The Download
Progress Window.

If any errors occur, such as communication failure or inability to detect a
BASIC Stamp module, you will be prompted appropriately. One possible
error occurs when the BASIC Stamp your PBASIC program is targeting
does not appear to be connected to the PC (see Figure 3.12). This may be
caused, for example, by opening up a BASIC Stamp 1 program (usually
has a .bas or .bs1 extension) and trying to download it to a BASIC Stamp 2
module, instead.

Figure 3.12: A Download Error
message.

When this happens, you’ll be prompted to correct the situation, quickly
done by clicking on the BS2 button (if you really intended to download to
the BS2 in the first place). Keep in mind that programs written for one
BASIC Stamp model may not function properly on a different BASIC
Stamp model. Click on the More Info button for more detail. NOTE: If
you select the BS2 button, as in this example, the editor will modify the

Using the BASIC Stamp Editor

Page 50 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

$STAMP directive in the program, notify you of this change and what it
means, and then will try to download to the BS2.

Another possibility is having two or more of the same BASIC Stamp
model connected to the PC. In this case, the editor will prompt you for
clarification as to which BASIC Stamp module you want to download to.
In this case using a $PORT directive in your code will save you some
tedium in repeatedly responding to such prompts.

The BASIC Stamp Editor also features a Memory Map that displays the
layout of the current PBASIC program. Type Ctrl+M, or press F7, to
activate this window.

When you activate the Memory Map, the editor will check your program
for syntax errors and, if the program’s syntax is okay, will present you
with a color-coded map of the RAM and EEPROM. You’ll be able to tell at
a glance how much memory you have used and how much remains.

Figure 3.13: Memory Map for
Demo Program DATA.bs2.

The Memory Map is divided into two sections, the RAM map and the
EEPROM map. The RAM map shows how much of each register has been
allotted to program variables. The RAM legend details how much is used
by I/O Pins, Word, Byte, Nibble and Bit variables, and how much is
unused.

MEMORY MAP FUNCTION.

THE RAM MAP.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 51

The EEPROM map is shown in two scales. The main view is the detailed
EEPROM map, which displays the data in hexadecimal format in each
location. The condensed EEPROM map is the vertical region on the left
that shows a small-scale view of the entire EEPROM; the red square over it
corresponds to the scroll bar handle in the detailed EEPROM map and
indicates the portion of the EEPROM that is currently visible in the
detailed EEPROM map.

Checking the Display ASCII checkbox switches the detailed EEPROM
display from hexadecimal to ASCII. In this program, the textual data can
be read right off the EEPROM map when using this option.

Two important points to remember about this map are: 1) it only indicates
how your program will be downloaded to the BASIC Stamp module; it
does not "read" the BASIC Stamp memory, and 2) for all BS2 models, fixed
variables like B3 and W1 and any aliases do not show up on the memory
map as memory used. The editor ignores fixed variables when it arranges
automatically allocated variables in memory. Remember, fixed and
allocated variables can overlap.

The Debug Terminal window provides a convienent display for data
received from a BASIC Stamp during run-time, and also allows for the
transmission of characters from the PC keyboard to the BASIC Stamp. The
Debug Terminal is automatically opened and configured when a PBASIC
program, containing a DEBUG command, is downloaded. You can
manually open a Debug Terminal one of three ways: select
Run → Debug → New, press Ctrl+D on the keyboard, or click on the
Debug Terminal toolbar button. Up to four (4) Debug Terminals can be
open at once (on four different ports) and all can be left open while editing
and downloading source code.

Figure 3.14 below shows the demo program DEBUG_DEBUGIN.bs2 in the
edit pane, and the Debug Terminal that opens when this program is run.

THE DEBUG TERMINAL.

THE EEPROM MAP.

Using the BASIC Stamp Editor

Page 52 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.14: Demo program using
the Debug Terminal

The text in the Debug Terminal’s Receive pane (blue area) prompts the
user to enter a number into the Transmit pane (white area) . After typing
the number 10 and pressing Enter, the Receive pane displays the number
in decimal, hexadecimal, and binary format as dictated by the program
(Figure 3.15).

Figure 3.15: Debug Terminal
output after entering a number.

The fields across the top of the Debug Terminal window allow
configuration of the communication port settings. These fields will be
automatically configured and disabled if the Debug Terminal was

PORT SETTINGS AND STATUS.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 53

automatically opened by the editor, however, if manually opened, these
fields will be enabled to allow manual configuration. The signal status
LEDs turn bright green when activity on the indicated port line is
detected. The signal checkboxes (DTR and RTS) can be selected to set or
clear the respective output line on the port.

The Echo Off checkbox (bottom of window) causes the Receive pane to
throw away the characters that arrive in the port’s receive buffer
immediately after transmitting characters from the transmit buffer. This
produces a cleaner Receive pane display for interactive programs such as
the example above. Keep in mind, however, that this feature does not
verify that the character it throws away is actually a match to a character
that was just transmitted (because data collisions on the port can cause
echoed characters to be garbled). You should only use the Echo Off
feature in situations where it is required, as it may result in a strange
display in certain applications.

There are keyboard shortcuts for several coding functions, some of which
are unique to the BASIC Stamp Editor.

Table 3.6: Coding Function
Keyboard Shortcuts.

 Coding Functions
Shortcut Key(s) Function

Ctrl+J Show code templates.
F6 or Ctrl+I Identify BASIC Stamp firmware.

F7 or Ctrl+T
Perform a syntax check on the code and display any error
messages.

F8 or Ctrl+M Open Memory Map window.

F9 or Ctrl+R
Tokenize code, download to the BASIC Stamp and open
Debug window if necessary.

F11 or Ctrl+D Open a new Debug window.

F12
Switch to next window (Editor, Debug #1, Debug #2, Debug #3
or Debug #4)

Ctrl+1, Ctrl+2,
Ctrl+3, Ctrl+4

Switch to Debug Terminal #1, Debug Terminal #2, etc. if that
Terminal window is open.

Ctrl+` Switch to Editor window.
ESC Close current window.

The BASIC Stamp Editor includes searchable, indexed help files. Access
Help by selecting Help → Contents or Help → Index. Context sensitive
help (highlighting a word in the editor and pressing F1 key) is also
supported. The help file can remain open in a separate window while
using the BASIC Stamp Editor; simply press Alt+Tab to toggle back and
forth between the editor and the Help window.

HELP FILES.

KEYBOARD SHORTCUTS FOR CODING

FUNCTIONS.

Using the BASIC Stamp Editor

Page 54 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.16: The Help file contains
the complete PBASIC syntax
documentation.

The current help files contain the entire PBASIC syntax documentation. In
addition, the example demo code programs that appear after most
command descriptions in Chapter 5 are automatically placed in default
directories during the BASIC Stamp Editor v2.2 installation. These
programs can be accessed via hyperlinks within the help file.

NOTE: The BASIC Stamp Editor Help file requires Microsoft's HTML
Help utility and Internet Explorer 4.0 or above (IE 6.0 recommended). The
proper version of HTML Help is included with Windows 2000 and
Windows XP. On other versions of Windows you may have to install or
upgrade your HTML Help utility to properly view the Stamp Editor’s
on-line help. The HTML Help upgrade program (hhupd.exe) is included
as part of the BASIC Stamp Editor setup program and the editor will
automatically prompt you to run it if it determines you need to upgrade.
You can download the latest version of Internet Explorer from Microsoft’s
web site at www.microsoft.com.

HELP FILES REQUIRE MICROSOFT’S HTML

HELP UTILITY.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 55

The Tip of the Day function displays a new message each time you run the
BASIC Stamp Editor. There are many useful tips, and you may browse
through them any time with the Next Tip and Previous Tip buttons. You
may also use the Edit Tips option to change the contents of any tip. All
tips are contained in a single file, named Stamp_Tips.txt, that is stored in
the editor’s installation directory, usually a path similar to
C:\Program Files\Parallax Inc\Stamp Editor v2.2.

Figure 3.17: Tip of the Day #24.

You can turn this feature off by unchecking the Show Tips on Startup box
at the bottom of the window. To access it again, choose Help → Tip of the
Day from the menu bar.

Setting Preferences

The BASIC Stamp Editor allows the user to set preferences for the
appearance and operation of many aspects of the application. Select
Edit → Preferences, press F5 or click on the Preferences toolbar button to
open the Preferences window, where you will see these options organized
under 6 tabs. Each tab has a Restore Defaults button in case you make a
royal mess of things.

Under the Editor Appearance tab (Figure 3.18), you can set the font size in
the edit pane. The other text attributes, such as background and
foreground color, character case, and bold, italic and underline, are
controlled by the Syntax Highlighting scheme. There are 3 predefined
schemes, and you may also create a custom scheme. Please note that the

TIP OF THE DAY.

EDITOR APPEARANCE PREFERENCES.

Using the BASIC Stamp Editor

Page 56 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

preferences are specific to the editor, and are not saved as part of any
BASIC Stamp program that you may have open while setting preferences.

Figure 3.18: The Editor Appearance
Tab under Edit → Preferences.

The default font size for the edit pane is 10 point, but there are 12 fixed
options ranging from 8 to 40 point. The Editor Font size setting and all the
other text attribute settings under this tab will not affect the text in the
Debug Terminal.

The default scheme is the “PBASIC” scheme, with the syntax highlighting
text attributes described above in Table 3.1. The “plain text” scheme is just
that – the default foreground and background for all entered text, with no
other attributes applied. The “simple” scheme is the same as the “plain
text” scheme, except comments appear in green. Both the plain text and
simple schemes use the PBASIC scheme defaults for selected text.

SYNTAX HIGHLIGHTING SCHEMES.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 57

To create a custom scheme, select a default scheme you wish to modify,
and click on the Copy Scheme button. Then, select (highlight) an element
within the Syntax Element list, and apply new Text Attributes with the
checkboxes and drop-down menus to the right. As you try various text
attributes and color combinations, the Show Preview Example checkbox
lets you audition your custom scheme without closing the Preferences
window.

The BASIC Stamp Editor supports one custom scheme at a time. It can be
modified indefinitely, but it cannot be copied. If you again copy a default
scheme, you will be asked to confirm that you wish to overwrite your
current custom scheme.

Under this tab, you will also find checkboxes that allow you to show or
hide bookmarks, line numbers, the overwrite cursor, and the toolbar.

Under the Editor Operation tab (Figure 3.19), you may set preferences for
automatic indentation and tab behavior.

The Auto Indent on Enter option makes it easy to indent nested loops to
make code easier to read. The Auto Unindent option enables quick
reversal of an indented line by simply using the backspace key, provided
that the cursor is to the left of the first character on the line.

The editor lets you choose whether a tab character or spaces are inserted
into source code whenever you press the Tab key. The default setting,
insert space characters upon Tab key presses, is recommended because it
enforces the intended formatting regardless of what editor you use to view
the code later.

CUSTOMIZED SYNTAX HIGHLIGHTING.

EDITOR OPERATION PREFERENCES.

AUTO INDENTING / UNINDENTING.

TAB CHARACTER.

Using the BASIC Stamp Editor

Page 58 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

In addition to the actual character used for the Tab key, there are three
behaviors of tabbing employed by the editor: Smart Tabs, Fixed Tabs and
Fixed plus Smart Tabs.

Figure 3.19: The Editor Operation
Tab under Edit → Preferences.

Smart Tabs (Figure 3.20) cause the tab key to move the cursor to a position
that is aligned with the nearest break between words in nearby lines above
the current line. It has the effect of providing a somewhat intuitive, auto
adjusting behavior based entirely on how you have aligned previous lines.

Fixed Tabs (Figure 3.21) cause the tab key to move the cursor to the
position indicated by the Fixed Tab Positions field. If the position is
already beyond the end of the Fixed Tab Positions list, it moves by a
multiple of the distance between the last two positions in that list. For
example, with Fixed Tabs set, the default Fixed Tab Positions list will

SMART TABS.

FIXED TABS.

TAB BEHAVIOR.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 59

make the Tab key move the cursor to positions, 3, 5, 7, 9 and 11, then
afterwards, 13, 15, 17, 19, etc. (a multiple of two (11 – 9 = 2) after the last
listed position.

The last option is a mixture of the first two, Fixed plus Smart Tabs
(Figure 3.22); it is the default and recommended setting. Fixed plus Smart
Tabs will cause the tab key to move the cursor to the position indicated by
the Fixed Tab Positions field, or if the position is already beyond the end
of that list, it reverts to Smart Tabs behavior. This setting, combined with
a carefully configured Fixed Tab Positions field, allows for a fixed level of
indenting on the left side of the source code (for executable code blocks),
with very flexible indenting to the right of executable code (for comments
that appear to the right of code). The default settings provide a quick,
single-key method of indenting up to five (5) levels of executable code and
easy alignment of multiple lines of comments to the right of that code.

Figure 3.20: Smart Tabs.

Figure 3.21: Fixed Tabs.

Figure 3.22: Fixed plus Smart Tabs.

FIXED PLUS SMART TABS.

Using the BASIC Stamp Editor

Page 60 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The Fixed Tab Positions list is used to provide a list of desired fixed tab
positions (used with Fixed Tabs or Fixed plus Smart Tabs options). The
list can be a single number, or a list of comma separated numbers in
ascending order. The allowable range is 2 to 512 and the list size is
virtually unlimited. When multiple values are entered, the difference
between the last two values will be used to set tab positions beyond the
last position. For example, in the default list, the last two positions are 9
and 11; resulting in further tab positions of 13, 15, 17, etc. (multiples of 2
after the last specified position). Since source code is usually indented by
multiples of two (2) spaces, the default list of 3, 5, 7, 9 and 11 is
recommended.

The Default Com Port setting allows you to specify which COM port to
download through. If you specify a specific port here, the Identification
window will report that it is “ignoring” other known ports. This can be
selectively overridden by placing a $PORT directive in the program. If
this setting is left on “AUTO”, the default, the editor will open and scan all
known ports for the correct BASIC Stamp. The button to the right, labeled
‘...’, opens the a window allowing the known port list to be edited.
Modifying the known port list only affects which ports the BASIC Stamp
Editor tries to use; it does not affect which serial ports are installed on
your computer. It is recommended that you delete all known modem
ports and any problematic ports from this list.

For an explanation of the Default Project Download Modes, see Table 3.7
on page 70. This is part of a discussion on BASIC Stamp Projects in the
Advanced Compilation Techniques beginning on page 68, below.

Selecting the “Ignore BS1 Modules unless downloading BS1 source code”
checkbox optimizes identification speed by attempting to locate BS1
modules only if you are downloading BASIC Stamp 1 code. This feature
can also be activated via the Identification or Download window.

Under the Files and Directories tab (Figure 3.23), you can set preferences
for saving and accessing files, as well as automatically creating backup
copies.

THE FIXED TAB POSITIONS LIST.

DEFAULT COM PORT.

THE FILES AND DIRECTORIES TAB.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 61

Figure 3.23: The Files and
Directories Tab under
Edit → Preferences.

Check the “Create backup copy” option to cause the editor to
automatically create a backup copy of any file that is being re-saved under
the same name. The backup file will be stored in the same directory and
named the same as the existing file, but with a .bak extension appended to
the existing extension. For example, “test.bs2” becomes “test.bs2.bak” and
then the new file called “test.bs2” is created from the source code being
saved. Note: the .bak files will not appear in the integrated explorer’s file
window unless you change the Filter list to show All Files (*.*).

BASIC Stamp source code file types (.bs1, .bs2, .bse, .bsx, .bsp, .bpe, .bpx)
can be associated with the BASIC Stamp Editor. Check the “Verify at
startup” option to have the editor verify the proper associations each time
it is started. The “Associated files launch into” option changes the way
Windows behaves when you open BASIC Stamp source code from any
Explorer-shell. Choosing “Single Editor” causes all programs to open up

BACKUP COPY.

FILE ASSOCIATIONS.

Using the BASIC Stamp Editor

Page 62 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

into a single BASIC Stamp Editor, including an editor that is already
running. The “Multiple Editors” option will cause a new BASIC Stamp
Editor to open each time you open an associated BASIC Stamp file from
any Explorer-shell.

Also, by associating BASIC Stamp source code with the editor, Windows
will provide an “Open With Stamp Editor” option when right-clicking on
that source code from any Explorer-shell.

The “New file template” field allows you to specify a file to load each time
the File → New function is selected. The file will be loaded into the new
edit page, but the name will be set to “Untitled#”; where # is an
automatically generated number. This feature provides a convenient way
to start every new source code project with a specified code template of
your choosing. Note that once this feature is set, you may hold down the
Shift key while selecting File → New, or clicking the New File toolbar
button, to suppress the loading of the code template and thus end up with
a blank edit page.

The “Upon startup, initial directory is” field affects what directory is
initially selected in the integrated explorer and the Open and Save As
dialog boxes when the editor is started. The default is “Last Used,”
meaning the initial directory will be that which was most recently used by
the editor. If this setting is changed to “Set Via Shortcut” the editor will
initially view the directory indicated by the “Start in” field of the
Windows shortcut that launched the editor. The other options include the
default module directories and favorite directories.

 The Module Directories list contains a list of module-specific directories
that are called the “default module directories.” Upon installation of the
BASIC Stamp Editor software, the PBASIC source code examples in this
text are copied to the installation folder and organized into appropriate
subfolders. If the default installation folder is used during software
installation, the source code files will be copied to a path similar to:
C:\Program Files\Parallax Inc\Stamp Editor 2.2\BS1, BS2, BS2sx..., etc.
The BASIC Stamp Editor automatically sets its default directories to point
to these source code examples, making them immediately available via the
File → Open From… and File → Save To... menus as well as the Recent list
in the integrated explorer panel.

INITIAL DIRECTORY ON STARTUP.

MODULE DIRECTORIES.

OPEN WITH STAMP EDITOR OPTION.

NEW FILE TEMPLATE FEATURE.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 63

You may use the Clear and Browse… buttons under the Module
Directories list to select new default directory locations for each model of
BASIC Stamp. These new folders will then appear as options when you
use the File → Open From... and File → Save To... menus as well as the
Recent list in the integrated explorer panel.

Note that if you are upgrading from a previous version of the BASIC
Stamp Editor and you have set your own default directories, they will not
be replaced with the new source code example directories. Upon opening
the editor, only default directory options that are blank will be redirected
to the source code examples.

The Favorite Directories list allows you to add and delete folder locations
that will appear as additional options in the File → Open From... and File
→ Save To... menus as well as the Recent list in the integrated explorer. It
works in a similar way as the Module Directories list; however, you can
set your own descriptive names for those folders.

Under the Debug Appearance tab (Figure 3.24) you can set the color and
size of the various Debug Terminal elements; settings apply to all the
Debug Terminal windows at once. A Debug Terminal itself can be resized
and/or moved by simply clicking and dragging the window; each
window’s size and position is remembered even after closing the editor.

The Choose… buttons allow you to change the background and font color
of both the Transmitter and Receiver panes, independently. The font size
of both panes can be changed to one of 8 sizes: 6, 8, 10, 12, 14, 18, 24, and
36. The Debug Terminal font size is independent of the font size in the
main editor window.

FAVORITE DIRECTORIES.

DEBUG APPEARANCE PREFERENCES.

THE CHOOSE... BUTTONS.

Using the BASIC Stamp Editor

Page 64 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.24: The Debug
Appearance Tab under
Edit → Preferences.

The “Wrap Text to” field gives two options, Pane and Page. Wrapping to
Pane is the default, and causes text to wrap at the right edge of the
Receiver pane, reflecting the current visible size that the user happens to
have set for the Debug Terminal’s window. Wrapping to Page, however,
causes text to wrap at a specific line width, regardless of the user’s current
Debug Terminal window size. The “Page width (characters)” field is
enabled when wrap mode is set to Page. The default page width is 32,
characters and the range is 32 to 128. Note: wrapping to page can be
handy to maintain formatting of formatted tabular information, but could
lead to information being displayed off the edge of the Receive pane if the
Debug Terminal is sized too small.

The maximum Receive pane buffer size is defined in terms of lines. It can
be set to any power of two between 256 and 8192; 1024 is the default. Data
received by the Debug Terminal is maintained in this buffer for display on

TEXT WRAPPING IN THE DEBUG
TERMINAL.

MAXIMUM BUFFER SIZE.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 65

the screen. If the default is used, for example, you could receive 1024 lines
worth of text from a BASIC Stamp, and still be able to scroll back and view
the first line that was received. Upon receiving the 1025th line of text, the
first line of text is pushed out of the buffer and is lost for good, making the
first visible line in the Receive pane actually be the 2nd line of text that was
received. Larger buffer sizes consume more PC memory (256 * buffer_size
* Number_of_Open_Debug_Terminals bytes), so it is best to set it only as
high as you need it for your application.

The Tab size can be adjusted as well, anywhere from 3 to 16 character
spaces. The default is 8. Keep in mind that most people don’t change this
value, so writing code that relies on a particular setting other than 8 may
display improperly on other user’s Debug Terminals.

Using the BASIC Stamp Editor

Page 66 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Under the Debug Function tab (Figure 3.25), checkboxes allow enabling or
disabling of special processing for 16 different control characters. The
default is for all 16 control characters to be processed, but you may disable
one or more of them if you are using the Debug Terminal to view data
coming from a device other than a BASIC Stamp.

Figure 3.25: The Debug Function
Tab under Edit → Preferences.

For example, a device that sends out a 0 to indicate something other than
Clear Screen will cause unintentional clearing of the Receive pane;
unchecking the checkbox for “(0) = Clear Screen” will prevent this from
happening.

DEBUG FUNCTION PREFERENCES.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 67

Under the Debug Port tab (Figure 3.26), each of the four (4) Debug
Terminal’s default COM port settings may be configured separately.
These settings are only used when the Debug Terminal is manually
opened.

Figure 3.26: The Debug Port Tab
under Edit → Preferences.

You may assign a specific COM port from the available drop-down list;
this list can be changed by clicking on the (...) button to the right. Note
that any Debug Terminals that are opened automatically after a PBASIC
program is downloaded will always default to the COM port and settings
used during download. If NONE is selected as the COM port, the
manually opened Debug Terminal will not open any port upon startup, so
you will have to manually select the desired COM port from the Debug
Terminal window each and every time you open that Debug Terminal.

DEBUG PORT PREFERENCES.

Using the BASIC Stamp Editor

Page 68 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Advanced Compilation Techniques

For BS2e, BS2sx, BS2p, BS2pe and BS2px modules, each editor page can be
a separate project, or part of a single project. A project is a set of up to
eight files that should all be downloaded to the BASIC Stamp for a single
application. Each of the files within the project is downloaded into a
separate "program slot". Only the BASIC Stamp 2e, 2sx, 2p, 2pe, and 2px
modules support multi-file projects.

For BASIC Stamp projects (consisting of multiple programs), the $STAMP
directive has an option to specify additional filenames. The syntax below
demonstrates this form of the $STAMP directive:

' { $STAMP BS2e, file2, file3, …, file8 }

Use this form of the $STAMP directive if a project, consisting of multiple
files, is desired. This form of the directive must be entered only into the
first program (to be downloaded into program slot 0). The file2, file3, etc.
items should be the actual name (and optionally the path) of the other files
in the project. File2 refers to the program that should be downloaded into
program slot 1, file3 is the program that should be downloaded into
program slot 2, etc. If no path is given, the filename is given the path of
program 0 when loading them into the editor.

Up to seven filenames can be included, bringing the total to eight files in
the project all together. Upon loading, tokenizing, running or viewing
program 0 in the Memory Map, the editor will read the $STAMP directive,
determine if the indicated files exist, will load them if necessary and
change their captions to indicate the project they belong to and their
associated program number. After the directive is tokenized properly,
and all associated files are labeled properly, tokenizing, running or
viewing any program in the Memory Map will result in that program’s
entire project being tokenized, downloaded or viewed.

When program #0 of a multi-file project is opened from diskette, the entire
project will be loaded (all referenced files) as well. When a file that is part
of a multi-file project is closed, the entire project (all the associated files)
will be closed as well.

INTRODUCTION TO BASIC STAMP

PROJECTS.

USING THE $STAMP DIRECTIVE TO

DEFINE MULTI-FILE PROJECTS.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 69

To create a project consisting of multiple files, follow these steps:

1. Create the first file in the editor and save it (we'll call it
Sample.bsx). This will be the program that is downloaded into
program slot 0.

2. Create at least one other file in the editor and save it also (we'll call
it NextProgram.bsx).

Note: At this point the editor tabs will be:

 0:Sample.bsx and 0:NextProgram.bsx.

indicating that there are two unrelated files open "Sample.bsx" and
"NextProgram.bsx" and each will be downloaded into program slot 0.

3. Go back to the first program and enter or modify the $STAMP

directive using the project format. Use "NextProgram" as the File2
argument. For example:

' {$STAMP BS2sx, NextProgram.bsx}

4. Then tokenize the code by pressing F7 or selecting Run → Check
Syntax from the menu.

At this point, the BASIC Stamp Editor will see the $STAMP directive
and realize that this file (Sample.bsx) is the first file in a project and
that the second file should be NextProgram.bsx. It will then search for
the file on the hard drive (to verify its path is correct), will see that it is
already loaded, and then will change the editor tabs to indicate the
project relationship. At this point the editor tabs will be:

 0:Sample.bsx and [Sample] 1:NextProgram.bsx.

indicating that there are two related files open; "Sample.bsx" and
"NextProgram.bsx". NextProgram.bsx belongs to the "Sample" project
and it will be downloaded into program slot 1 and Sample.bsx will be
downloaded into program slot 0.

EASY STEPS TO CREATING MULTI-FILE
PROJECTS.

Using the BASIC Stamp Editor

Page 70 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The editor has the ability to treat projects as one logical unit and can
download each of the associated source code files at once. In order to
minimize download time for large projects a Project Download Mode is
available in the Preferences window. The available modes are: “Modified”
(the default), “All” or “Current” and are explained below. This item only
affects download operations for the BS2e, BS2sx, BS2p and BS2pe. See
Table 3.7.

 Download Mode Function

Modified (default)

This mode will cause only the source code files that were
modified since the last download to be downloaded next time.
If no files have been modified since the last download, or the
entire project has just been loaded into the editor, all the files
will be downloaded next time. This mode decreases the delay
during downloading projects and should help speed
development and testing.

All
This mode will cause all the source code files to be
downloaded each time. This will be noticeably slow with large
projects.

Current

This mode will cause only the current source code file to be
downloaded, ignoring all the others. This mode can be helpful,
but can lead to development errors if you forget to download a
required program.

Table 3.7: Project Download
Modes.

Regardless of the download mode selected, the programs will be
downloaded into the program slot indicated in their tab.

Some source code may be suitable for multiple uses but requires changing
a set of constants as needed for each case. For example, you may want to
run the same program on a BS2 and a BS2sx, but the resolution of time-
sensitive commands is different, requiring slight code modifications.
Several conditional compile directives exist in PBASIC 2.5 to assist with
this situation. Table 3.8 lists the available directives.

Directive Function

#DEFINE
Allows the programmer to create custom symbols for use
within conditional compilation control structures.

#IF...#THEN...#ELSE

Evaluate Condition and, if it is True, compile the statement(s)
following #THEN, otherwise compile the statements following
#ELSE.

#SELECT...#CASE

Evaluate Expression and then conditionally compile a block of
code based on comparison to Condition(s). If no conditions are
found True and a #CASE ELSE block is included, the #CASE
#ELSE code statements will compiled.

#ERROR Allows the programmer to create a custom error dialog.

Table 3.8: Conditional Compile
Directives.

NOTE: These directives require
PBASIC 2.5.

PROJECT DOWNLOAD MODES.

CONDITIONAL COMPILE DIRECTIVES.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 71

Lets look at the syntax and examples for each conditional compile
directive. For an explanation of syntax conventions, see page 128.

#DEFINE Symbol { = Value }

#DEFINE allows the programmer to create custom, compile-time, symbols
for use within conditional compile control structures.

• Symbol is a unique symbol name that will optionally represent
a Value.

• Value is an optional constant/expression specifying the value
of Symbol. If the value parameter is omitted, Symbol is defined
as true (-1).

Example:

' {$PBASIC 2.5}

#DEFINE DebugMode

#IF DebugMode #THEN DEBUG "Debugging."
STOP

In the example above, the #DEFINE statement defines DebugMode to be
“true” (-1), since there is no Value argument provided. The second line is
another conditional compile statement, #IF…#THEN (see below for more
information) which evaluates the state of DebugMode, determines it is true
and then allows the following DEBUG statement to be compiled into the
program. The last line, STOP, is compiled into the program afterwards.
The result of compiling this example is a program with only two
executable statements, DEBUG "Debugging", CR and STOP. The real
power of this example, however, is more obvious when you comment out,
or remove, the #DEFINE line. Look at the next example, below:

' {$PBASIC 2.5}

' #DEFINE DebugMode

#IF DebugMode #THEN DEBUG "Dubugging."
STOP

Here we commented out the #DEFINE line, effectively removing that line
from the program. This means that the symbol DebugMode will be
undefined, and undefined conditional compile symbols are treated as

#DEFINE SYNTAX.

Using the BASIC Stamp Editor

Page 72 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

False (0). Upon compiling this example, the #IF…#THEN statement will
evaluate DebugMode, which is False (because it is undefined) and then will
not allow the DEBUG statement to be compiled. Only the STOP
command will be compiled into the program in this example. This is a
very powerful feature for quickly removing many DEBUG statements (or
other statements) from a program when you’re done developing it, but
leaving the possibility of re-enabling all those statements should further
maintenance be required at a later time.

The optional Value argument can be used, for example, to select modes of
operation:

' {$PBASIC 2.5}

#DEFINE SystemMode = 2

#IF SystemMode = 1 #THEN
 HIGH 1
#ELSE
 LOW 1
#ENDIF

In the example above, the first line defines SystemMode to be equal to 2.
The #IF…#THEN statement evaluates the state of SystemMode, determines
it is 2, so the condition is false, and then it skips the statement after #THEN
and allows the statement following #ELSE to be compiled into the
program.

Note, conditional compile directives are evaluated just before the program
is compiled, so variables and named constants cannot be referenced within
a conditional compile definition. Compile-time symbols created with
#DEFINE can, however, be referenced by conditional compile commands.

#IF Condition(s) #THEN
 Statement(s)
 { #ELSE
 Statement(s) }
#ENDIF

#IF...#THEN SYNTAX.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 73

#IF…#THEN is a conditional compile structure similar to the run-time
IF…THEN command except that, at compile time, #IF…#THEN evaluates
Condition(s) and, if it is True, compiles the Statement(s) following #THEN,
otherwise it compiles the Statement(s) following #ELSE.

• Condition is a statement that can be evaluated as True or False
during compile-time.

• Statement is any valid PBASIC instruction.
Example:

' {$PBASIC 2.5}

' set Baud for 9600-N81

#IF ($STAMP = BS2sx) OR ($STAMP = BS2p) #THEN
 Baud CON 16624
#ELSE

 #IF ($STAMP = BS2px)
 Baud CON 16780
 #ELSE
 Baud CON 16468
 #ENDIF

#ENDIF

In this example, the constant Baud is set to an appropriate value for the
BASIC Stamp that is specified in the $STAMP directive (not shown). This
code will work with the BS2, BS2e, BS2sx, BS2p, BS2pe, and BS2px.

One important thing to note is that the $STAMP directive is used here as a
compile-time symbol, as if it were defined by #DEFINE. The compiler
treats all the editor directives, $STAMP, $PBASIC and $PORT as “defined”
compile-time symbols set equal to the respective value used in their
declaration. At the time of this writing, using $PBASIC in this fashion is
pointless since the conditional-compile directives are only supported in
PBASIC 2.5, and would cause an error if compiled in any other version of
the language.

Using the BASIC Stamp Editor

Page 74 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

#SELECT Expression
 #CASE Condition(s)
 Statement(s)
 { #CASE Condition(s)
 Statement(s)
 #CASE #ELSE
 Statement(s) }
#ENDSELECT

#SELECT…#CASE is a conditional compile structure similar to the run-
time SELECT…CASE command except that, at compile time,
#SELECT…#CASE evaluates Expression and then conditionally compiles a
block of code based on comparison to Condition(s). If no Conditions are
found to be True and a #CASE #ELSE block is included, the Statement(s) in
the #CASE #ELSE block will be compiled.

• Expression is a statement that can be evaluated as True or False
during compile-time.

• Condition is a statement, that when compared to Expression,
can be evaluated as True or False. Multiple conditions within
the same CASE can be separated by commas (,).

• Statement is any valid PBASIC instruction.
Example:

' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2e, BS2sx
 GOSUB LCD_Write
 #CASE #ELSE
 LCDOUT LCDpin, cmd, [char]
#ENDSELECT

This example checks the $STAMP directive at compile-time and either
compiles

GOSUB LCD_Write

- or –

LCDOUT LCDpin, cmd, [char] into the program.

#SELECT...#CASE SYNTAX.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 75

#ERROR Message

#ERROR displays a compile-time error. This allows the programmer to
flag fatal errors during compilation.

• Message is the error message string, enclosed in quotes.
Example:

' {$PBASIC 2.5}

#DEFINE I2CReady = (($STAMP = BS2p) OR ($STAMP = BS2pe) OR ($STAMP = BS2px))

#IF NOT I2CReady #THEN
 #ERROR "BS2p, BS2pe, or BS2px is required for this program."
#ENDIF

When compiled, this example will cause the editor to halt compilation and
display the dialog below if you attempt to compile for a BASIC Stamp
model other than the BS2p, BS2pe, or BS2px:

Figure 3.27: Custom Error
Message using the #ERROR
directive.

Features for Developers

The BASIC Stamp Editor has several features that are designed to support
the needs of developers. Note: when installing the BASIC Stamp editor,
you can instruct the installer to include additional developer resources by
selecting the “Custom” option from the “Setup Type” prompt.

The Generate Object Code feature allows you to tokenize a PBASIC
program and save it to a file in the tokenized form. This allows you to
send your BASIC Stamp object code (the actual binary data that is
downloaded to the BASIC Stamp module) to other people without having
to reveal your PBASIC source code. If you are a developer who has

#ERROR SYNTAX.

GENERATE OBJECT CODE FEATURE.

Using the BASIC Stamp Editor

Page 76 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

customers using BASIC Stamp-based products, you can release firmware
updates to them in this manner.

Object code can be saved as a separate .obj file (downloadable with the
StampLoader.exe program) or as a single executable (integrated with the
StampLoader.exe inside of it). The single executable method provides a
simpler way to pass your firmware update on to your customers.

Any syntactically correct PBASIC source code can be used with the
Generate Object Code feature; this includes BS1 and BS2 code as well as
BS2e, BS2sx, BS2p, BS2pe, and BS2px code that is either a single file or a
multi-file project. Note: The original DOS-based software for the BS1
included a directive called BSAVE; when used it would cause the software
to generate an object file. In the BASIC Stamp Windows Editor, the
Generate Object Code feature replaces and enhances the BSAVE feature;
the reserved word BSAVE is still accepted in BS1 source code, but is
simply ignored. Old BS1 object code saved via the BSAVE option is not
compatible with the StampLoader.exe program so you must regenerate
the object file using the BASIC Stamp Windows Editor.

If you don’t have the StampLoader.exe program, it can be automatically
generated for you by selecting the second output file option, “Object Code
and Stamp Loader”, in the Generate Object Code window. Additionally,
firmware, product, company and related info can be embedded in the
object code or single executable file for your customers to view before
downloading.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 77

Figure 3.28: The Generate Object
Code Window.

In the example above, we chose to generate a single executable with
custom names and messages as shown. Then we clicked the Generate…
button (which prompted us for a file name) and the file was created.
When a user runs the file we just generated, they see a screen similar to the
figure below:

Figure 3.29: Example customized
StampLoader.exe file.

Using the BASIC Stamp Editor

Page 78 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Another feature of interest to some developers is the BASIC Stamp
Editor’s Command Line interface. This interface provides for command
line, batch file or third-party driven control of the editor.

The Stampw.exe program is a Win32 application that can be run through
any standard method. When run with the command-line options,
however, it provides special features that developers and product
manufacturing managers may find useful. While this program can be run
from a command prompt on a Windows system, it will not work on a
DOS-only system.

The Stampw.exe supports redirection of its input and output via the
standard pipe mechanisms. If its output is redirected via the command-
line (ex: Stampw.exe myfile.bs2 > Test1.txt) the designated output file,
Test1.txt in this case, will be created and various information about the
processing of the source file will be stored there. This information directly
reflects the information available on the GUI prompts, interactions with
the user and downloading status. This feature can be combined with the
/NoDebug and /NoPrompts switches for various levels of GUI interaction
with the user; including completely hidden operation.

The following is the syntax of the BASIC Stamp Editor’s command-line
switches.

Stampw.exe {/Com#} {{/ReadOnly} source_file}

Stampw.exe {/Com#} /Download {/Updates}{/NoDebug}{/NoPrompts} source_file > output_file

Stampw.exe {/Com#} /Identify {/NoPrompts} > output_file

Stampw.exe /Tokenize source_file > output_file

Stampw.exe /Pipe master_file

Stampw.exe /Help

Table 3.9 gives a function description for each command-line switch.

COMMAND LINE INTERFACE.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 79

Table 3.9: Command Line
Switches

Command Function

/Com#
Specify com port (serial port) to download to. # is a valid com port
number. NOTE: must be one word, i.e.: Com2 indicates com port 2.

/ReadOnly
Open source_file in read-only mode. The Ctrl key acts as a download key
when in read-only mode. Requires source_file argument. This command
option is not available if double-piped communication is established.

/Identify
Identify BASIC Stamp modules on COM ports. Requires redirection to
output_file.

/Tokenize
Tokenize source code. No prompts will be displayed. Requires
source_file argument and redirection to output_file.

/Download
Tokenize source code, and download it (if tokenization successful).
Requires source_file argument and redirection to output_file.

/Updates
Provides program slot number (if applicable) and download-percentage-
complete status updates during download.

/NoDebug

No Debug Terminal opens after downloading (even if code contains
DEBUGs) and COM port is immediately closed after downloading. This
option requires /Download switch. Note: This switch will have no effect if
Debug Terminal is already open from a previous operation.

/NoPrompts
No screen prompts at all (except for Debug Terminal). This option requires
/Download switch.

/Pipe
master_file

Start up master_file (must be .exe) and establish bi-directional
communication pipes (double-piped communication) for master-program-
controlled execution. Stampw.exe remains open until master_file breaks
pipe. This command option is not available once double-piped
communication is established.

/Help
Display command-line help. This command option is not available if double-
piped communication is established.

When the output of the BASIC Stamp Editor is piped to a file or a master
program, it displays all of its messages in a specific, predefined format.
Each message has a unique 3-digit number. Detailed information about
the use of command-line options, including a table of all messages with
their ID numbers, can be found in the “What’s New in Stamp.exe”
document included with the typical installation of the Stamp Editor.

Using the BASIC Stamp Editor

Page 80 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 81

BASIC Stamp Architecture Introduction This chapter provides detail on
the architecture (RAM usage) and math functions of the BS1, BS2, BS2e,
BS2sx, BS2p, BS2pe, and BS2px.

The following icons will appear to indicate where there are differences
among the various BASIC Stamp models:

One or more of these icons indicates the item applies only
to the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px
respectively.

If an item applies to the all of the models in the BS2
family, this icon is used.

The BASIC Stamp has two kinds of memory; RAM (for variables used by
your program) and EEPROM (for storing the program itself). EEPROM
may also be used to store long-term data in much the same way that
desktop computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BASIC Stamp loses power; when
power returns, all RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-downloading
process or with a WRITE instruction.)

The BS1 has 16 bytes (8 words) of RAM space arranged as shown in Table
4.1 The first word, called PORT, is used for I/O pin control. It consists of
two bytes, PINS and DIRS. The bits within PINS correspond to each of the
eight I/O pins on the BS1. Reading PINS effectively reads the I/O pins
directly, returning an 8-bit set of 1's and 0's corresponding to the high and
low state of the respective I/O pin at that moment. Writing to PINS will
store a high or low value on the respective I/O pins (though only on pins
that are set to outputs).

The second byte of PORT, DIRS, controls the direction of the I/O pins.
Each bit within DIRS corresponds to an I/O pin's direction. A high bit (1)

MEMORY ORGANIZATION

RAM ORGANIZATION (BS1)

THE INPUT/OUTPUT VARIABLES.

All 2

1

BASIC Stamp Architecture – Memory Organization

Page 82 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

sets the corresponding I/O pin to an output direction and a low bit (0) sets
the corresponding I/O pin to an input direction.
The remaining words (W0 – W6) are available for general-purpose use.
Each word consists of separately addressable bytes and the first two bytes
(B0 and B1) are bit addressable as well.

You may assign other names (symbols) to these RAM registers as shown
in section "Defining and Using Variables", below.

When the BS1 is powered up, or reset, all memory locations are cleared to
0, so all pins are inputs (DIRS = %00000000). Also, if the PBASIC program
sets all the I/O pins to outputs (DIRS = %11111111), then they will initially
output low, since the output latch (PINS) is cleared to all zeros upon
power-up or reset, as well.

Word Name Byte Names Bit Names Special Notes

PORT
PINS
DIRS

PIN0 – PIN7
DIR0 – DIR7

I/O pins; bit addressable.
I/O pins directions; bit addressable.

W0
B0
B1

BIT0 – BIT7
BIT8 – BIT15

Bit addressable.
Bit addressable.

W1
B2
B3

W2
B4
B5

W3
B6
B7

W4
B8
B9

W5
B10
B11

W6
B12
B13

 Used by GOSUB instruction.
Used by GOSUB instruction.

Table 4.1: BS1 RAM Organization.
Note: There are eight words,
consisting of two bytes each for a
total of 16 bytes. The bits within
the upper two words are
individually addressable.

The BS2, BS2e, and BS2sx models have 32 bytes of Variable RAM space
arranged as shown in Table 4.2. Of these, the first six bytes are reserved
for input, output, and direction control of the I/O pins. The remaining 26
bytes are available for general-purpose use as variables.

The BS2p, BS2pe, and BS2px models have an extra set of INS, OUTS, and
DIRS registers for a total of 38 bytes of variable RAM. These are “shadow”
registers that are switched in and out of the memory map with the
AUXIO, MAINIO, and IOTERM commands. While this feature exists in

RAM ORGANIZATION.

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 83

the variable RAM for these models, only the BS2p40 module has the extra
16 I/O pins for which this feature is intended.

The word variable INS is unique in that it is read-only. The 16 bits of INS
reflect the state of I/O pins P0 through P15. It may only be read, not
written. OUTS contains the states of the 16 output latches. DIRS controls
the direction (input or output) of each of the 16 I/O pins.

A 0 in a particular DIRS bit makes the corresponding pin an input and a 1
makes the corresponding pin an output. So if bit 5 of DIRS is 0 and bit 6 of
DIRS is 1, then I/O pin 5 (P5) is an input and I/O pin 6 (P6) is an output.
A pin that is an input is at the mercy of circuitry outside the BASIC Stamp;
the BASIC Stamp cannot change its state. A pin that is an output is set to
the state indicated by the corresponding bit of the OUTS register.

When the BASIC Stamp is powered up, or reset, all memory locations are
cleared to 0, so all pins are inputs (DIRS = %0000000000000000). Also, if
the PBASIC program sets all the I/O pins to outputs (DIRS =
%1111111111111111), then they will initially output low, since the output
latch (OUTS) is cleared to all zeros upon power-up or reset, as well.

Table 4.2: RAM Organization for
all BS2 models.

NOTE: There are 16 words, of
two bytes each for a total of 32
bytes*. All bits are individually
addressable through variable
modifiers; the bits within the
upper three words are also
individually addressable though
the pre-defined names shown.
All registers are word, byte,
nibble and bit addressable.

*The BS2p, BS2pe, and BS2px
have an additional set of INS,
OUTS, and DIRS registers that
are switched in and out of the
memory map in place of the main
INS, OUTS, and DIRS registers
by using AUXIO, MAINIO, and
IOTERM. Only the BS2p40 has
the required extra I/O pins this
feature is intended for.

Word Name Byte Names Nibble Names Bit Names Special Notes

INS*
INL, INH INA, INB

INC, IND
IN0 – IN7

IN8 – IN15
Input pins

OUTS*
OUTL, OUTH OUTA, OUTB

OUTC, OUTD
OUT0 – OUT7

OUT8 – OUT15
Output pins

DIRS*
DIRL, DIRH DIRA, DIRB

DIRC, DIRD
DIR0 – DIR7

DIR8 – DIR15
I/O pin direction control

W0 B0, B1
W1 B2, B3
W2 B4, B5
W3 B6, B7
W4 B8, B9
W5 B10, B11
W6 B12, B13
W7 B14, B15
W8 B16, B17
W9 B18, B19

W10 B20, B21
W11 B22, B23
W12 B24, B25

THE INPUT/OUTPUT VARIABLES.

BASIC Stamp Architecture – Memory Organization

Page 84 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The INS variable always shows the state of the I/O pins themselves,
regardless of the direction of each I/O pin. We call this, "reading the
pins". If a pin was set to an input mode (within DIRS) and an external
circuit connected the I/O pin to ground, the corresponding bit of INS
would be low. If a pin was set to an output mode and the pin's state was
set to a high level (within OUTS), the corresponding bit of INS would be
high. If, however, that same pin was externally connected directly to
ground, the corresponding bit of INS would be low; since we're reading
the state of the pin itself and the BASIC Stamp cannot override a pin that is
driven to ground or 5 volts externally. Note: The last example is an error,
is a direct short and can cause damage to the BASIC Stamp! Do not
intentionally connect output pins directly to an external power source or
you risk destroying your BASIC Stamp.

To summarize: DIRS determines whether a pin’s state is set by external
circuitry (input, 0) or by the state of OUTS (output, 1). INS always matches
the actual states of the I/O pins, whether they are inputs or outputs. OUTS
holds bits that will only appear on pins whose DIRS bits are set to output.

In programming the BASIC Stamp, it’s often more convenient to deal with
individual bytes, nibbles or bits of INS, OUTS and DIRS rather than the
entire 16-bit words. PBASIC has built-in names for these elements, shown
in Table 4.2.

Here's an example of what is described in Table 4.2. The INS register is 16-
bits (corresponding to I/O pins 0 though 15). The INS register consists of
two bytes, called INL (the Low byte) and INH (the High byte). INL
corresponds to I/O pins 0 through 7 and INH corresponds to I/O pins 8
though 15. INS can also be thought of as containing four nibbles, INA,
INB, INC and IND. INA is I/O pins 0 though 3, INB is I/O pins 4 though
7, etc. In addition, each of the bits of INS can be accessed directly using
the names IN0, IN1, IN2… IN5.

The same naming scheme holds true for the OUTS and DIRS variables as
well.

As Table 4.2 shows, the BASIC Stamp module’s memory is organized into
16 words of 16 bits each. The first three words are used for I/O. The
remaining 13 words are available for use as general-purpose variables.

PREDEFINED "FIXED" VARIABLES.

SUMMARY OF THE FUNCTION OF DIRS,
INS AND OUTS.

4: BASIC Stamp Architecture – Defining Variables

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 85

The 40-pin BS2p uses the first three words for I/O even though it has
twice as many I/O pins. This is done with the AUXIO, MAINIO, and
IOTERM commands, which effectively switch the auxiliary I/O registers
in and out of the INS, OUTS, and DIRS locations.
Just like the I/O variables, the general-purpose variables have predefined
names: W0 through W12 and B0 through B25. B0 is the low byte of W0; B1
is the high byte of W0; and so on through W12 (B24=low byte, B25=high
byte). Unlike I/O variables, there’s no reason that your program variables
have to be stuck in a specific position in the BASIC Stamp’s physical
memory. A byte is a byte regardless of its location. And if a program uses
a mixture of variables of different sizes, it can be difficult to logically dole
them out or allocate storage.

More importantly, mixing fixed variables with automatically allocated
variables (discussed in the next section) is an invitation to bugs. A fixed
variable can overlap an allocated variable, causing data meant for one
variable to show up in another! The fixed variable names (of the general-
purpose variables) are only provided for power users who require
absolute access to a specific location in RAM.

We recommend that you avoid using the fixed variables in most
situations. Instead, let PBASIC allocate variables as described in the next
section. The editor software will organize your storage requirements to
make optimal use of the available memory.

Before you can use a variable in a PBASIC program you must declare it.
“Declare” means letting the BASIC Stamp know that you plan to use a
variable, what you want to call it, and how big it is. Although PBASIC
does have predefined variables that you can use without declaring them
first (see previous sections), the preferred way to set up variables is to use
the directive SYMBOL (for the BS1) or VAR (for all BS2 models). Here is
the syntax for a variable declaration:

SYMBOL name = RegisterName

-- or --

name VAR Size

where name is the name by which you will refer to the variable,
RegisterName is the "fixed" name for the register and size indicates the

DEFINING AND USING VARIABLES (VAR).

1 All 2

1

All 2

2p

BASIC Stamp Architecture – Defining Variables

Page 86 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

number of bits of storage for the variable. NOTE: The top example is for
the BS1 and the bottom example is for all BS2 models.

There are certain rules regarding symbol names. Symbols must start with
a letter or underscore, can contain a mixture of letters, numbers, and
underscore (_) characters, and must not be the same as PBASIC reserved
words, or labels used in your program. Additionally, symbols can be up to
32 characters long. See Appendix B for a list of PBASIC reserved words.
PBASIC does not distinguish between upper and lower case, so the names
MYVARIABLE, myVariable, and MyVaRiAbLe are all equivalent.

For the BS1, the register name is one of the predefined "fixed" variable
names, such as W0, W1, B0, B1, etc. Here are a few examples of variable
declarations on the BS1:

SYMBOL temporary = W0 ' value can be 0 to 65535
SYMBOL counter = B1 ' value can be 0 to 255
SYMBOL result = B2 ' value can be 0 to 255

The above example will create a variable called temporary whose contents
will be stored in the RAM location called W0. Also, the variable counter
will be located at RAM location B1 and result at location B2. Note that
temporary is a word-sized variable (because that's what size W0 is) while
the other two are both byte-sized variables. Throughout the rest of the
program, we can use the names temporary, counter, and result instead of
W0, B1 and B2, respectively. This makes the code much more readable; it's
easier to determine what counter is used for than it would be to figure out
what the name B1 means. Please note that counter resides at location B1,
and B1 happens to be the high byte of W0. This means than changing
counter will also change temporary since they overlap. A situation like this
usually is a mistake and results in strange behavior, but is also a powerful
feature if used carefully.

For all BS2 models, the Size argument has four choices: 1) Bit (1 bit), 2) Nib
(nibble; 4 bits), 3) Byte (8 bits), and 4) Word (16 bits). Here are some
examples of variable declarations on the BS2 models:

mouse VAR BIT ' Value can be 0 or 1.
cat VAR NIB ' Value can be 0 to 15.
dog VAR BYTE ' Value can be 0 to 255.
rhino VAR WORD ' Value can be 0 to 65535.

THE RULES OF SYMBOL NAMES.

1

1

All 2

All 2

4: BASIC Stamp Architecture – Defining Arrays

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 87

The above example will create a bit-sized variable called mouse, and
nibble-sized variable called cat, a byte-sized variable called dog and a
word-sized variable called rhino. Unlike in the BS1, these variable
declarations don't point to a specific location in RAM. Instead, we only
specified the desired size for each variable; the BASIC Stamp will arrange
them in RAM as it sees fit. Throughout the rest of the program, we can
use the names mouse, cat, dog and rhino to set or retrieve the contents of
these variables.

A variable should be given the smallest size that will hold the largest
value that will ever be stored in it. If you need a variable to hold the
on/off status (1 or 0) of switch, use a bit. If you need a counter for a
FOR…NEXT loop that will count from 1 to 100, use a byte. And so on.

If you assign a value to a variable that exceeds its size, the excess bits will
be lost. For example, suppose you use the byte variable dog, from the
example above, and write dog = 260 (%100000100 binary). What will dog
contain? It will hold only the lowest 8 bits of 260: %00000100 (4 decimal).

On all BS2 models, you can also define multipart variables called arrays.
An array is a group of variables of the same size, and sharing a single
name, but broken up into numbered cells, called elements. You can define
an array using the following syntax:

name VAR Size(n)

where name and Size are the same as described earlier. The new argument,
(n), tells PBASIC how many elements you want the array to have. For
example:

myList VAR Byte(10) ' Create a 10-byte array.

Once an array is defined, you can access its elements by number.
Numbering starts at 0 and ends at n-1. For example:

myList(3) = 57
DEBUG ? myList(3)

This code will display "myList(3) = 57" on the PC screen. The real power of
arrays is that the index value can be a variable itself. For example:

DEFINING ARRAYS. All 2

BASIC Stamp Architecture – Defining Arrays

Page 88 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

myBytes VAR Byte(10) ' Define 10-byte array
idx VAR Nib ' Define 4-bit var

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 myBytes(idx) = idx * 13 ' Write idx * 13 to each cell
NEXT

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 DEBUG ? myBytes(idx) ' Show contents of each cell
NEXT
STOP

If you run this program, DEBUG will display each of the 10 values stored
in the elements of the array: myBytes(0) = 0*13 = 0, myBytes(1) = 1*13 = 13,
myBytes(2) = 2*13 = 26 ... myBytes(9) = 9*13 = 117.

A word of caution about arrays: If you’re familiar with other BASICs and
have used their arrays, you have probably run into the “subscript out of
range” error. Subscript is another term for the index value. It is
out-of-range when it exceeds the maximum value for the size of the array.
For instance, in the example above, myBytes is a 10-cell array. Allowable
index numbers are 0 through 9. If your program exceeds this range,
PBASIC will not respond with an error message. Instead, it will access the
next RAM location past the end of the array. If you are not careful about
this, it can cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC allow it?
Unlike a desktop computer, the BASIC Stamp doesn’t always have a
display device connected to it for displaying error messages. So it just
continues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs. Clever programmers, can take advantage of this feature,
however, to perform tricky effects.

Another unique property of PBASIC arrays is this: You can refer to the 0th
cell of the array by using just the array’s name without an index value. For
example:

myBytes VAR Byte(10) ' Define 10-byte array

myBytes(0) = 17 ' Store 17 to 0th cell
DEBUG ? myBytes(0) ' Display contents of 0th cell
DEBUG ? myBytes ' Also displays 0th cell

All 2

4: BASIC Stamp Architecture – Aliases and Modifiers

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 89

This feature is how the "string" capabilities of the DEBUG and SEROUT
command expect to work. A string is simply a byte array used to store
text. See "Displaying Strings (Byte Arrays)" in the DEBUG command
description on page 166 for more information.

An alias is an alternative name for an existing variable. For example:

SYMBOL cat = B0 ' Create a byte-sized variable
SYMBOL tabby = cat ' Create alias for cat

-- or --

cat VAR Byte ' Create a byte-sized variable
tabby VAR cat ' Create alias for cat

In this example, tabby is an alias to the variable cat. Anything stored in cat
shows up in tabby and vice versa. Both names refer to the same physical
piece of RAM. This kind of alias can be useful when you want to reuse a
temporary variable in different places in your program, but also want the
variable’s name to reflect its function in each place. Use caution, because it
is easy to forget about the aliases; during debugging, you might end up
asking ‘How did that value get here?!’ The answer is that it was stored in
the variable’s alias.

On all the BS2 models, an alias can also serve as a window into a portion
of another variable. This is done using "modifiers." Here the alias is
assigned with a modifier that specifies what part to reference:

rhino VAR Word ' A 16-bit variable
head VAR rhino.HIGHBYTE ' Highest 8 bits of rhino
tail VAR rhino.LOWBYTE ' Lowest 8 bits of rhino

Given that example, if you write the value %1011000011111101 to rhino,
then head would contain %10110000 and tail would contain %11111101.

Table 4.3 lists all the variable modifiers. PBASIC 2.0 and 2.5 lets you apply
these modifiers to any variable name and to combine them in any fashion
that makes sense. For example, it will allow:

rhino VAR Word ' A 16-bit variable
eye VAR rhino.HIGHBYTE.LOWNIB.BIT1 ' A bit

ALIASES AND VARIABLE MODIFIERS.

1

All 2

All 2

BASIC Stamp Architecture – Aliases and Modifiers

Page 90 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Symbol Definition
LOWBYTE low byte of a word
HIGHBYTE high byte of a word

BYTE0 byte 0 (low byte) of a word
BYTE1 byte 1 (high byte) of a word

LOWNIB low nibble of a word or byte
HIGHNIB high nibble of a word or byte

NIB0 nib 0 of a word or byte
NIB1 nib 1 of a word or byte
NIB2 nib 2 of a word
NIB3 nib 3 of a word

LOWBIT low bit of a word, byte, or nibble
HIGHBIT high bit of a word, byte, or nibble

BIT0 bit 0 of a word, byte, or nibble
BIT1 bit 1 of a word, byte, or nibble
BIT2 bit 2 of a word, byte, or nibble
BIT3 bit 3 of a word, byte, or nibble

BIT4 … BIT7 bits 4 though 7 of a word or byte
BIT8 … Bit15 bits 8 through 15 of a word

Table 4.3: Variable Modifiers for all
BS2 models.

The common sense rule for combining modifiers is that they must get
progressively smaller from left to right. It would make no sense to specify,
for instance, the low byte of a nibble, because a nibble is smaller than a
byte! And just because you can stack up modifiers doesn’t mean that you
should unless it is the clearest way to express the location of the part you
want get at. The example above might be improved:

rhino VAR Word ' A 16-bit variable
eye VAR rhino.BIT9 ' A bit

Although we’ve only discussed variable modifiers in terms of creating
alias variables, you can also use them within program instructions:

rhino VAR Word ' A 16-bit variable
head VAR rhino.HIGHBYTE ' Highest 8 bits of rhino

rhino = 13567
DEBUG ? head ' Display alias variable head
DEBUG ? rhino.HIGHBYTE ' rhino.HIGHBYTE works too
STOP

Modifiers also work with arrays. For example:

myBytes VAR Byte(10) ' Define 10-byte array

myBytes(0) = $AB ' Hex $AB into 0th byte
DEBUG HEX ? myBytes.LOWNIB(0) ' Show low nib ($B)
DEBUG HEX ? myBytes.LOWNIB(1) ' Show high nib ($A)

All 2

4: BASIC Stamp Architecture – Aliases and Modifiers

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 91

If you looked closely at that example, you probably thought it was a
misprint. Shouldn’t myBytes.LOWNIB(1) give you the low nibble of byte 1
of the array rather than the high nibble of byte 0? Well, it doesn’t. The
modifier changes the meaning of the index value to match its own size. In
the example above, when myBytes() is addressed as a byte array, it has 10
byte-sized cells numbered 0 through 9. When it is addressed as a nibble
array, using myBytes.LOWNIB(), it has 20 nibble-sized cells numbered 0
through 19. You could also address it as individual bits using
myBytes.LOWBIT(), in which case it would have 80 bit-sized cells
numbered 0 through 79.

What if you use something other than a “low” modifier, say
myBytes.HIGHNIB()? That will work, but its effect will be to start the
nibble array with the high nibble of myBytes(0). The nibbles you address
with this nib array will all be contiguous, one right after the other, as in the
previous example.

myBytes VAR Byte(10) ' Define 10-byte array.

myBytes(0) = $AB ' Hex $AB into 0th byte
myBytes(1) = $CD ' Hex $CD into next byte
DEBUG HEX ? myBytes.HIGHNIB(0) ' Show high nib of cell 0 ($A)
DEBUG HEX ? myBytes.HIGHNIB(1) ' Show next nib ($D)

This property of modified arrays makes the names a little confusing. If you
prefer, you can use the less-descriptive versions of the modifier names;
BIT0 instead of LOWBIT, NIB0 instead of LOWNIB, and BYTE0 instead of
LOWBYTE. These have exactly the same effect, but may be less likely to be
misconstrued.

You may also use modifiers with the 0th cell of an array by referring to
just the array name without the index value in parentheses. It’s fair game
for aliases and modifiers, both in VAR directives and in instructions.

On all BS2 models, if you’re working on a program and wondering how
much variable space you have left, you can use the Memory Map feature
of the editor (CTRL-M). See the "Memory Map" section of Chapter 3 on
page 50.

THE MEMORY MAP

BASIC Stamp Architecture – Scratch Pad RAM

Page 92 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The BS2e, BS2sx, BS2p, BS2pe, and BS2px have some additional RAM
called Scratch Pad RAM. The BS2e and BS2sx have 64 bytes of Scratch Pad
RAM (0 to 63) and the BS2p, BS2pe, and BS2px have 136 bytes of Scratch
Pad RAM (0-135). Scratch Pad RAM can only be accessed with the GET
and PUT commands and cannot have variable names assigned to it. Table
4.4 shows the layout of all SPRAM registers.

Notice that the highest locations in Scratch Pad RAM (location 63 in the
BS2e and BS2sx, locations 127-135 in the BS2p, BS2pe, and BS2px) are
special-purpose, read-only locations that always contain special run-time
information. For example, the lowest nibble of location 63 (BS2e and
BS2sx) or 127 (BS2p, BS2pe, and BS2px) contains the number of the
currently running program slot. This is handy for programs that need to
know which program slot they exist in. In the BS2p, BS2pe, and BS2px,
the high nibble of location 127 holds the slot designated for READ and
WRITE; see the STORE command on page 449 for more information.

SCRATCH PAD RAM

4: BASIC Stamp Architecture – Scratch Pad RAM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 93

Table 4.4: Layout of SPRAM
Registers.

NOTE: Scratch Pad RAM can
only be accessed with the GET
and PUT commands. Scratch
Pad RAM cannot have variable
names assigned to it.

Location BS2e and BS2sx BS2p, BS2pe and BS2px
0...62 General Purpose RAM General Purpose RAM

63
Bits 0-3: Active program

slot number.
General Purpose RAM

64..126 n/a General Purpose RAM
127 n/a Bits 0-3, Active program slot #. Bits 4-7, program

slot for READ and WRITE operations.

128 n/a Polled input trigger status of Main I/O pins 0-7
(0 = not triggered, 1 = triggered).

129 n/a Polled input trigger status of Main I/O pins 8-15
(0 = not triggered, 1 = triggered).

130 n/a Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131 n/a Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132 n/a Bits 0-3: Polled-interrupt mode, set by
POLLMODE

133 n/a Bits 0-2: Polled-interrupt “run” slot, set by
POLLRUN.

134 n/a Bit 0: Active I/O group; 0 =Main I/O,
1 = Auxiliary I/O.

135 n/a

Bit 0: Polled-output status (set by POLLMODE);
 0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined,
 1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE);
 0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status;
 0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state;
 0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state;
 0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event
 Occurred. (Cleared by POLLMODE only).
Bit 7: Polling status; 0 = not active, 1 = active.

BASIC Stamp Architecture – Constants and Expressions

Page 94 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Suppose you’re working on a program called “Three Cheers” that flashes
LEDs, makes hooting sounds, and activates a motor that crashes cymbals
together, all in sets of three. A portion of your PBASIC program might
contain something like:

FOR counter = 1 TO 3
 GOSUB Make_Cheers
NEXT
...
FOR counter = 1 TO 3
 GOSUB Blink_LEDs
NEXT
...
FOR counter = 1 TO 3
 GOSUB Crash_Cymbals
NEXT

The numbers 1 and 3 in the code above are called constants. They are
constants because, while the program is running, nothing can happen to
change those numbers. This distinguishes constants from variables, which
can change while the program is running.

Constants are not limited to the decimal number system; PBASIC allows
you to use several numbering systems. See “Number Representations” on
page 96.

You can assign names to constants in a fashion similar to how variables
are declared. On a BS1, it is identical to variable declarations. For all BS2
models, use the CON directive. Here is the syntax:

SYMBOL Name = ConstantValue

-- or --

Name CON ConstantValue

CONSTANTS AND COMPILE-TIME

EXPRESSIONS.

1 All 2

1

All 2

DEFINING AND USING CONSTANTS (CON).

4: BASIC Stamp Architecture – Constants and Expressions

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 95

Once created, named constants may be used in place of the numbers they
represent. For example:

SYMBOL Cheers = 3 ' Number of cheers.

FOR counter = 1 TO Cheers
 GOSUB Make_Cheers
NEXT

-- or --

Cheers CON 3 ' Number of cheers.

FOR counter = 1 TO Cheers
 GOSUB Make_Cheers
NEXT

That code works exactly the same as the corresponding FOR…NEXT loop
in the previous example. The editor software substitutes the number 3 for
the symbol named Cheers throughout your program. Like variables, labels
and instructions, constant names are not case sensitive; CHEERS, and
ChEErs are identical to Cheers.

Using named constants does not increase the amount of code downloaded
to the BASIC Stamp, and it often improves the clarity of the program.
Weeks after a program is written, you may not remember what a
particular number was supposed to represent—using a name may jog
your memory (or simplify the detective work needed to figure it out).

Named constants also have another benefit. Suppose the “Three Cheers”
program had to be upgraded to “Five Cheers.” In the original example
you would have to change all of the 3s to 5s. Search and replace would
help, but you might accidentally change some 3s that weren’t numbers of
cheers, too. However, if you had made smart use of a named constant, all
you would have to do is change 3 to 5 in one place, the constant's
declaration:

SYMBOL Cheers = 5 ' Number of cheers.

-- or --

Cheers CON 5 ' Number of cheers.

1

All 2

1

All 2

BASIC Stamp Architecture – Number Representations

Page 96 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Now, assuming that you used the constant Cheers wherever your program
needed ‘the number of cheers,’ your upgrade would be done.

On all BS2 models, you can take this idea a step further by defining
constants with expressions; groups of math and/or logic operations that
the editor software solves (evaluates) at compile-time (the time right after
you start the download and before the BASIC Stamp starts running your
program). For example, suppose the “Cheers” program also controls a
pump to fill glasses with champagne. Perhaps the number of glasses to fill
is always twice the number of cheers, minus 1 (another constant):

Cheers CON 5 ' # of cheers
Glasses CON Cheers*2-1 ' # of glasses

As you can see, one constant can be defined in terms of another. That is,
the number glasses depends on the number cheers.

The expressions used to define constants must be kept fairly simple. The
editor software solves them from left to right, and doesn’t allow you to use
parentheses to change the order of evaluation. The operators that are
allowed in constant expressions are shown in Table 4.5.

Operator Symbol Description
+ Add
- Subtract
* Multiply
/ Divide

<< Shift Left
>> Shift Right
& Logical AND
| Logical OR
^ Logical XOR

Table 4.5: Operators allowed in
constant expressions for all BS2
models.

The BASIC Stamp, like any computer, excels at math and logic. However,
being designed for control applications, the BASIC Stamp does math a
little differently than a calculator or spreadsheet program. This section will
help you understand BASIC Stamp numbers, math, and logic.

In your programs, you may express a number in various ways, depending
on how the number will be used and what makes sense to you. By default,
the BASIC Stamp recognizes numbers like 0, 99 or 62145 as being in our

RUN-TIME MATH AND LOGIC.

NUMBER REPRESENTATIONS.

All 2

All 2

1 All 2

4: BASIC Stamp Architecture – Number Representations

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 97

everyday decimal (base-10) system. However, you may also use
hexadecimal (base-16; also called hex) or binary (base-2).

Since the symbols used in decimal, hex and binary numbers overlap (e.g.,
1 and 0 are used by all; 0 through 9 apply to both decimal and hex) the
editor software needs prefixes to tell the numbering systems apart, as
shown below:

99 ' Decimal (no prefix)
$1A6 ' Hex (prefix ‘$’ required)
%1101 ' Binary (prefix ‘%’ required)

The BASIC Stamp also automatically converts quoted text into ASCII
codes, and allows you to apply names (symbols) to constants from any of
the numbering systems. For example:

SYMBOL LetterA = "A" ' ASCII code for A (65)
SYMBOL Cheers = 3
SYMBOL Hex128 = $80
SYMBOL FewBits = %1101

-- or --

LetterA CON "A" ' ASCII code for A (65)
Cheers CON 3
Hex128 CON $80
FewBits CON %1101

Binary Coded Decimal (BCD) is a way to encode decimal digits that is
easier to display or manipulate in some devices. Each digit of the decimal
number (0 – 9) requires 4 bits (a nibble) to encode. For this reason, a BCD
byte is always two decimal digits and a BCD word is always four decimal
digits. The BASIC Stamp does not support BCD natively, however,
because of the way that BCD is encoded the BS2 models’ hexadecimal
prefix, and Conversion Formatters can be used as a shortcut for most BCD
input/output operations as long as the digits used do not exceed valid
decimal digits (0 – 9). For example:

BCDValue CON $4096

DEBUG HEX BCDValue

The first line creates a symbol, BCDValue, that contains the binary form of
the hexadecimal value $4096, which means the upper nibble contains the
binary value for the decimal digit 4, the next nibble is 0, the next nibble is 9

1

All 2

HEX TO BCD CONVERSION

All 2

BASIC Stamp Architecture – Number Representations

Page 98 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

and the last nibble is 6; this corresponds exactly to the BCD form of the
decimal number 4096. The second line in the above example uses the HEX
Conversion Formatter within the DEBUG command (see DEBUG, page
159) to output the BCD value 4096 to the Debug Terminal. The HEX
Conversion Formatter can also be used for input operations to convert a
decimal value to BCD, as long as that decimal value is no greater than 2
digits for a Byte-sized variable or 4 digits for a Word-sized variable.

For more information on constants, see the section "Constants and
Compile-Time Expressions", above.

With all BS2 models, some of the math or logic operations in a program
are solved by the BASIC Stamp. The editor software solves operations that
define constants before the program is downloaded to the BASIC Stamp.
The preprocessing that takes place before the program is downloaded is
referred to as “compile-time.”

After the download is complete, the BASIC Stamp starts executing your
program; this is referred to as “run-time.” At run-time the BASIC Stamp
processes math and logic operations involving variables, or any
combination of variables and constants.

Because compile-time and run-time expressions appear similar, it can be
hard to tell them apart.
A few examples will help:

result VAR Byte ' Compile-time assignment

Cheers CON 3 ' Compile-time
Glasses CON Cheers * 2 - 1 ' Compile-time
OneNinety CON 100 + 90 ' Compile-time
NotWorking CON 3 * result ' ERROR: Variables not allowed here

result = Glasses ' Run-time
result = 99 + Glasses ' Run-time
result = OneNinety + 1 ' "100 + 90" solved at compile-time
 ' OneNinety + 1 solved at run-time
result = 100 + 90 ' 100 + 90 solved at run-time

Notice that the last example is solved at run-time, even though the math
performed could have been solved at compile-time since it involves two
constants. If you find something like this in your own programs, you can
save some program space in the EEPROM by converting the run-time

WHEN IS RUN-TIME?

All 2

All 2

4: BASIC Stamp Architecture – PIN Symbols

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 99

expression 100+90 into a compile-time expression like OneNinety CON
100+90.

To sum up: compile-time expressions are those that involve only
constants; once a variable is involved, the expression must be solved at
run-time. That’s why the line “NotWorking CON 3 * result” would
generate an error message. The CON directive works only at compile-time
and result is a variable; variables are not allowed in compile-time
expressions.

Now we know now to create variables and constants (with VAR and
CON) but there is a third option if you’re using PBASIC 2.5; pin-type
symbols (with PIN). PIN is like VAR and CON put together and
represents an I/O pin.

There are some situations where it is handy to refer to a pin using a
variable (like IN2 or OUT2) and also as a constant (2, in this case). The
PIN directive lets you define a context-sensitive symbol representing an
I/O pin. Depending on where and how this pin-type symbol is used
determines whether it is treated as an I/O pin input variable, and I/O pin
output variable or as a constant representing the pin number.

Let’s explore a simple example to see where this is useful. It is common
practice to define constants for any number used in many places so that
changing that number doesn’t create a maintenance hassle later on. If we
were to use a constant symbol to represent an I/O pin, we might do
something like this:

' {$PBASIC 2.5}

signal CON 1 ' constant-type symbol representing I/O 1

INPUT signal ' set signal pin to input

Wait:
 IF signal = 0 THEN Wait ' wait until signal pin = 1

Here we define signal to represent our desired I/O pin, then we use the
INPUT command to set it to the input direction and later we check the
state of the signal pin and loop (wait) while it is equal to logic 0. This code
has a common bug, however; the INPUT command works as expected,
because its Pin argument requires a number representing the I/O pin, but

DEFINING AND USING PINS WITH THE PIN

DIRECTIVE.
All 2

BASIC Stamp Architecture – PIN Symbols

Page 100 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

the Condition argument in the IF…THEN statement will always evaluate to
false because signal is a constant equal to 1, and “1 = 0” is false. What the
user really meant to happen is something like: IF IN1 = 0 THEN Wait
because IN1 is the input variable representing the current state of I/O pin
1. This situation is perfect for the PIN directive:

' {$PBASIC 2.5}

signal PIN 1 ' pin-type symbol representing I/O 1

INPUT signal ' set signal pin to input

Wait:
 IF signal = 0 THEN Wait ' wait until signal = 1

We only changed one thing in this code: the CON directive was changed
to PIN. Now signal is a context-sensitive symbol that will be treated as a
constant or as a variable depending on where it is used. In the INPUT
command signal is used as the Pin argument, and since that argument
requires a number representing the pin number, signal is treated as a
constant equal to 1. In the IF…THEN statement, signal is compared to
another value (which implies that what signal represents is expected to
change at run-time; i.e.: signal’s value is “variable”) so signal is treated as a
variable equal to the input variable for the defined pin (IN1 in this case).

As another example, consider the following code:

' {$PBASIC 2.5}

signal CON 2 ' constant-type symbol representing I/O 2

OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

Here, again, this is a common bug; the OUTPUT command will work as
expected, but the signal = 1 statement generates a syntax error at compile-
time. Why the error? This is an assignment statement, meant to assign the
value 1 to the item on the left, but the item on the left is a constant, not a
variable, so it can not be changed at run-time. What the user was thinking
when writing this was: OUT2 = 1 which sets the value of the output
variable representing I/O pin 2 to logical 1 (high). Here’s the solution:

All 2

4: BASIC Stamp Architecture – PIN Symbols

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 101

' {$PBASIC 2.5}

signal PIN 2 ' pin-type symbol representing I/O 2

OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

The OUTPUT command treats signal as a constant equal to 2 and the
signal = 1 statement treats signal as a variable equal to the output variable
for the defined pin (OUT2 in this case).

You might be wondering why “signal = 0” in the IF…THEN statement of
our first example treats signal as the input variable IN1 and yet “signal =
1” in our last example treats signal as the output variable OUT2. The
distinction is that the first example is a comparison and the second
example is an assignment. Comparisons need to “read” expressions and
then evaluate the comparison while assignments need to read expressions
and then “write” the results. Since signal is to the left of the equal sign (=)
in our assignment statement, it must be a variable we can write to, thus it
must be treated as OUT2, in this case.

What happens if our pin-type symbol is to the right of the equal sign in an
assignment statement? Example:

' {$PBASIC 2.5}

signal1 PIN 1 ' pin-type symbol representing I/O 1
signal2 PIN 2 ' pin-type symbol representing I/O 2

INPUT signal1 ' set signal1 pin to input
OUTPUT signal2 ' set signal2 pin to output
signal2 = signal1 ' set signal2 pin to signal1 pin’s state

In this case signal2 is treated as OUT2 and signal1 is treated as IN1; left side
must be written to and right side must be read from.

If a pin-type symbol is used in a command, but not in the Pin argument of
that command, it will be treated as an input variable (i.e.: INx). NOTE: It
is very rare that you’ll need to use a pin-type symbol in this way.

The following is a summary of behaviors and uses of pin-type symbols.

All 2

All 2

BASIC Stamp Architecture – PIN Symbols

Page 102 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

PIN_Symbol behaves like a constant:
1. when used in a command’s Pin argument. Example:

OUTPUT PIN_Symbol

2. when used in the index of an array. Example:

 myArray(PIN_Symbol) = 25

PIN_Symbol behaves like an input variable (INx):
1. when used in a command’s non-Pin argument that expects to

read a variable/constant/expression. Example:

DEBUG BIN PIN_Symbol

2. when used in a command’s Condition argument. Example:

IF PIN_Symbol = 1 THEN…

3. when used to the right of the equal sign (=) in an assignment
statement. Example:

ex: myVariable = PIN_Symbol + 1

PIN_Symbol behaves like an output variable (OUTx):
1. when used in a command’s non-Pin argument that expects to

write a result to a variable. Example:

LOOKUP index, [0, 1, 1, 0, 1], PIN_Symbol

2. when used to the left of the equal sign (=) in an assignment
statement. Example:

PIN_Symbol = 1

Let’s talk about the four basic operations of arithmetic: addition (+),
subtraction (-), multiplication (*), and division (/).

You may recall that the order in which you do a series of additions and
subtractions doesn’t affect the result. The expression 12+7-3+22 works out
the same as 22-3+12+7. However, when multiplication or division are
involved, it’s a different story; 12+3*2/4 is not the same as 2*12/4+3. In
fact, you may have the urge to put parentheses around portions of those
equations to clear things up.

1 All 2

BASIC ARITHMETIC OPERATIONS

4: BASIC Stamp Architecture – Order of Operations

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 103

The BASIC Stamp solves math problems in the order they are written:
from left to right. The result of each operation is fed into the next
operation. So to compute 12+3*2/4, the BASIC Stamp goes through a
sequence like this:

 12 + 3 = 15
 15 * 2 = 30
 30 / 4 = 7

Since the BASIC Stamp performs integer math (whole numbers only) 30 /
4 results in 7, not 7.5. We’ll talk more about integers in the next section.

Some other dialects of BASIC would compute that same expression based
on their precedence of operators, which requires that multiplication and
division be done before addition. So the result would be:

 3 * 2 = 6
 6 / 4 = 1
 12 + 1 = 13
Once again, because of integer math, the fractional portion of 6 / 4 is
dropped, so we get 1 instead of 1.5.

The BS1 does not allow parenthesis in expressions. Unfortunately, all
expressions have to be written so that they evaluate as intended strictly
from left to right.

All BS2 models, however, allow parentheses to be used to change the
order of evaluation. Enclosing a math operation in parentheses gives it
priority over other operations. To make the BASIC Stamp compute the
previous expression in the conventional way, you would write it as 12 +
(3*2/4). Within the parentheses, the BASIC Stamp works from left to right.
If you wanted to be even more specific, you could write 12 + ((3*2)/4).
When there are parentheses within parentheses, the BASIC Stamp works
from the innermost parentheses outward. Parentheses placed within
parentheses are called “nested parentheses."

The BASIC Stamp performs all math operations by the rules of positive
integer math. That is, it handles only whole numbers, and drops any
fractional portions from the results of computations. The BASIC Stamp
handles negative numbers using two's complement rules.

INTEGER MATH.

1

All 2

ORDER OF OPERATIONS.

BASIC Stamp Architecture – Math and Operators

Page 104 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

All BS2 models can interpret twos complement negative numbers correctly
in DEBUG and SEROUT instructions using formatters like SDEC (for
signed decimal). In calculations, however, it assumes that all values are
positive. This yields correct results with two’s complement negative
numbers for addition, subtraction, and multiplication, but not for division.

The standard operators we just discussed: +, - ,* and / all work on two
values; as in 1 + 3 or 26 * 144. The values that operators process are
referred to as arguments. So we say that the add, subtract, multiply and
divide operators take two arguments.

Operators that take two arguments are called “binary” operators, and
those that take only one argument are called “unary” operators. Please
note that the term “binary operator” has nothing to do with binary
numbers; it’s just an inconvenient coincidence that the same word,
meaning ‘involving two things’ is used in both cases.

The minus sign (-) is a bit of a hybrid. It can be used as a binary operator,
as in 8-2 = 6, or it can be used as a unary operator to represent negative
numbers, such as -4.

Unary operators take precedence over binary operators; the unary
operation is always performed first. For example, on all BS2 models, SQR
is the unary operator for square root. In the expression 10 - SQR 16, the
BASIC Stamp first takes the square root of 16, then subtracts it from 10.

Most of the descriptions that follow say something like “computes (some
function) of a 16-bit value.” This does not mean that the operator does not
work on smaller byte or nibble values, but rather that the computation is
done in a 16-bit workspace. If the value is smaller than 16 bits, the BASIC
Stamp pads it with leading 0s to make a 16-bit value. If the 16-bit result of
a calculation is to be packed into a smaller variable, the higher-order bits
are discarded (truncated).

Keep this in mind, especially when you are working with two’s
complement negative numbers, or moving values from a larger variable to
a smaller one. For example, look at what happens when you move a two’s
complement negative number into a byte (rather than a word):

UNARY AND BINARY OPERATORS.

NOTES ABOUT THE 16-BIT WORKSPACE.

All 2

4: BASIC Stamp Architecture – Math and Operators, ABS

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 105

value VAR Byte

value = - 99
DEBUG SDEC ? value ' Show signed decimal result (157)

We expected -99 to be displayed but what we got was 157. How did -99
become 157? Let’s look at the bits: 99 is %01100011 binary. When the
BASIC Stamp negates 99, it converts the number to 16 bits
%0000000001100011, and then takes the two’s complement,
%1111111110011101. Since we’ve asked for the result to be placed in an 8-
bit (byte) variable, the upper eight bits are truncated and the lower eight
bits stored in the byte: %10011101.

Now for the second half of the story. DEBUG’s SDEC modifier (for all BS2
models) expects a 16-bit, two’s complement value, but we've only given it
a byte to work with. As usual, it creates a 16-bit value by padding the
leading eight bits with 0s: %0000000010011101. And what’s that in signed
decimal? 157.

To fix this problem, always store values that are intended to be signed into
a word-sized variable.

Table 4.1 lists the available Unary Operators. Note: the BS1 only supports
negative (-).

Table 4.1: Unary Operators.
Note: the BS1 only supports the
negative (-) unary operator.

Operator Description Supported By:
ABS Returns absolute value All except BS1

COS
Returns cosine in twos complement
binary radians

All except BS1

DCD 2n-power decoder All except BS1
~ Inverse All except BS1
- Negative All

NCD Priority encoder of a 16-bit value All except BS1

SIN
Returns sine in twos complement
binary radians

All except BS1

SQR Returns square root of value All except BS1

The Absolute Value operator (ABS) converts a signed (two’s complement)
16-bit number to its absolute value. The absolute value of a number is a
positive number representing the difference between that number and 0.
For example, the absolute value of -99 is 99. The absolute value of 99 is
also 99. ABS works on two’s complement negative numbers. Examples of
ABS at work:

ABSOLUTE VALUE: ABS

UNARY OPERATORS.

All 2

1 All 2

All 2

BASIC Stamp Architecture – COS, DCD, ~, -

Page 106 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

result VAR Word

result = -99 ' Put -99 into result
 ' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
DEBUG SDEC ? ABS result ' Display as a signed #

The Cosine operator (COS) returns the two’s complement, 16-bit cosine of
an angle specified as an 8-bit “binary radian” (0 to 255) angle. COS is the
same as SIN in all respects, except that the cosine function returns the x
distance instead of the y distance. See “Sine: SIN”, below, for a code
example and more information.

The Decoder operator (DCD) is a 2n-power decoder of a four-bit value.
DCD accepts a value from 0 to 15, and returns a 16-bit number with the
bit, described by value, set to 1. For example:

result VAR Word

result = DCD 12 ' Set bit 12
DEBUG BIN16 ? result ' Display result (%0001000000000000)

The Inverse operator (~) complements (inverts) the bits of a number. Each
bit that contains a 1 is changed to 0 and each bit containing 0 is changed to
1. This process is also known as a “bitwise NOT” and “ones complement”.
For example:

result VAR Byte

result = %11110001 ' Store bits in byte result.
DEBUG BIN8 ? result ' Display in binary (%11110001)
result = ~ result ' Complement result
DEBUG BIN8 ? Result ' Display in binary (%00001110)

The Negative operator (-) negates a 16-bit number (converts to its twos
complement).

SYMBOL result = W1

result = -99 ' Put -99 into result
 ' ...(2's complement format)
result = result + 100 ' Add 100 to it
DEBUG result ' Display result (1)

-- or --

COSINE: COS

DECODER: DCD

NEGATIVE: -

All 2

All 2

1

INVERSE: ~

4: BASIC Stamp Architecture – NCD, SIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 107

result VAR Word

result = 99 ' Put -99 into result
 ' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
result = -result ' Negate the value
DEBUG SDEC ? result ' Display as a signed #

The Encoder operator (NCD) is a "priority" encoder of a 16-bit value. NCD
takes a 16-bit value, finds the highest bit containing a 1 and returns the bit
position plus one (1 through 16). If the input value is 0, NCD returns 0.
NCD is a fast way to get an answer to the question “what is the largest
power of two that this value is greater than or equal to?” The answer NCD
returns will be that power, plus one. Example:

result VAR Word

result = %1101 ' Highest bit set is bit 3

DEBUG ? NCD result ' Show the NCD of result (4)The
Sine operator (SIN) returns the two’s complement, 16-bit sine of an angle
specified as an 8-bit binary radian (0 to 255) angle.

To understand the SIN operator more completely, let’s look at a typical
sine function. By definition: given a circle with a radius of 1 unit (known
as a unit circle), the sine is the y-coordinate distance from the center of the
circle to its edge at a given angle. Angles are measured relative to the 3-
o'clock position on the circle, increasing as you go around the circle
counterclockwise.

At the origin point (0 degrees) the sine is 0, because that point has the
same y (vertical) coordinate as the circle center. At 45 degrees the sine is
0.707. At 90 degrees, sine is 1. At 180 degrees, sine is 0 again. At 270
degrees, sine is -1.

The BASIC Stamp SIN operator breaks the circle into 0 to 255 units instead
of 0 to 359 degrees. Some textbooks call this unit a “binary radian” or
“brad.” Each brad is equivalent to 1.406 degrees. And instead of a unit
circle, which results in fractional sine values between 0 and 1, BASIC
Stamp SIN is based on a 127-unit circle. Results are given in two’s
complement form in order to accommodate negative values. So, at the
origin, SIN is 0. At 45 degrees (32 brads), sine is 90. At 90 degrees (64
brads), sine is 127. At 180 degrees (128 brads), sine is 0. At 270 degrees
(192 brads), sine is -127.

ENCODER: NCD

SINE: SIN

All 2

All 2

All 2

BASIC Stamp Architecture – SIN, SQR

Page 108 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 4.1: 127-Unit Circle

To convert brads to degrees, multiply by 180 then divide by 128, or simply
multiply with “*/ 360”. To convert degrees to brads, multiply by 128, then
divide by 180. Here’s a small program that demonstrates the SIN and COS
operators:

degr VAR Word
brads VAR Byte

DEBUG 2, 4, 0,"ANGLE", TAB, "COS", TAB, "SIN", CR
DEBUG "DEGREES", TAB,"BRADS", TAB, "(X)", TAB,"(Y)", CR

FOR degr = 0 TO 359 STEP 45 ' Increment degrees
 brads = degr * 128 / 180 ' Convert to brads
 DEBUG CR, DEC3 degr, TAB, DEC3 brads, TAB ' Display angle
 DEBUG SDEC COS brads, TAB, SDEC SIN brads ' Display COS & SIN
NEXT

The Square Root operator (SQR) computes the integer square root of an
unsigned 16-bit number. (The number must be unsigned since the square
root of a negative number is an ‘imaginary’ number.) Remember that most
square roots have a fractional part that the BASIC Stamp discards when

SQUARE ROOT: SQR

All 2

4: BASIC Stamp Architecture – +

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 109

doing its integer-only math. So it computes the square root of 100 as 10
(correct), but the square root of 99 as 9 (the actual is close to 9.95).
Example:

DEBUG ? SQR 100 ' Display square root of 100 (10)
DEBUG ? SQR 99 ' Display of square root of 99
 ' ...(9 due to truncation)

Table 4.6 lists the available Binary (two-argument) Operators.

Table 4.6: Binary Operators. Note:
some binary operators are not
supported by all BASIC Stamp
models.

Operator Description Supported By:
+ Addition All
- Subtraction All
* Multiplication All
** Multiplication (returns upper 16-bits) All
*/ Multiply by 8-bit integer, 8-bit fraction All BS2 models
/ Division All
// Modulus (Remainder of division) All

ATN Returns arctangent of X/Y vector All BS2 models
HYP Returns hypotenuse of X/Y vector All BS2 models
MIN Limits a value to a specified low All
MAX Limits a value to a specified high All
DIG Returns specified digit of number All BS2 models
<< Shift bits left by specified amount All BS2 models
>> Shift bits right by specified amount All BS2 models

REV Reverse specified number of bits All BS2 models
& Bitwise AND All
| Bitwise OR All
^ Bitwise XOR All
&/ Logical AND NOT BS1 Only
|/ Logical OR NOT BS1 Only
^/ Logical XOR NOT BS1 Only

The Addition operator (+) adds variables and/or constants, returning a 16-
bit result. It works exactly as you would expect with unsigned integers
from 0 to 65535. If the result of addition is larger than 65535, the carry bit
will be lost. If the values added are signed 16-bit numbers and the
destination is a 16-bit variable, the result of the addition will be correct in
both sign and value.

ADD: +

BINARY OPERATORS.

1 All 2

BASIC Stamp Architecture – +, -, *

Page 110 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For example:

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = - 99
value2 = 100
value1 = value1 + value2 ' Add the numbers
DEBUG value1 ' Show the result (1)

-- or --

value1 VAR Word
value2 VAR Word

value1 = - 1575
value2 = 976
value1 = value1 + value2 ' Add the numbers
DEBUG SDEC ? value1 ' Show the result (-599)

The Subtraction operator (-) subtracts variables and/or constants,
returning a 16-bit result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result is negative, it will be
correctly expressed as a signed 16-bit number. For example:

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = 199
value2 = 100
value1 = value1 - value2 ' Subtract the numbers
DEBUG value1 ' Show the result (99)

-- or --

value1 VAR Word
value2 VAR Word

value1 = 1000
value2 = 1999
value1 = value1 - value2 ' Subtract the numbers
DEBUG SDEC ? value1 ' Show the result (-999)

The Multiply operator (*) multiplies variables and/or constants, returning
the low 16 bits of the result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result of multiplication is larger
than 65535, the excess bits will be lost. Multiplication of signed variables
will be correct in both number and sign, provided that the result is in the
range -32767 to +32767.

SUBTRACT: -

MULTIPLY: *

1

All 2

1

All 2

1 All 2

1 All 2

4: BASIC Stamp Architecture – *, **

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 111

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = 1000
value2 = 19
value1 = value1 * value2 ' Multiply value1 by value2
DEBUG value1 ' Show the result (19000)

-- or --

value1 VAR Word
value2 VAR Word
value1 = 1000
value2 = - 19
value1 = value1 * value2 ' Multiply value1 by value2
DEBUG SDEC ? value1 ' Show the result (-19000)

The Multiply High operator (**) multiplies variables and/or constants,
returning the high 16 bits of the result. When you multiply two 16-bit
values, the result can be as large as 32 bits. Since the largest variable
supported by PBASIC is a word (16 bits), the highest 16 bits of a 32-bit
multiplication result are normally lost. The ** (double-star) instruction
gives you these upper 16 bits. For example, suppose you multiply 65000
($FDE8) by itself. The result is 4,225,000,000 or $FBD46240. The * (star, or
normal multiplication) instruction would return the lower 16 bits, $6240.
The ** instruction returns $FBD4.

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = $FDE8
value2 = value1 ** value1 ' Multiply $FDE8 by itself
DEBUG $value2 ' Return high 16 bits ($FBD4)

-- or --

value1 VAR Word
value2 VAR Word

value1 = $FDE8
value2 = value1 ** value1 ' Multiply $FDE8 by itself
DEBUG HEX ? value2 ' Return high 16 bits ($FBD4)

An interesting application of the ** operator allows you no multiply a
number by a fractional value less than one. The fraction must be
expressed in units of 1/65536. To find the fractional ** argument,

MULTIPLY HIGH: **

1

All 2

1 All 2

1

All 2

BASIC Stamp Architecture – **, */

Page 112 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

multiply the fraction part by 65536. For example, 0.72562 is represented by
47554, which is 0.72562 * 65536.

SYMBOL Frac = 47554 ' = 0.72562 x 65536
SYMBOL value = W0

value = 10000
value = value ** Frac ' Multiply 10000 by 0.72562
DEBUG value ' Show result (7256)

-- or –

Frac CON 47554 ' = 0.72562 x 65536
value VAR Word

value = 10000
value = value ** Frac ' Multiply 10000 by 0.72562
DEBUG ? value ' Show result (7256)

The Multiply Middle operator (*/) multiplies variables and/or constants,
returning the middle 16 bits of the 32-bit result. This has the effect of
multiplying a value by a whole number and a fraction. The whole number
is the upper byte of the multiplier (0 to 255 whole units) and the fraction is
the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ (star-
slash) instruction gives you an excellent workaround for the BASIC
Stamp's integer-only math. Suppose you want to multiply a value by 1.5.
The whole number, and therefore the upper byte of the multiplier, would
be 1, and the lower byte (fractional part) would be 128, since 128/256 = 0.5.
It may be clearer to express the */ multiplier in hex—as $0180—since hex
keeps the contents of the upper and lower bytes separate. Here's an
example:

value1 VAR Word

value1 = 100
value1 = value1*/ $0180 ' Multiply by 1.5 [1 + (128/256)]
DEBUG ? value1 ' Show result (150)

To calculate the constant for use with the */ operator, multiply the target
(mixed) value by 256 and convert to an integer. For instance, take Pi (π,
3.14159). The */ constant would be INT(3.14159 * 256) = 804 ($0324). So
the constant Pi for use with */ would be $0324. This isn’t a perfect match
for Pi, but the error is only about 0.1%. Note that the */ operator can be
used to multiply by mixed values up to about 255.996.

MULTIPLY MIDDLE: */

1

All 2

All 2

All 2

4: BASIC Stamp Architecture – /, //

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 113

The Divide operator (/) divides variables and/or constants, returning a
16-bit result. Works exactly as you would expect with unsigned integers
from 0 to 65535. Use / only with positive values; signed values do not
provide correct results. Here’s an example of unsigned division:

SYMBOL value1 = W0
SYMBOL value2 = W1
value1 = 1000
value2 = 5

value1 = value1 / value2 ' Divide the numbers
DEBUG value1 ' Show the result (200)

-- or --

value1 VAR Word
value2 VAR Word

value1 = 1000
value2 = 5
value1 = value1 / value2 ' Divide the numbers
DEBUG DEC ? value1 ' Show the result (200)

A workaround to the inability to divide signed numbers is to have your
program divide absolute values, then negate the result if one (and only
one) of the operands was negative. All values must lie within the range of
-32767 to +32767. Here is an example:

sign VAR Bit ' Bit to hold the result sign
value1 VAR Word
value2 VAR Word

value1 = 100
value2 = -3200

sign = value1.BIT15 ^ value2.BIT15 ' Determine sign of result
value2 = ABS value2 / ABS value1 ' Divide absolute values
IF (sign = 1) THEN value2 = -value2 ' Negate result if sign = 1
DEBUG SDEC ? value2 ' Show the result (-32)

The Modulus operator (//) returns the remainder left after dividing one
value by another. Some division problems don’t have a whole-number
result; they return a whole number and a fraction. For example, 1000/6 =
166.667. Integer math doesn’t allow the fractional portion of the result, so
1000/6 = 166. However, 166 is an approximate answer, because 166*6 =
996. The division operation left a remainder of 4. The // (double-slash)

DIVIDE: /

MODULUS: //

1 All 2

All 2

All 2

1

1 All 2

BASIC Stamp Architecture – //, ATN

Page 114 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

returns the remainder, 4 in this example. Naturally, numbers that divide
evenly, such as 1000/5, produce a remainder of 0.

Example:

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = 1000
value2 = 6
value1 = value1 // value2 ' Get remainder of value1 / value2
DEBUG value1 ' Show the result (4)

-- or --

value1 VAR Word
value2 VAR Word

value1 = 1000
value2 = 6
value1 = value1 // value2 ' Get remainder of value1 / value2
DEBUG ? value1 ' Show the result (4)

The Arctangent operator (ATN) returns the angle to the vector specified
by X and Y coordinate values. The syntax of ATN is:

xCoord ATN yCoord

where xCoord and yCoord are the coordinates of the target vector point.

In the BASIC Stamp, the angle is returned in binary radians (0 to 255)
instead of degrees (0 to 359). See the explanation of the SIN operator for
more information about binary radians. Coordinate input values are
limited to -127 to 127 (signed bytes) as shown in the diagram of the
PBASIC Unit Circle (Figure 4.2).

brads VAR Word ' angle in brads
degr VAR Word ' angle in degrees

brads = 4 ATN 4 ' get angle
degr = brads */ 360 ' convert to degrees
DEBUG SDEC ? brads ' display brads (32)
DEBUG SDEC ? degr ' display degrees (45)

All 2

ARCTANGENT: ATN

4: BASIC Stamp Architecture – ATN, HYP, MIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 115

Figure 4.2: ATN and HYP operators
in the PBASIC unit circle

The Hypotenuse operator (HYP) returns the length of the hypotenuse of a
right triangle with sides of length A and B. The syntax of HYP is:

SideA HYP SideB

where SideA and SideB are the side lengths of a right-triangle (the order
isn’t important). Another application of HYP is to calculate the distance
between the origin (0, 0) and a point (X, Y) in a Cartesian coordinate
system. Side length (vector) input values are limited to -127 to 127 (signed
bytes). See diagram with ATN operator, Figure 4.2.

DEBUG ? 3 HYP 4 ' hypotenuse of 3x4 triangle (5)

The Minimum operator (MIN) limits a value to a specified 16-bit positive
minimum. The syntax of MIN is:

value MIN limit

where value is a constant or variable value to perform the MIN function
upon and limit is the minimum value that value is allowed to be. Its logic
is, ‘if value is less than limit, then make result = limit; if value is greater than
or equal to limit, make result = value.’

MINIMUM: MIN

HYPOTENUSE: HYP All 2

1 All 2

BASIC Stamp Architecture – MIN, MAX

Page 116 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

MIN works in positive math only; its comparisons are not valid when
used on two’s complement negative numbers, since the positive-integer
representation of a number like -1 ($FFFF or 65535 in unsigned decimal) is
larger than that of a number like 10 ($000A or 10 decimal). Use MIN only
with unsigned integers. Because of the way fixed-size integers work, you
should be careful when using an expression involving MIN 0. For
example, 0-1 MIN 0 will result in 65535 because of the way fixed-size
integers wrap around.

SYMBOL value1 = W0
SYMBOL value2 = W1

FOR value1 = 100 TO 0 STEP -10 ' Walk value1 from 100 to 0
 value2 = value1 MIN 50 ' Use MIN to clamp at 50
 DEBUG value2 ' Show "clamped" value
NEXT

-- or --

value VAR Word

FOR value = 100 TO 0 STEP 10 ' Walk value from 100 to 0
 DEBUG ? value MIN 50 ' Show value1, use MIN to clamp at 50
NEXT

The Maximum operator (MAX) limits a value to a specified 16-bit positive
maximum. The syntax of MAX is:

value MAX Limit

Where value is a constant or variable value to perform the MAX function
upon and limit is the maximum value that value is allowed to be. Its logic
is, ‘if value is greater than limit, then make result = limit; if value is less than
or equal to limit, make result = value.’ MAX works in positive math only;
its comparisons are not valid when used on two’s complement negative
numbers, since the positive-integer representation of a number like -1
($FFFF or 65535 in unsigned decimal) is larger than that of a number like
10 ($000A or 10 decimal). Use MAX only with unsigned integers. Because
of the way fixed-size integers work, you should be careful when using an
expression involving MAX 65535. For example, 65535+1 MAX 65535 will
result in 0 because of the way fixed-size integers wrap around.

1

1 All 2

All 2

MAXIMUM: MAX

4: BASIC Stamp Architecture – MAX, DIG, <<, >>

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 117

SYMBOL value1 = W0
SYMBOL value2 = W1

FOR value1 = 0 TO 100 STEP 10 ' Walk value1 from 0 to 100
 value2 = value1 MAX 50 ' Use MAX to clamp at 50
 DEBUG value2 ' Show "clamped" value
NEXT

-- or --

value VAR Word

FOR value = 0 TO 100 STEP 10 ' Walk value from 0 to 100
 DEBUG ? value MAX 50 ' Show value, use MAX clamp at 50
NEXT

The Digit operator (DIG) returns the specified decimal digit of a 16-bit
positive value. Digits are numbered from 0 (the rightmost digit) to 4 (the
leftmost digit of a 16-bit number; 0 to 65535).

Example:

value VAR Word
idx VAR Byte

value = 9742
DEBUG ? value DIG 2 ' Show digit 2 (7)
FOR idx = 4 TO 0
 DEBUG ? value DIG idx ' Show digits 0 through 4 (09742)
NEXT

The Shift Left operator (<<) shifts the bits of a value to the left a specified
number of places. Bits shifted off the left end of a number are lost; bits
shifted into the right end of the number are 0s. Shifting the bits of a value
left n number of times has the same effect as multiplying that number by 2
to the nth power. For instance 100 << 3 (shift the bits of the decimal number
100 left three places) is equivalent to 100 * 23. Here's an example:

value VAR Word
idx VAR Byte

value = %1111111111111111
FOR idx = 1 TO 16 ' Repeat with idx = 1 to 16
 DEBUG BIN16 ? value << idx ' Shift value left idx places
NEXT

The Shift Right operator (>>) shifts the bits of a value to the right a
specified number of places. Bits shifted off the right end of a number are

DIGIT: DIG

SHIFT LEFT: <<

SHIFT RIGHT: >>

All 2

1

All 2

All 2

All 2

BASIC Stamp Architecture – >>, REV, &, |

Page 118 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

lost; bits shifted into the left end of the number are 0s. Shifting the bits of a
value right n number of times has the same effect as dividing that number
by 2 to the nth power. For instance 100 >> 3 (shift the bits of the decimal
number 100 right three places) is equivalent to 100 / 23. Here's an example:

value VAR Word
idx VAR Byte

value = %1111111111111111
FOR idx = 1 TO 16 ' Repeat with idx = 1 to 16
 DEBUG BIN16 ? value >> idx ' Shift value right idx places
NEXT

The Reverse operator (REV) returns a reversed (mirrored) copy of a
specified number of bits of a value, starting with the right-most bit (least
significant bit or “lsb”). For instance, %10101101 REV 4 would return
%1011, a mirror image of the right-most four bits of the value. Example:

DEBUG BIN4 ? %10101101 REV 4 ' Mirror 1st 4 bits (%1011)

The And operator (&) returns the bitwise AND of two values. Each bit of
the values is subject to the following logic:

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

The result returned by & will contain 1s in only those bit positions in
which both input values contain 1s. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101101
result = value1 & value2
DEBUG %result ' Show result of AND (%00001101)

-- or --

DEBUG BIN8 ? %00001111 & %10101101 ' Show result of AND (%00001101)

The OR operator (|) returns the bitwise OR of two values. Each bit of the
values is subject to the following logic:

REVERSE: REV

All 2

1 All 2

1 All 2

1

All 2

AND: &

OR: |

4: BASIC Stamp Architecture – |, ^

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 119

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which one
or the other (or both) input values contain 1s. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 | value2
DEBUG %result ' Show result of OR (%10101111)

-- or --

DEBUG BIN ? %00001111 | %10101001 ' Show result of OR (%10101111)

The Xor operator (^) returns the bitwise XOR of two values. Each bit of the
values is subject to the following logic:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one
or the other (but not both) input values contain 1s. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 ^ value2
DEBUG %result ' Show result or XOR (%10100110)

-- or --

XOR: ̂ All 2

1

1

BASIC Stamp Architecture – &/, |/

Page 120 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DEBUG BIN8 ? %00001111 ^ %10101001 ' Show result of XOR (%10100110)

The And Not operator (&/) returns the bitwise AND NOT of two values.
Each bit of the values is subject to the following logic:

0 AND NOT 0 = 0
0 AND NOT 1 = 0
1 AND NOT 0 = 1
1 AND NOT 1 = 0

The result returned by &/ will contain 1s in any bit positions in which the
first value is 1 and the second value is 0. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 &/ value2
DEBUG %result ' Show result of AND NOT (%00000110)

The Or Not operator (|/) returns the bitwise OR NOT of two values. Each
bit of the values is subject to the following logic:

0 OR NOT 0 = 1
0 OR NOT 1 = 0
1 OR NOT 0 = 1
1 OR NOT 1 = 1

The result returned by |/ will contain 1s in any bit positions in which the
first value is 1 or the second value is 0. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 |/ value2
DEBUG %result ' Show result of OR NOT (%01011111)

AND NOT: &/

OR NOT: |/

All 2

1

1

1

1

4: BASIC Stamp Command Reference – ^/

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 121

The Xor Not operator (^/) returns the bitwise XOR NOT of two values.
Each bit of the values is subject to the following logic:

0 XOR NOT 0 = 1
0 XOR NOT 1 = 0
1 XOR NOT 0 = 0
1 XOR NOT 1 = 1

The result returned by ^/ will contain 1s in any bit positions in which the
first value and second values are equal.

Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 ^/ value2
DEBUG %result ' Show result of OR NOT (%01011001)

XOR NOT: ̂ / 1

1

BASIC Stamp Architecture

Page 122 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 123

Introduction
This chapter provides details on all three versions of the PBASIC
Programming Language. A categorical listing of all available PBASIC
commands is followed by an alphabetized command reference with
syntax, functional descriptions, and example code for each command.

PBASIC LANGUAGE VERSIONS
There are three forms of the PBASIC language: PBASIC 1.0 (for the BS1),
PBASIC 2.0 (for all BS2 models) and PBASIC 2.5 (for all BS2 models). You
may use any version of the language that is appropriate for your BASIC
Stamp module; however, when using any BS2 model, we suggest you use
PBASIC 2.5 for any new programs you write because of the advanced
control and flexibility it allows. PBASIC 2.5 is backward compatible with
almost every existing PBASIC 2.0-based program, and code that is not
100% compatible can easily be modified to work in PBASIC 2.5.

This chapter gives details on every command for every BASIC Stamp
model. Be sure to pay attention to any notes in the margins and body text
regarding supported models and PBASIC language versions wherever
they apply.

The BASIC Stamp Editor for Windows defaults to using PBASIC 1.0 (for
the BS1) or PBASIC 2.0 (for all BS2 models). If you wish to use the default
language for your BASIC Stamp model you need not do anything special.
If you wish to use PBASIC 2.5, you must specify that fact, using the
$PBASIC directive in your source code, for example:

' {$PBASIC 2.5}

Review the Compiler Directives section of Chapter 3 for more details on
this directive. Note: you may also specify either 1.0 or 2.0 using the
$PBASIC directive if you wish to explicitly state those desired languages.

Please note that the reserved word set will vary with each version of
PBASIC, with additional reserved words for some BASIC Stamp models.
Please see the reserved words tables in Appendix B for the complete lists.
PBASIC 2.5 features many enhancements. Table 5.1 gives a brief summary
of these items, with references to more information given elsewhere.

BASIC Stamp Command Reference

Page 124 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Feature Categories New Items Description

Additional Commands
DEBUGIN,

 DO...LOOP, EXIT,
 ON. SELECT...CASE

Allows easier user input and program
control. See individual command
descriptions.

Enhanced Commands
IF...THEN,
GET, PUT,

READ, WRITE

Improves program control, and SPRAM and
EEPROM access. See individual command
descriptions.

Additional Directive PIN
Provides flexible, context-sensitive I/O pin
references; see page 99.

Conditional Compile
Directives

#DEFINE, #ERROR,
#IF...#THEN...#ELSE,

#SELECT...CASE

Encourages development of source code
that is compatible with multiple BASIC
Stamp models and helpful user hints; see
page 70.

Additional
Predefined Constants

CLRDN, CLREOL,
CRSRDN, CRSRLF,
 CRSRRT, CRSRUP,
 CRSRX, CRSRXY,

 CRSRY, LF

 Symbols for control characters supported by
the Debug Terminal. See Table 5.13 in the
DEBUG command description, page 168.

Syntax Enhancements , and :

Any line can be continued to the next line
after the comma (,) character wherever
commas are normally used.

Colons are required on label declarations.

Table 5.1: PBASIC 2.5
Enhancements.

CATEGORICAL LISTING OF COMMANDS
This section lists all available PBASIC commands for all BASIC Stamp
models, grouped by category. Commands with PBASIC 2.5 enhanced
syntax options are marked with (*); commands that exist only in
PBASIC 2.5 are indicated with (2.5).

One or more of these icons indicates the item applies to
the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px
respectively.

If an item applies to all of the models in the BS2 family,
this icon is used.

BRANCHING / PROGRAM CONTROL
 BRANCH Jump to address specified by offset.

 IF...THEN* Conditionally execute one or more blocks of code.

 GOTO Jump to address.

 GOSUB Jump to subroutine at address.

All 2

1 All 2

1 All 2

1 All 2

1 All 2

5: BASIC Stamp Command Reference

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 125

 ON2.5 Jump to address or subroutine specified by an offset.

 RETURN Return from subroutine.

 RUN Switch execution to another program slot.

 POLLRUN Switch execution to another program page upon the
occurrence of a polled interrupt.

 SELECT

 …CASE2.5 Evaluate expression and conditionally execute a
block of code based on comparison to multiple
conditions.

 STOP Halt program execution until BASIC Stamp is reset.

LOOPING STRUCTURES
 DO…LOOP2.5 Execute code block repetitively, with optional,

conditional exit.

 EXIT2.5 Terminate execution of a looping code block
(DO...LOOP or FOR...NEXT).

 FOR...NEXT Execute code block repetitively, a finite number of
times using a counter.

EEPROM ACCESS
 EEPROM Store data in EEPROM during program download.

 DATA Store data in EEPROM during program download.

 READ* Read EEPROM value into variable.

 WRITE* Write value into EEPROM.

 STORE Switch READ/WRITE access to different program
slot.

RAM ACCESS
 GET* Read Scratch Pad RAM value into variable.

 PUT* Write value into Scratch Pad RAM.

All 2

All 2

All 2

All 2

All 2

1

All 2

1 All 2

1 All 2

1 All 2

1 All 2

BASIC Stamp Command Reference

Page 126 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

NUMERICS
 LET Optional instruction to perform variable

assignments.

 LOOKUP Look up data specified by offset and store in
variable. This instruction provides a means to make
a lookup table.

 LOOKDOWN Find target’s matching value in table and store
match number (0-N) in variable.

 RANDOM Generate a pseudo-random number.

DIGITAL I/O
 CONFIGPIN Configure pin properties.

 INPUT Make pin an input.

 OUTPUT Make pin an output.

 REVERSE Reverse direction of a pin.

 LOW Make pin output low.

 HIGH Make pin output high.

 TOGGLE Make pin an output and toggle state.

 PULSIN Measure width of an input pulse.

 PULSOUT Output a pulse by inverting a pin for a given
amount of time.

 BUTTON Debounce button, perform auto-repeat, and branch
to address if button is in target state.

 COUNT Count cycles on a pin for a given amount of time.

 XOUT Generate X-10 power line control codes.

 AUXIO Switch control to auxiliary I/O pin group.

 MAINIO Switch control to main I/O pin group.

 IOTERM Switch control to specified I/O pin group.

 POLLIN Specify pin and state for a polled-interrupt.

 POLLOUT Specify pin and state for output upon a polled-
interrupt.

 POLLMODE Specify the polled-interrupt mode.

1

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

All 2

All 2

5: BASIC Stamp Command Reference

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 127

ASYNCHRONOUS SERIAL I/O
 SERIN Input data in an asynchronous serial stream.

 SEROUT Output data in an asynchronous serial stream.

 OWIN Input data from a 1-wire device.

 OWOUT Output data to a 1-wire device.

SYNCHRONOUS SERIAL I/O
 SHIFTIN Shift data in from synchronous serial device.

 SHIFTOUT Shift data out to synchronous serial device.

 I2CIN Input data from I2C serial device.

 I2COUT Output data to I2C serial device.

PARALLEL I/O
 LCDCMD Write a command to an LCD.

 LCDIN Read data from an LCD.

 LCDOUT Write data to an LCD.

ANALOG I/O
 PWM Output using pulse width modulation, then return

pin to input.

 POT Read a 5 kΩ - 50 kΩ potentiometer and scale result.

 RCTIME Measure a variable resistance or capacitance.

 COMPARE Compare two 0-5 V analog voltages.

TIME
 PAUSE Pause execution for 0–65535 milliseconds.

 POLLWAIT Pause until a polled-interrupt occurs.

SOUND
 SOUND Generate tones or white noise.

 FREQOUT Generate one or two sine waves of specified
frequencies.

 DTMFOUT Generate DTMF telephone tones.

All 2

All 2

All 2

1

1

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

1 All 2

BASIC Stamp Command Reference

Page 128 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

POWER CONTROL
 NAP Nap for a short period. Power consumption is

reduced.

 SLEEP Sleep for 1-65535 seconds. Power consumption is
reduced.

 END Sleep until the power cycles or the PC connects.
Power consumption is reduced.

PROGRAM DEBUGGING
 DEBUG Send information to the PC for viewing in the

Debug Terminal’s Receive windowpane.

 DEBUGIN2.5 Retrieve information from the user via the PC,

entered into the Debug Terminal’s Transmit
windowpane.

SYNTAX CONVENTIONS

BOLD UPPER CASE – any word that appears bold with all capital letters must
be typed exactly as shown. These are all reserved words.
Italics – italicized words must be replaced with your content.

[] – square brackets must be typed, in the position shown around the
given syntax element. Only used with PBASIC 2.0 and 2.5.

() – parentheses must be typed in the position shown around the given
syntax element; only used this way with PBASIC 1.0.**

{ } – curly braces indicate optional syntax items. They are not typed as part
of any syntax other than compiler directives.

| – vertical line separates mutually exclusive syntax elements.

, \ # = – where they appear, commas, backslashes, pound signs, and
equal signs must be typed in the positions shown.

**NOTE: You may use parentheses to enclose expressions in PBASIC 2.0 and 2.5, but they
are not necessary. Used within an expression, parentheses will change the order of
evaluation. See page 103 for details and examples.

All 2

1 All 2

1 All 2

1 All 2

1 All 2

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 129

AUXIO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

AUXIO

Function
Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40
only).

Quick Facts

Table 5.2: AUXIO Quick Facts.

 BS2p, BS2pe, and BS2px

I/O pin IDs 0 – 15 (just like main I/O, but after AUXIO command, all references affect
physical pins 21 – 36).

Special Notes The BS2p, BS2pe, and BS2px 24-pin modules accept this command,
however, only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

MAINIO and IOTERM

Explanation
The BS2p, BS2pe, and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing an AUXIO or IOTERM command. The AUXIO command causes
the BASIC Stamp to affect the auxiliary I/O pins instead of the main I/O
pins in all further code until the MAINIO or IOTERM command is
reached, or the BASIC Stamp is reset or power-cycled. AUXIO is also used
when setting the DIRS register for auxiliary I/O pins on the BS2p40.

When the BASIC Stamp module is reset, all RAM variables including DIRS
and OUTS are cleared to zero. This affects both main and auxiliary I/O
pins. On the BS2p24, BS2pe, and BS2px, the auxiliary I/O pins from the
interpreter chip are not connected to physical I/O pins on the BASIC
Stamp module. While not connected to anything, these pins do have
internal pull-up resistors activated, effectively connecting them to Vdd.
After reset, reading the auxiliary I/O from a BS2p24, BS2pe24, or BS2px24
will return all 1s.

AUXIO - BASIC Stamp Command Reference

Page 130 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Here is a simple AUXIO example:

HIGH 0 ' make P0 high
AUXIO ' select auxiliary pins
LOW 0 ' make X0 low

The first line of the above example will set I/O pin 0 of the main I/O pins
(P0, physical pin 5) high. Afterward, the AUXIO command tells the
BASIC Stamp that all commands following it should affect the auxiliary
I/O pins. The following LOW command will set I/O pin 0 of the auxiliary
I/O pins (X0, physical pin 21) low.

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are MAINIO and IOTERM.

Demo Program (AUX_MAIN_TERM.bsp)

' AUX_MAIN_TERM.bsp
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM
' commands to affect I/O pins in the auxiliary and main I/O groups.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2SX
 #ERROR "Program requires BS2p40"
 #CASE BS2P, BS2PE, BS2PX
 DEBUG "Note: This program designed for the BS2p40.", CR
#ENDSELECT

port VAR Bit

Main:
 DO
 MAINIO ' Switch to main I/O pins
 TOGGLE 0 ' Toggle state of I/O pin P0
 PWM 1, 100, 40 ' Generate PWM on I/O pin P1

 AUXIO ' Switch to auxiliary I/O pins
 TOGGLE 0 ' Toggle state of I/O pin X0
 PULSOUT 1, 1000 ' Generate a pulse on I/O pin X1
 PWM 2, 100, 40 ' Generate PWM on I/O pin X2

A SIMPLE AUXIO EXAMPLE.

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

2p

NOTE: This example program will
tokenize with the 24-pin BS2p , BS2pe,
and BS2px, but its effects can only be
seen on the BS2p40. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 131

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

AUXIO - BASIC Stamp Command Reference

Page 132 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – BRANCH

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 133

BRANCH BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

BRANCH Offset, (Address0, Address1, ...AddressN)
BRANCH Offset, [Address0, Address1, ...AddressN]

Function
Go to the address specified by offset (if in range).

• Offset is a variable/constant/expression (0 – 255) that specifies the
index of the address, in the list, to branch to (0 – N).

• Addresses are labels that specify where to go. BRANCH will ignore
any list entries beyond offset 255.

Quick Facts
Table 5.3: BRANCH Quick Facts. BS1 All BS2 Models

Limit of
Address Entries

Limited only by memory 256

Related
Commands

None ON...GOTO

Explanation
The BRANCH instruction is useful when you want to write something like
this:

IF value = 0 THEN Case_0 ' when value is 0, jump to Case_0
IF value = 1 THEN Case_1 ' when value is 1, jump to Case_1
IF value = 2 THEN Case_2 ' when value is 2, jump to Case_2

You can use BRANCH to organize this into a single statement:

BRANCH value, [Case_0, Case_1, Case_2]

This works exactly the same as the previous IF...THEN example. If the
value isn’t in range (in this case if value is greater than 2), BRANCH does
nothing and the program continues with the next instruction after
BRANCH.

BRANCH can be teamed with the LOOKDOWN instruction to create a
simplified SELECT...CASE statement. See LOOKDOWN for an example.

BS1 syntax not shown here.

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

1

BRANCH – BASIC Stamp Command Reference

Page 134 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (BRANCH.bs1)

' BRANCH.bs1
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL idx = B2

Main:
 DEBUG "idx: ", #idx, " "
 BRANCH idx, (Task_0, Task_1, Task_2) ' branch to task
 DEBUG "BRANCH target error...", CR, CR ' ... unless out of range

Next_Task:
 idx = idx + 1 // 4 ' force idx to be 0..3
 GOTO Main

Task_0:
 DEBUG "BRANCHed to Task_0", CR
 GOTO Next_Task

Task_1:
 DEBUG "BRANCHed to Task_1", CR
 GOTO Next_Task

Task_2:
 DEBUG "BRANCHed to Task_2", CR
 GOTO Next_Task

Demo Program (BRANCH.bs2)

' BRANCH.bs2
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Nib

Main:
 DEBUG "idx: ", DEC1 idx, " "
 BRANCH idx, [Task_0, Task_1, Task_2] ' branch to task
 DEBUG "BRANCH target error...", CR, CR ' ... unless out of range

Next_Task:
 idx = idx + 1 // 4 ' force idx to be 0..3

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – BRANCH

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 135

 PAUSE 250
 GOTO Main

Task_0:
 DEBUG "BRANCHed to Task_0", CR
 GOTO Next_Task

Task_1:
 DEBUG "BRANCHed to Task_1", CR
 GOTO Next_Task

Task_2:
 DEBUG "BRANCHed to Task_2", CR
 GOTO Next_Task

BRANCH – BASIC Stamp Command Reference

Page 136 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – BUTTON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 137

BUTTON BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

BUTTON Pin, DownState, Delay, Rate, Workspace, TargetState, Address

Function
Monitor and process a pushbutton input, perform auto-repeat, and branch
to address if button is in target state. Button circuits may be active-low or
active-high.

• Pin is a variable/constant/expression (0–15) that specifies the I/O
pin to use. This pin will be set to input mode.

• DownState is a variable/constant/expression (0 or 1) that specifies
which logical state occurs when the button is pressed.

• Delay is a variable/constant/expression (0 – 255) that specifies how
long the button must be pressed before auto-repeat starts. The delay
is measured in cycles of the BUTTON routine. Delay has two special
settings: 0 and 255. If Delay is 0, BUTTON performs no debounce or
auto-repeat. If Delay is 255, BUTTON performs debounce, but no
auto-repeat.

• Rate is a variable/constant/expression (0 – 255) that specifies the
number of cycles between auto-repeats. The rate is expressed in
cycles of the BUTTON routine.

• Workspace is a byte variable used by BUTTON for workspace. It
must be cleared to 0 before being used by BUTTON for the first time
and should not be adjusted outside of the BUTTON command.
NOTE: All RAM is cleared to 0 by default upon power-up or reset
of the BASIC Stamp module.

• TargetState is a variable/constant/expression (0 or 1) that specifies
which state the button should be in for a branch to occur. (0=not
pressed, 1=pressed)

• Address is a label that specifies where to branch if the button is in the
target state.

Explanation
When you press a button or flip a switch, the contacts make or break a
connection. A brief (1 to 20-ms) burst of noise occurs as the contacts scrape
and bounce against each other. By scanning an input within a loop to

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1

1 All 2

BUTTON – BASIC Stamp Command Reference

Page 138 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

ensure that the contact remains in a specified state for a minimum
duration, spurious multiple inputs caused by contact noise can be
eliminated. The BUTTON instruction helps prevent this noise from being
interpreted as more than one switch action; this is the function of the Delay
parameter. For a demonstration of switch bounce, see the demo program
for the COUNT instruction. Delay, combined with the Rate argument,
allows the programmer to control the rate at which multiple inputs are
accepted by the BASIC Stamp.

BUTTON also lets PBASIC react to a button press the way your computer
keyboard does to a key press. When you press a key, a character
immediately appears on the screen. If you hold the key down, there’s a
delay, then a rapid-fire stream of characters appears on the screen.
BUTTON’s auto-repeat function can be set up to work much the same
way.

BUTTON is designed for use inside a program loop. Each time through
the loop, BUTTON checks the state of the specified pin. When it first
matches DownState, BUTTON begins the Delay countdown for auto-repeat.
Then, in accordance with TargetState, it either branches to Address
(TargetState = 1) or doesn’t (TargetState = 0).

If the switch stays in DownState, BUTTON counts the number of program
loops that execute. When this count equals Delay, BUTTON once again
triggers the action specified by TargetState and Address. Hereafter, if the
switch remains in DownState, BUTTON waits Rate number of cycles
between actions. The Workspace variable is used by BUTTON to keep
track of how many cycles have occurred since the Pin switched to
TargetState or since the last auto-repeat.

BUTTON does not stop program execution. In order for its delay and
auto-repeat functions to work properly, BUTTON must be executed from
within a program loop.

5: BASIC Stamp Command Reference – BUTTON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 139

Figure 5.1: Sample BUTTON
circuits. Active-high (left) and
active-low (right).

Demo Program (BUTTON.bs1)

' BUTTON.bs1
' Connect an active-low circuit to pin P0 of the BS1. When you press the
' button, the DEBUG screen will display an asterisk (*). The program, as
' shown below, will print an asterisk at the first button press, then
' delay approximately one second (200 x 5 ms PAUSE) before auto-repeating
' at a rate of approximately 100 ms (5 x 20 ms). Feel free to modify the
' program to see the effects of your changes on the way BUTTON responds.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL Btn = 0

SYMBOL btnWrk = B2

Main:
 ' Try changing the Delay value (200) in BUTTON to see the effect of
 ' its modes: 0 = no delay; 1-254 = varying delays before auto-repeat;
 ' 255 = no auto-repeat (only one action per button press)
 '
 ' The BUTTON instruction will cause the program to branch to
 ' No_Press unless P0 = 0

 PAUSE 5
 BUTTON Btn, 0, 200, 20, btnWrk, 0, No_Press
 DEBUG "*"

No_Press:
 GOTO Main

1

BUTTON – BASIC Stamp Command Reference

Page 140 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (BUTTON.bs2)

' BUTTON.bs2
' Connect an active-low circuit to pin P0 of the BS2. When you press the
' button, the DEBUG screen will display an asterisk (*). The program, as
' shown below, will print an asterisk at the first button press, then
' delay approximately one second (200 x 5 ms PAUSE) before auto-repeating
' at a rate of approximately 100 ms (5 x 20 ms). Feel free to modify the
' program to see the effects of your changes on the way BUTTON responds.

' {$STAMP BS2}
' {$PBASIC 2.5}

Btn PIN 0

btnWrk VAR Byte

Main:
 ' Try changing the Delay value (200) in BUTTON to see the effect of
 ' its modes: 0 = no delay; 1-254 = varying delays before auto-repeat;
 ' 255 = no auto-repeat (only one action per button press)
 '
 ' The BUTTON instruction will cause the program to branch to
 ' No_Press unless P0 = 0

 PAUSE 5
 BUTTON Btn, 0, 200, 20, btnWrk, 0, No_Press
 DEBUG "*"

No_Press:
 GOTO Main

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – COMPARE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 141

COMPARE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

COMPARE Mode, Variable

Function
Enable or disable comparator, compare voltages on P1 and P2 and retrieve
comparison result to store in Variable.

• Mode is a variable/constant/expression (0 – 2) that enables or
disables the comparator (input pins P1 and P2) and determines if the
optional comparator output pin (pin P0) is enabled or not. See Table
5.4 for an explanation of the Mode values.

• Variable is a variable (usually a bit) in which the comparison result is
stored.

Quick Facts
Table 5.4: COMPARE Quick
Facts.

 BS2px
0: Disables comparator
1: Enables comparator with P0 as result output Mode Values
2: Enables comparator without P0 as result output
0: Voltage P1 > P2; P0 optionally outputs 0 Variable Values
1: Voltage P1 < P2; P0 optionally outputs 1

Explanation
The COMPARE command enables or disables the built-in comparator
hardware on the BS2px’s I/O pins P0, P1, and P2. I/O pins P1 and P2 are
the comparator inputs and P0 is optionally the comparator result output
pin.

By default, the comparator feature is disabled. Using the COMPARE
command with a Mode argument of 1 or 2 enables the comparator feature
(using input pins P1 and P2) and returns the result of the comparison in
Variable. If Mode is 1, the result of the comparison is also output on I/O
pin P0. The following is an example of the COMPARE command:

Result VAR Bit
COMPARE 1, Result

This example enables the comparator (setting P0 to output the result, with
P1 and P2 as the comparator inputs) and writes the result of the
comparison into Result. Both Result and the output pin P0 will be 0 if the

COMPARE – BASIC Stamp Command Reference

Page 142 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

input voltage on P1 was greater than that of P2. Result and the output pin
P0 will be 1 if the input voltage on P1 was less than that of P2.

Note that the comparator hardware operates independently of the
execution speed of the BS2px and will continue to run and update P0 if
Mode = 1, even during sleep mode (execution of END, NAP, POLLWAIT 8,
or SLEEP commands). To avoid spurious current draw during sleep
mode, disable the comparator first.

Demo Program (COMPARE.bpx)

' COMPARE.bpx
' This example demonstrates the use of the COMPARE command.
' Connect two variable voltage sources (0 to 5 volts) on I/O pins
' P1 and P2 (or a button on each pin connected to ground). Run the program
' and watch the Debug Terminal display as you adjust the variable voltage
' or press the buttons.

' {$STAMP BS2px}
' {$PBASIC 2.5}

Result VAR Bit

#IF $STAMP <> BS2PX #THEN
 #ERROR "This program requires a BS2px."
#ENDIF

Setup:
 CONFIGPIN DIRECTION, %0000000000000001 'P0 = output, all others = input
 CONFIGPIN PULLUP, %0000000000000110 'Enable pull-ups on P1 and P2
 DEBUG "BS2px COMPARATOR DEMONSTRATION", CR,
 "==============================", CR,
 "Input Voltage: P1 > P2", CR,
 "Output State: P0 = 0"

Main:
DO 'Display P1/P2 comparison
 COMPARE 1, Result
 IF Result = 0 THEN
 DEBUG CRSRXY,18,2,">"
 ELSE
 DEBUG CRSRXY,18,2,"<"
 ENDIF
 DEBUG CRSRXY,20,3,BIN1 Result
LOOP

NOTE: This example program can be
used only with the BS2px.

5: BASIC Stamp Command Reference – CONFIGPIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 143

CONFIGPIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

CONFIGPIN Mode, PinMask

Function
Configure special properties of I/O pins.

• Mode is a variable/constant/expression (0 – 3), or one of four
predefined symbols, that specifies the I/O pin property to configure:
Schmitt Trigger, Logic Threshold, Pull-up Resistor or Output
Direction. See Table 5.5 for an explanation of Mode values.

• PinMask is a variable/constant/expression (1 – 65535) that indicates
how Mode is applied to I/O pins. Each bit of PinMask corresponds
to an individual I/O pin. A high bit (1) enables the Mode and a low
bit (0) disables the Mode on the corresponding I/O pin.

Quick Facts
Table 5.5: CONFIGPIN Quick
Facts.

 BS2px
0 (or SCHMITT): Schmitt Trigger
1 (or THRESHOLD): Logic Threshold
2 (or PULLUP): Pull-up Resistor

Mode Values

3 (or DIRECTION): Output Direction
Related Commands

(For DIRECTION Mode)
INPUT and OUTPUT, and the DIRx = # assignment statement

Explanation
The CONFIGPIN command enables or disables special I/O pin properties
on all 16 I/O pins at once. There are four properties, or modes, available:
Schmitt Trigger, Logic Threshold, Pull-up Resistor, and Output Direction.
Each I/O pin on the BS2px contains special hardware dedicated to each of
these properties.

By default, all BASIC Stamp I/O pins are set to inputs. Enabling the
Output Direction mode sets an I/O pin’s direction to output. Disabling
the Output Direction mode sets an I/O pin’s direction to input. This has
the same effect as using the OUTPUT or INPUT commands, or the
DIRx = # assignment statement to configure I/O pin directions. The
following is an example of the CONFIGPIN command using the Output
Direction mode:

CONFIGPIN DIRECTION, %0000000100010011

OUTPUT DIRECTION.

CONFIGPIN – BASIC Stamp Command Reference

Page 144 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Every high bit (1) in the PinMask argument enables the output direction
for the corresponding I/O pin while every low bit (0) disables the output
direction. In the above example, I/O pins 8, 4, 1, and 0 are set to the
output direction and all other I/O pins are set to the input direction. This
is similar to the following statement:

DIRS = %0000000100010011

Pull-up resistors are commonly used in circuitry where a component, such
as a button, provides an open/drain signal; the signal is either floating
(open) or is driven to ground (drain). Since the BASIC Stamp input pins
must always be connected to either 5 volts or ground (0 volts) in order to
read a reliable logic state with them, a pull-up resistor is required on
circuitry, such as the button circuit mentioned above, so that the signal is
never left floating (electrically disconnected).

The following example enables internal pull-up resistors on I/O pins 15,
12, 6, and 3, and disables internal pull-up resistors on all other I/O pins:

CONFIGPIN PULLUP, %1001000001001000

Note that the internal pull-up resistors are intentionally weak, about 20
kΩ. Additionally, the internal pull-up resistors can be activated for all
pins, regardless of pin direction, but really matter only when the
associated pin is set to input mode.

An input pin’s logic threshold determines the voltage levels that are
interpreted as logic high (1) and logic low (0). Most microcontrollers, and
other integrated circuits use one of two types of logic threshold: TTL Level
or CMOS Level. The BASIC Stamp I/O pins are, by default, configured
for TTL level logic thresholds. Figure 5.2 is an illustration of the difference
between TTL and CMOS logic levels.

TTL Logic Level CMOS Logic Level

Figure 5.2: TTL and CMOS Logic
Level Threshold Voltages

PULL-UP RESISTORS.

LOGIC THRESHOLD.

5: BASIC Stamp Command Reference – CONFIGPIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 145

The logic threshold for TTL is 1.4 volts; a voltage below 1.4 is considered
to be a logic 0 while a voltage above 1.4 is considered to be a logic 1. The
logic threshold for CMOS is 50% of Vdd; a voltage below ½ Vdd is
considered a logic 0 while a voltage above ½ Vdd is considered a logic 1.

For the CONFIGPIN command’s THRESHOLD mode, a high bit (1) in the
PinMask argument sets the corresponding I/O pin to CMOS threshold
level, and a low bit sets it to a TTL threshold level. The following example
sets CMOS threshold level on I/O pins 3, 2, 1, and 0, and TTL threshold
level on all other I/O pins.

CONFIGPIN THRESHOLD, %0000000000001111

The threshold level can be set for all pins, regardless of pin direction, but
really matters only when the associated pin is set to input mode.

Normally, if a signal on an input pin is somewhat noisy (the voltage level
randomly rises and falls beyond the logic threshold boundary) then
reading that pin’s input value will result in spurious highs and lows (1s
and 0s). Schmitt Triggers are circuits that make inputs more steady and
reliable by adding a region of hysteresis around the logic threshold that
the signal must completely traverse before the logic level is interpreted as
being changed. By default BASIC Stamp I/O pins are set to normal input
mode, but the BS2px can be configured for Schmitt Trigger mode as well.
Figure 5.3 illustrates Schmitt Trigger characteristics.

Figure 5.3: Schmitt Trigger
Characteristics

In Schmitt Trigger mode, the threshold for a logic 0 is approximately 15%
of Vdd and the threshold for a logic 1 is approximately 85% of Vdd. The
input pin defaults to an unknown state until the initial voltage crosses a
logic 0 or logic 1 boundary. Thereafter, the voltage must cross above 85%
of Vdd to be interpreted as a logic 1 and must cross below 15% of Vdd to
be interpreted as a logic 0. If the voltage transitions somewhere between
the two thresholds, the interpreted logic state remains the same as the
previous state.

SCHMITT TRIGGER

CONFIGPIN – BASIC Stamp Command Reference

Page 146 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For the CONFIGPIN command’s SCHMITT mode, a high bit (1) in the
PinMask argument enables the Schmitt Trigger on the corresponding I/O
pin and a low bit (0) disables the Schmitt Trigger. The following example
sets Schmitt Triggers on I/O pins 7, 6, 5, and 4, and sets all other I/O pins
to normal mode.

CONFIGPIN SCHMITT, %0000000011110000

Schmitt Trigger mode can be activated for all pins, regardless of pin
direction, but really matters only when the associated pin is set to input
mode.

Demo Program (CONFIGPIN.bpx)

' CONFIGPIN.BPX
' This example demonstrates the use of the CONFIGPIN command.
' All I/O pins are set to inputs with various combinations of
' Pull-Up Resistor, Logic Threshold and Schmitt-Trigger properties.
' While running, this program will constantly display the state of all
' input pins along with an indication of the configuration for each group
' of pins. Try connecting different input signals to the I/O pins (such as
' buttons, a function generator with a slowing sweeping signal (0 to 5
' VDC)) or simply running your fingers across the I/O pins and note how
' they react based upon their configured property.

' {$STAMP BS2px}
' {$PBASIC 2.5}

#IF $STAMP <> BS2PX #THEN
 #ERROR "This program requires a BS2px."
#ENDIF

Setup:
 CONFIGPIN DIRECTION, %0000000000000000 'Set all I/O pins to inputs
 CONFIGPIN PULLUP, %1111111111110000 'Enable pull-ups on pins 4 - 15
 CONFIGPIN THRESHOLD, %0000111100000000 'Set P8-P11 to CMOS, others TTL
 CONFIGPIN SCHMITT, %1111000000000000 'Enable Schmitt-Triggers P12-P15

 DEBUG CLS
 DEBUG " BS2px INPUT PIN CONFIGURATION TEST", CR,
 "===", CR,
 " P15-P12: Pull-Up Resistors, TTL & Schmitt-Triggers", CR,
 " /", CR,
 " / P11-P8: Pull-Up Resistors & CMOS", CR,
 " / /", CR,
 " | / P7-P4: Pull-Up Resistors & TTL", CR,
 " | | /", CR,
 " | | | P3-P0: Normal", CR,
 " | | | /", CR,

NOTE: This example program can be
used only with the BS2px.

5: BASIC Stamp Command Reference – CONFIGPIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 147

 " | | | |", CR,
 "---- ---- ---- ----"

Main:
DO
 'Display input pin states
 DEBUG CRSRXY,0,12, BIN4 IND, " ", BIN4 INC, " ", BIN4 INB, " ", BIN4 INA
LOOP

CONFIGPIN – BASIC Stamp Command Reference

Page 148 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – COUNT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 149

COUNT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

COUNT Pin, Duration, Variable

Function
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during the
Duration time frame and store that number in Variable.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to input mode.

• Duration is a variable/constant/expression (1 – 65535) specifying the
time during which to count. The unit of time for Duration is
described in Table 5.6.

• Variable is a variable (usually a word) in which the count will be
stored.

Quick Facts
Table 5.6: COUNT Quick Facts.

NOTE: All timing values are
approximate.

 BS2, BS2e BS2sx BS2p BS2pe BS2px
Units in Duration 1 ms 400 µs 287 µs 720 µs 287 µs

Duration range 1 ms to
65.535 s

400 µs to
26.214 s

287 µs to
18.809 s

720 µs to
47.18 s

287 µs to
18.809 s

Minimum pulse
width

4.16 µs 1.66 µs 1.20 µs 3.0 µs 1.20 µs

Maximum
frequency

(square wave)
120,000 Hz 300,000 Hz 416,700 Hz 166,667 Hz 416,700 Hz

Related
Command

PULSIN

Explanation
The COUNT instruction makes the Pin an input, then for the specified
Duration of time, counts cycles on that pin and stores the total in Variable.
A cycle is a change in state from 1 to 0 to 1, or from 0 to 1 to 0.

According to Table 5.6, COUNT on the BS2 can respond to transitions
(pulse widths) as small as 4.16 microseconds (µs). A cycle consists of two
transitions (e.g., 0 to 1, then 1 to 0), so COUNT (on the BS2) can respond to
square waves with periods as short as 8.32 µs; up to 120 kilohertz (kHz) in
frequency. For non-square waves (those whose high time and low time are
unequal), the shorter of the high and low times must be at least 4.16 µs in

All 2

COUNT – BASIC Stamp Command Reference

Page 150 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

width (on the BS2). Refer to Table 5.6 for data on other BASIC Stamp
models.

If you use COUNT on slowly changing analog waveforms like sine waves,
you may find that the value returned is higher than expected. This is
because the waveform may pass through the BASIC Stamp module’s logic
threshold slowly enough that noise causes false counts. You can fix this by
passing the signal through a Schmitt Trigger, like one of the inverters of a
74HCT14. Or, you may use the BS2px’s built-in Schmitt-Trigger pin
property; see the CONFIGPIN section beginning on page 143 for details.

Demo Program (COUNT.bs2)

' COUNT.bs2
' Connect an active-low button circuit shown in the BUTTON command
' description to pin P0 of the BS2. The DEBUG screen will prompt you to
' press the button as quickly as possible for a 1-second count. When the
' count is done, the screen will display your "score," the total number of
' cycles registered by COUNT. Note that this score will almost always
' be greater than the actual number of presses because of switch contact
' bounce.

' {$STAMP BS2}
' {$PBASIC 2.5}

PushBtn PIN 0 ' pushbutton on P0

#SELECT $STAMP
 #CASE BS2, BS2E
 DurAdj CON $100 ' / 1
 #CASE BS2SX
 DurAdj CON $280 ' / 0.400
 #CASE BS2P, BS2PX
 DurAdj CON $37B ' / 0.287
 #CASE BS2PE
 DurAdj CON $163 ' / 0.720
#ENDSELECT

Capture CON 1000 ' 1 second

cycles VAR Word ' counted cycles

Main:
 DO
 DEBUG CLS,
 "How many times can you press the button in 1 second?", CR
 PAUSE 1000
 DEBUG "Ready, set... "

All 2

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference – COUNT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 151

 PAUSE 500
 DEBUG "GO!", CR
 COUNT PushBtn, (Capture */ DurAdj), cycles
 DEBUG CR, "Your score: ", DEC cycles, CR
 PAUSE 3000
 DEBUG "Press button to go again."
 DO : LOOP UNTIL (PushBtn = 0) ' wait for button press
 LOOP
 END

COUNT – BASIC Stamp Command Reference

Page 152 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 153

DATA BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See EEPROM)
{ Symbol } DATA DataItem { , DataItem… }

Function
Write data to the EEPROM during program download.

• Symbol is an optional, unique symbol name that will be
automatically defined as a constant equal to the location number of
the first data item.

• DataItem is a constant/expression (0 – 65535) indicating a value, and
optionally how to store the value.

Quick Facts
Table 5.7: DATA Quick Facts.

 All BS2 Models

Special Notes Writes values to EEPROM during download in blocks of 16 bytes. Writes
byte or word-sized values. Can be used to decrease program size.

Related
Commands

READ and WRITE

Explanation
When you download a program into the BASIC Stamp, it is stored in the
EEPROM starting at the highest address (2047) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The DATA directive allows you
to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (i.e.: the DATA directive is
not downloaded to the BASIC Stamp, but the data it contains is
downloaded).

The simplest form of the DATA directive is something like the following:

DATA 100, 200, 52, 45

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you’ve stored there.

WRITING SIMPLE, SEQUENTIAL DATA.

1

All 2

DATA – BASIC Stamp Command Reference

Page 154 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DATA uses a counter, called a pointer, to keep track of available EEPROM
addresses. The value of the pointer is initially 0. When a program is
downloaded, the DATA directive stores the first byte value at the current
pointer address, then increments (adds 1 to) the pointer. If the program
contains more than one DATA directive, subsequent DATAs start with the
pointer value left by the previous DATA. For example, if the program
contains:
DATA 72, 69, 76, 76, 79
DATA 104, 101, 108, 108, 111

The first DATA directive will start at location 0 and increment the pointer
for each data value it stores (1, 2, 3, 4 and 5). The second DATA directive
will start with the pointer value of 5 and work upward from there. As a
result, the first 10 bytes of EEPROM will look like the following:

 EEPROM Location (address)
 0 1 2 3 4 5 6 7 8 9
Contents 72 69 76 76 79 104 101 108 108 111

Table 5.8: Example EEPROM
Storage.

What if you don’t want to store values starting at location 0? Fortunately,
the DATA directive has an option to specify the next location to use. You
can specify the next location number (to set the pointer to) by inserting a
DataItem in the form @x ;where x is the location number. The following
code writes the same data in Table 5.8 to locations 100 through 109:

DATA @100, 72, 69, 76, 76, 79, 104, 101, 108, 108, 111

In this example, the first DataItem is @100. This tells the DATA directive to
store the following DataItem(s) starting at location 100. All the DataItems to
the right of the @100 are stored in their respective locations (100, 101,
102… 109).

In addition, the DATA directive allows you to specify new starting
locations at any time within the DataItem list. If, for example, you wanted
to store 56 at location 100 and 47 at location 150 (while leaving every other
location intact), you could type the following:

DATA @100, 56, @150, 47

If you have multiple DATA directives in your program, it may be difficult
to remember exactly what locations contain the desired data. For this
reason, the DATA directive can optionally be prefixed with a unique

THE DATA POINTER (COUNTER).

WRITING DATA TO OTHER LOCATIONS.

AUTOMATIC CONSTANTS FOR DEFINED
DATA.

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 155

symbol name. This symbol becomes a constant that is set equal to the
location number of the first byte of data within the directive. For example,

MyNumbers DATA @100, 72, 73

This would store the values 72 and 73 starting with location 100 and will
create a constant, called MyNumbers, which is set equal to 100. Your
program can then use the MyNumbers constant as a reference to the start of
the data within a READ or WRITE command. Each DATA directive can
have a unique symbol preceding it, allowing you to reference the data
defined at different locations.

There may be a time when you wish to reserve a section of EEPROM for
use by your BASIC code, but not necessarily store data there to begin with.
To do this, simply specify a DataItem within parentheses, as in:

DATA @100, (20)

The above DATA directive will reserve 20 bytes of EEPROM, starting with
location 100. It doesn’t store any values there, rather it simply leaves the
data as it is and increments DATA’s location pointer by 20. A good reason
to do this is when you have a program already downloaded into the
BASIC Stamp that has created or manipulated some data in EEPROM. To
protect that section of EEPROM from being overwritten by your next
program (perhaps a new version of the same program) you can reserve the
space as shown above. The EEPROM’s contents from locations 100 to 119
will remain intact. NOTE: This only "reserves" the space for the program
you are currently downloading; the BASIC Stamp does not know to
"reserve" the space for future programs. In other words, make sure use
this feature of the DATA directive in every program you download if you
don't want to risk overwriting valuable EEPROM data.

It is important to realize that EEPROM is not overwritten during
programming unless it is needed for program storage, or is filled by a
DATA directive specifying data to be written. During downloading,
EEPROM is always written in 16-byte sections if, and only if, any
location within that section needs writing.

DATA can also store the same number in a block of consecutive locations.
This is similar to reserving a block of EEPROM, above, but with a value
added before the first parenthesis.

RESERVING EEPROM LOCATIONS.

WRITING A BLOCK OF THE SAME VALUE.

IMPORTANT CONCEPT: HOW DATA AND
PROGRAMS ARE DOWNLOADED INTO
EEPROM.

DATA – BASIC Stamp Command Reference

Page 156 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For example,

DATA @100, 0 (20)

This statement writes the value 0 in all the EEPROM locations from 100 to
119.

A common use for DATA is to store strings; sequences of bytes
representing text. PBASIC converts quoted text like "A" into the
corresponding ASCII character code (65 in this case). To make data entry
easier, you can place quotes around a whole chunk of text used in a DATA
directive, and PBASIC will understand it to mean a series of bytes (see the
last line of code below). The following three DATA directives are
equivalent:

DATA 72, 69, 76, 76, 79
DATA "H", "E", "L", "L", "O"
DATA "HELLO"

All three lines of code, above, will result in the numbers 72, 69, 76, 76, and
79 being stored into EEPROM upon downloading. These numbers are
simply the ASCII character codes for "H", "E", "L", "L", and "O",
respectively. See the Demo program, below, for an example of storing and
reading multiple text strings.

The EEPROM is organized as a sequential set of byte-sized memory
locations. By default, the DATA directive stores bytes into EEPROM. If
you try to store a word-sized value (ex: DATA 1125) only the lower byte
of the value will be stored. This does not mean that you can't store word-
sized values, however. A word consists of two bytes, called a low-byte
and a high-byte. If you wanted to store the value 1125 using the DATA
directive, simply insert the prefix "word" before the number, as in:

DATA Word 1125

The directive above will automatically break the word-sized value into
two bytes and store them into two sequential EEPROM locations (the low-
byte first, followed by the high-byte). In this case, the low-byte is 101 and
the high byte is 4 and they will be stored in locations 0 and 1, respectively.
If you have multiple word-sized values, you must prefix each value with
"word", as in:

DATA Word 1125, Word 2000

WRITING TEXT STRINGS.

WRITING WORD VALUES VS. BYTE VALUES.

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 157

To retrieve a word-sized value, you'll need to use the WORD modifier in
the READ command and a word-sized variable.

Finally, a DataItem may be defined using a simple expression with the
binary operators shown in Table 4.5. For example,

MinLvl CON 10

myLvl VAR Byte

Level1 DATA MinLvl + 10
Level2 DATA MinLvl * 5 + 21

READ Level2, myLvl ' read EE location Level2
DEBUG DEC myLvl ' show value of myLvl (71)

Demo Program (DATA.bs2)

' DATA.bs2
' This program stores a number of large text strings into EEPROM with the
' DATA directive and then sends them, one character at a time via the DEBUG
' command. This is a good demonstration of how to save program space by
' storing large amounts of data in EEPROM directly, rather than embedding
' the data into DEBUG commands.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Word ' current location number
phrase VAR Nib ' current phrase number
char VAR Byte ' character to print

' ----- Define all text phrases (out of order, just for fun!) -----
'
Text1 DATA "Here is the first part of a large chunk of textual "
 DATA "data ", CR, "that needs to be transmitted. There's "
 DATA "a 5 second delay", CR, "between text paragraphs. ", CR
 DATA CR, 0

Text3 DATA "The alternative (having multiple DEBUGs or SEROUTs, "
 DATA "each ", CR, "with their own line of text) consumes "
 DATA "MUCH more EEPROM ", CR, "(program) space. ", CR
 DATA CR, 0

Text6 DATA "The 0 is used by this program to indicate we've "
 DATA "reached the ", CR, "End of Text. The Main routine "
 DATA "pauses in between each block of", CR, "text,and then "
 DATA "uses a LOOKUP command to retrieve the location ", CR
 DATA "of the next desired block of text to print. ", 0

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

DATA – BASIC Stamp Command Reference

Page 158 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Text4 DATA CLS, "This program also demonstrates retrieving data "
 DATA "out of order ", CR, "in relation to the way it is "
 DATA "stored in EEPROM. Additionally,", CR, "control codes "
 DATA "(like carriage-returns, clear-screens, etc) can ", CR
 DATA "be embedded right in the data, as it is here. ", CR
 DATA CR, 0

Text2 DATA "This is an example of a good way to save space in "
 DATA "your ", CR, "BASIC Stamp's program by storing data "
 DATA "into EEPROM and ", CR, "retrieving it, one byte at a "
 DATA "time, and transmitting it ", CR, "with just a single "
 DATA "DEBUG (or SEROUT) command.", CR, CR, 0

Text5 DATA "The Print_It routine simply takes the idx variable, "
 DATA "retrieves", CR, "the character at the EEPROM location "
 DATA "pointed to by it, and ", CR, "prints it to the screen "
 DATA "until it finds a byte with a value of 0.", CR, CR, 0

Main:
 DEBUG CLS ' Clear DEBUG window
 FOR phrase = 1 TO 6 ' Print blocks one by one
 LOOKUP (phrase - 1),
 [Text1, Text2, Text3, Text4, Text5, Text6], idx
 GOSUB Print_It
 PAUSE 5000 ' Pause for 5 seconds
 NEXT
 END

Print_It:
 DO
 READ idx, char ' Get next character
 idx = idx + 1 ' Point to next location
 IF (char = 0) THEN EXIT ' If 0, we're done with block
 DEBUG char ' Otherwise, transmit it
 LOOP
 RETURN ' Return to the main routine

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 159

DEBUG BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DEBUG OutputData { , OutputData }

Function
Display information on the PC screen within the BASIC Stamp Editor’s
Debug Terminal. This command can be used to display text or numbers in
various formats on the PC screen in order to follow program flow (called
debugging) or as part of the functionality of the BASIC Stamp application.

• OutputData is a variable/constant/expression (0 – 65535) that
specifies the information to output. Valid data can be ASCII
characters (text strings and control characters), decimal numbers (0 -
65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up
to %1111111111111111). Data can be modified with special
formatters as explained below.

Quick Facts
Table 5.9: DEBUG Quick Facts.

BS1 BS2, BS2e, BS2sx

BS2p, BS2pe
BS2px

Serial
Protocol

Asynchronous
4800, N, 8, 1
True polarity

Custom packetized format

Asynchronous
9600, N, 8, 1

Inverted polarity
Raw data

Asynchronous
19200, N, 8, 1

Inverted polarity
Raw data

Related
Commands

None SEROUT and DEBUGIN

Explanation
DEBUG provides a convenient way for your BASIC Stamp to send
messages to the PC screen while running. The name “debug” suggests its
most popular use; debugging programs by showing you the value of a
variable or expression, or by indicating what portion of a program is
currently executing. DEBUG is also a great way to rehearse programming
techniques. Throughout this manual, we use DEBUG to give you
immediate feedback on the effects of instructions. The following example
demonstrates using the DEBUG command to send the text string message
“Hello World!”.

DEBUG "Hello, World!"

After you download this one-line program, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from

NOTE: Expressions are not allowed as
arguments on the BS1. The only
constant allowed for the BS1 DEBUG
command is a text string.

1

1 All 2

DEBUG – BASIC Stamp Command Reference

Page 160 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

the BASIC Stamp. A moment later, the phrase "Hello World!" will appear.
Note that if you close the Debug Terminal, your program keeps executing,
but you can’t see the DEBUG data anymore.

Multiple pieces of data can be sent with one DEBUG command by
separating the data with commas (,). The following example produces
exactly the same results as the example above.

DEBUG "Hello ", "World!"

DEBUG can also print and format numbers (values) from both constants
and variables. The formatting methods for DEBUG are very different for
the BS1, than for any other BASIC Stamp. Please read the appropriate
sections, below, carefully.

BASIC Stamp 1 Formatting
On the BS1, the DEBUG command, by default, displays numbers in the
format "symbol = value" (followed by a carriage return), using the decimal
number system. For example,

SYMBOL x = B2

x = 75
DEBUG x

displays "x = 75" on the screen. To display the value, in decimal, without
the "x =" text, use the value formatter (#) before the variable name. For
example, the following code displays "75" on the screen.

SYMBOL x = B2

x = 75
DEBUG #x

To display numbers in hexadecimal or binary form, use the $ or %
formatter, respectively. The code below displays the same number in its
hexadecimal and binary forms.

SYMBOL x = B2

x = 75
DEBUG $x, %x

DISPLAYING DECIMAL NUMBERS (BS1).

DISPLAYING HEXADECIMAL OR BINARY
NUMBERS (BS1).

1

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 161

After running the above code, "x = $4B" and "x = %01001011" should
appear on the screen. To display hexadecimal or binary values without
the "symbol = " preface, use the value formatter (#) before the $ and %, as
shown below:

SYMBOL x = B2

x = 75
DEBUG #x, "as HEX is ", #$x ' displays "75 as HEX is $4B"
DEBUG #x, "as BINARY is ", #%x ' displays "75 as BINARY is %01001011"

To display a number as its ASCII character equivalent, use the ASCII
formatter (@).

SYMBOL x = B2

x = 75
DEBUG @x

Table 5.10: DEBUG Formatters for
the BASIC Stamp 1.

Formatter Description

Suppresses the "symbol = x" format and displays only the 'x' value.
The default format is decimal but may be combined with any of the
formatters below (ex: #x to display: x value)

@
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

$ Hexadecimal text.
% Binary text.

Two pre-defined symbols, CR and CLS, can be used to send a carriage-
return or clear-screen command to the Debug Terminal. The CR symbol
will cause the Debug Terminal to start a new line and the CLS symbol will
cause the Debug Terminal to clear itself and place the cursor at the top-left
corner of the screen. The following code demonstrates this.

DEBUG "You can not see this.", CLS, "Here is line 1", CR, "Here is line 2"

When the above is run, the final result is "Here is line 1" on the first line of
the screen and "Here is line 2" on the second line. You may or may not
have seen "You can not see this." appear first. This is because it was
immediately followed by a clear-screen symbol, CLS, which caused the
display to clear the screen before displaying the rest of the information.

NOTE: The rest of this discussion does not apply to the BASIC Stamp 1.

USING CR AND CLS (BS1).

DISPLAYING ASCII CHARACTERS (BS1).

DEBUG – BASIC Stamp Command Reference

Page 162 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2, 2e, 2sx, 2p, 2pe, and 2px Formatting
On the all BASIC Stamp models except the BS1, the DEBUG command, by
default, displays everything as ASCII characters. What if you want to
display a number? You might think the following example would do this:

x VAR Byte

x = 65
DEBUG x ' Try to show decimal value of x

Since we set x equal to 65 (in line 2), you might expect the DEBUG line to
display “65” on the screen. Instead of “65”, however, you’ll see the letter
“A” if you run this example. The problem is that we never told the BASIC
Stamp how to output x, and it defaults to ASCII (the ASCII character at
position 65 is “A”). Instead, we need to tell it to display the “decimal
form” of the number in x. We can do this by using the decimal formatter
(DEC) before the variable. The example below will display “65” on the
screen.

x VAR Byte

x = 65
DEBUG DEC x ' Show decimal value of x

In addition to decimal (DEC), DEBUG can display numbers in
hexadecimal (HEX) and binary (BIN). See Table 5.11 and Table 5.12 for a
complete list of formatters.

Expressions are allowed within the DEBUG command arguments as well.
In the above code, DEBUG DEC x+25 would yield "90" and DEBUG
DEC x*10/2-3 would yield "322".

DISPLAYING ASCII CHARACTERS.

DISPLAYING DECIMAL NUMBERS.

All 2

DISPLAYING HEXADECIMAL AND
BINARY NUMBERS.

EXPRESSIONS IN DEBUG
COMMANDS.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 163

Table 5.11: DEBUG Special
Formatters for all BS2 models.

Special Formatter Action

?
Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display "x =
binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an
ASCII character.

STR ByteArray {\L}

Send character string from an array. The optional \L
argument can be used to limit the output to L characters,
otherwise, characters will be sent up to the first byte equal to
0 or the end of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

Table 5.12: DEBUG Conversion
Formatters for all BS2 models.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1,3

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4}
Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.
3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD

Conversion” on page 97.

As seen in Table 5.12, special versions of the DEC, HEX and BIN
formatters allow for the display of indicated, signed and fixed-width
numbers. The term "indicated" simply means that a special symbol is
displayed, before the number, indicating what number system it belongs
to. For example,

x VAR Byte

x = 65
DEBUG HEX x ' Show hexadecimal value of x

displays "41" (65, in decimal, is 41, in hexadecimal). You might see a
problem here… unless you knew the number was supposed to be

DISPLAYING "INDICATED" NUMBERS.

DEBUG – BASIC Stamp Command Reference

Page 164 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

hexadecimal, you might think it was 41, in decimal… a totally different
number. To help avoid this, use the IHEX formatter (the "I" stands for
indicated). Changing the DEBUG line to read: DEBUG IHEX x would
print "$41" on the screen. A similar formatter for binary also exists, IBIN,
which prints a "%" before the number.

Signed numbers are preceded with a space () or a minus sign (-) to
indicate a positive or negative number, respectively. Normally, any
number displayed by the BASIC Stamp is shown in its unsigned (positive)
form without any indicator. The signed formatters allow you to display
the number as a signed (rather than unsigned) value. NOTE: Only Word-
sized variables can be used for signed number display. The code below
demonstrates the difference in all three numbering schemes.

x VAR Word

x = -65
DEBUG "Signed: ", SDEC x, " ", ISHEX x, " ", ISBIN x, CR
DEBUG "Unsigned: ", DEC x, " ", IHEX x, " ", IBIN x

This code will generate the display shown below:

Signed: -65 -$41 -%1000001
Unsigned: 65471 $FFBF %1111111110111111

The signed form of the number –65 is shown in decimal, hexadecimal and
then in binary on the top line. The unsigned form, in all three number
systems, is shown on the bottom line. If the unsigned form looks strange
to you, it's because negative numbers are stored in twos complement
format within the BASIC Stamp.

Suppose that your program contained several DEBUG instructions
showing the contents of different variables. You would want some way to
tell them apart. One possible way is to do the following:

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG "X = ", DEC x, CR ' Show decimal value of x
DEBUG "Y = ", DEC y, CR ' Show decimal value of y

DISPLAYING SIGNED VS. UNSIGNED
NUMBERS.

AUTOMATIC NAMES IN THE DISPLAY.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 165

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

x = 100
y = 250

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed/Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 5.12).
Up to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

x VAR Byte

x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits

DISPLAYING FIXED-WIDTH NUMBERS.

DEBUG – BASIC Stamp Command Reference

Page 166 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

displays "00165". Notice that leading zeros? The display is "fixed" to 5
digits, no more and no less. Any unused digits will be filled with zeros.

Using DEC4 in the same code would display "0165". DEC3 would display
"165". What would happen if we used DEC2? Regardless of the number,
the BASIC Stamp will ensure that it is always the exact number of digits
you specified. In this case, it would truncate the "1" and only display "65".

Using the fixed-width version of the formatters in the Signed/Unsigned
code above, may result in the following code:

x VAR Word

x = -65
DEBUG "Signed: ", SDEC5 x, " ", ISHEX4 x, " ", ISBIN16 x, CR
DEBUG "Unsigned: ", DEC5 x, " ", IHEX4 x, " ", IBIN16 x

and displays:

Signed: -00065 -$0041 -%0000000001000001
Unsigned: 65471 $FFBF %1111111110111111

Note: The columns don't line up exactly (due to the extra "sign" characters
in the first row), but it certainly looks better than the alternative.

If you have a string of characters to display (a byte array), you can use the
STR formatter to do so. The STR formatter has two forms (as shown in
Table 5.11) for variable-width and fixed-width data. The example below is
the variable-width form.

x VAR Byte(5)

x(0) = "A"
x(1) = "B"
x(2) = "C"
x(3) = "D"
x(4) = 0
DEBUG STR x

This code displays "ABCD" on the screen. In this form, the STR formatter
displays each character contained in the byte array until it finds a
character that is equal to 0 (value 0, not "0"). This is convenient for use
with the SERIN command's STR formatter, which appends 0's to the end
of variable-width character string inputs. NOTE: If your byte array

DISPLAYING STRINGS (BYTE ARRAYS).

VARIABLE-WIDTH STRINGS.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 167

doesn't end with 0, the BASIC Stamp will read and output all RAM
register contents until it finds a 0 or until it cycles through all RAM
locations.

To specify a fixed-width format for the STR formatter, use the form
STR x\n; where x is the byte array and n is the number of characters to
print. Changing the DEBUG line in the example above to: DEBUG STR
x\2 would display "AB" on the screen.

If you need to display the same ASCII character multiple times, the REP
(repeat) formatter can help. REP takes the form: REP x\n ;where x is the
character and n is the number of times to repeat it. For example:

DEBUG REP "-"\10

would display 10 hyphens on the screen, "----------".

Since individual DEBUG instructions can grow to be fairly complicated,
and since a program can contain many DEBUGS, you’ll probably want to
control the character positioning of the Debug Terminal screen. DEBUG
supports a number of different control characters, some with pre-defined
symbols (see Table 5.13).

All of the control characters have pre-defined symbols associated with
them. In your DEBUG commands, you can use those symbols, for
example: DEBUG "Hello", CR displays "Hello" followed by a carriage
return. You can always use the ASCII value for any of the control
characters, however. For example: DEBUG "Hello", 13 is exactly the
same as the code above.

The Move To (x,y) control character allows positioning to a specific
column and row of the display. If the Debug Terminal receives this
character, it expects to see an x and y position value to follow (in the next
two characters received). The following line moves the cursor to column
number 4 in row number 5 and displays "Hello":

' {$PBASIC 2.5}

DEBUG CRSRXY, 4, 5, "Hello"

FIXED-WIDTH STRINGS.

REPEATING CHARACTERS.

SPECIAL CONTROL CHARACTERS.

DEBUG – BASIC Stamp Command Reference

Page 168 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The upper-left cursor position is 0,0 (that is column 0, row 0). The right-
most cursor positions depend on the size of the Debug Terminal window
(which is user adjustable). If a character position that is out of range is
received, the Debug Terminal wraps back around to the opposite side of
the screen.

The Move To Column (x) and Move To Row (y) control characters work
similarly to Move To (x,y) except they only expect a singe position value to
follow.
The Clear Right (CLREOL) control character clears the characters that
appear to the right of, and on, the cursor's current position. The cursor is
not moved by this action.

The Clear Down (CRLDN) control character clears the characters that
appear below, and on, the cursor's current line. The cursor is not moved
by this action.

Name Symbol ASCII
Value

Description

Clear Screen CLS 0 Clear the screen and place cursor at home
position.

Home HOME 1 Place cursor at home in upper-left corner of
the screen.

Move To (x,y) CRSRXY 2.5 2 Move cursor to specified location. Must be
followed by two values (x and then y)

Cursor Left CRSRLF2.5 3 Move cursor one character to left.
Cursor Right CRSRRT2.5 4 Move cursor one character to right.
Cursor Up CRSRUP2.5 5 Move cursor one character up.
Cursor Down CRSRDN2.5 6 Move cursor one character down.
Bell BELL 7 Beep the PC speaker.
Backspace BKSP 8 Back up cursor to left one space.
Tab TAB 9 Tab to the next column.
Line Feed LF2.5 10 Move cursor down one line.
Clear Right CLREOL2.5 11 Clear line contents to the right of cursor.
Clear Down CLRDN2.5 12 Clear screen contents below cursor.
Carriage Return CR 13 Move cursor to the first column of the next

line (shift any data on the right down to that
line as well).

Move To
Column X

CRSRX2.5 14 Move cursor to specified column. Must be
followed by byte value (x) for the column (0
is the left-most column).

Move To Row Y CRSRY2.5 15 Move cursor to specified row. Must be
followed by byte value (y) for the row (0 is
the top-most row).

Table 5.13: Special DEBUG Control
Characters for all BS2 models.

NOTE: (2.5) indicates this control
character requires the PBASIC 2.5
compiler directive.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 169

On all the BS2 models, DEBUG is actually a special case of the SEROUT
instruction. It is set for inverted (RS-232-compatible) serial output through
the programming connector (the SOUT pin) at 9600 baud, no parity, 8 data
bits, and 1 stop bit. For example,

DEBUG "Hello"

is exactly like:

' {$STAMP BS2}

SEROUT 16, $4054, ["Hello"]

in terms of function on a BS2. The DEBUG line actually takes less
program space, and is obviously easier to type.

Another method to decrease program space is to reduce the number of
DEBUG instructions by spreading DEBUG data across multiple lines. To
do this, each line that wraps around must end with a comma as in the
example below:

' {$PBASIC 2.5}

DEBUG "This is line 1", CR,
 "This is line 2"

The example above works identically to, but uses less program space than
this version:

DEBUG "This is line 1", CR
DEBUG "This is line 2"

Note that spreading a DEBUG statement across multiple lines requires the
declaration of PBASIC 2.5 syntax.

You may view DEBUG's output using a terminal program set to the above
parameters, but you may have to modify either your development board
or the serial cable to temporarily disconnect pin 3 of the BASIC Stamp (pin
4 of the DB-9 connector). See the SEROUT command for more detail.

A demo program for all BS2 models that uses DEBUG and DEBUGIN
commands can be found at the end of the DEBUGIN section, next.

TECHNICAL BACKGROUND

All 2

DEBUG – BASIC Stamp Command Reference

Page 170 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – DEBUGIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 171

DEBUGIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DEBUGIN InputData { , InputData }

Function
Accept information from the user via the Debug Terminal within the
BASIC Stamp Editor program.

• InputData is list of variables and formatters that tells DEBUGIN what
to do with incoming data. DEBUGIN can store data in a variable or
array, interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.14: DEBUGIN Quick
Facts.

 BS2, BS2e, BS2sx, BS2p, BS2pe BS2px

Serial Protocol Asynchronous 9600 baud N, 8, 1
Inverted Polarity, Raw Data

Asynchronous 19200 baud N, 8, 1
Inverted Polarity, Raw Data

Related
Commands

SERIN and DEBUG

Explanation
DEBUGIN provides a convenient way for your BASIC Stamp to accept
input from the user via the Debug Terminal. DEBUGIN can wait for, filter
and convert incoming data in powerful ways, using the same techniques
and modifiers as SERIN.

DEBUGIN is actually a special case of the SERIN instruction. It is set for
inverted (RS-232-compatible) serial input through the programming
connector (the SIN pin) at 9600 baud (19200 baud on BS2px), no parity, 8
data bits, and 1 stop bit.

For example:

DEBUGIN DEC1 myNum

All 2
NOTE: DEBUGIN requires the
$PBASIC 2.5 compiler directive.

DEBUGIN – BASIC Stamp Command Reference

Page 172 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

is exactly like:

' {$STAMP BS2}

SERIN 16, $4054, [DEC1 myNum]

in terms of function on a BS2. The DEBUGIN line actually takes less
program space, and is obviously easier to type. Example:

' {$PBASIC 2.5}

myNum VAR Nib

DEBUG CLS, "Enter a number (1 - 5)? --> "
DEBUGIN DEC1 myNum
IF ((myNum >= 1) AND (myNum <= 5)) THEN
 DEBUG CLS, "You entered: ", DEC1 myNum
ELSE
 DEBUG CLS, "Sorry, number out of range"
ENDIF
END

The tables below list all the special formatters and conversion formatters
available to the DEBUGIN command. See the SERIN instruction for
additional information and examples of their use.

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67 or
“ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

Table 5.15: DEBUGIN Special
Formatters.

There is an additional special formatter for the BS2p, BS2pe, and BS2px:

Special Formatter Action

SPSTR L
Input a character string of length L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the
characters.

Table 5.16: DEBUGIN Additional
Special Formatter for the BS2p,
BS2pe, and BS2px.

5: BASIC Stamp Command Reference – DEBUGIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 173

Table 5.17: DEBUGIN Conversion
Formatters.

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to 1 – 4
digits

-, 0 through 9, A
through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to 1 –
4 digits

$, 0 through 9, A
through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through 9,
A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number must
be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

1 All numeric conversions will continue to accept new data until receiving either the specified

number of digits (ex: three digits for DEC3) or a non-numeric character.
2 To be recognized as part of a number, the minus sign (-) must immediately precede a

numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

DEBUGIN – BASIC Stamp Command Reference

Page 174 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (DEBUGIN.bs2)

' DEBUGIN.bs2
' This program demonstrates the ability to accept user input from the
' Debug Terminal, and to accept numeric entry in any valid format.

' {$STAMP BS2}
' {$PBASIC 2.5}

myNum VAR Word

Main:
 DO
 DEBUG CLS, "Enter any number: " ' prompt user
 DEBUGIN SNUM myNum ' retrieve number in any format

 DEBUG CLS, ' display number in all formats
 SDEC ? myNum,
 SHEX ? myNum,
 SBIN ? myNum
 PAUSE 3000
 LOOP ' do it again
 END

All 2
NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – DO...LOOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 175

DO…LOOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DO { WHILE | UNTIL Condition(s) }
 Statement(s)
LOOP { WHILE | UNTIL Condition(s) }

Function
Create a repeating loop that executes the Statement(s), one or more
program lines that form a code block, between DO and LOOP, optionally
testing Condition(s) before or after the Statement(s).

• Condition is an optional variable/constant/expression (0 - 65535)
which determines whether the loop will run or terminate. Condition
must follow WHILE or UNTIL.

• Statement is any valid PBASIC instruction.

Quick Facts
Table 5.18: DO...LOOP Quick
Facts.

 All BS2 Models
Maximum Nested Loops 16

WHILE Condition Evaluation Run loop if Condition evaluates as true
UNTIL Condition Evaluation Terminate loop if Condition evaluates as true

Related Commands FOR...NEXT and EXIT

Explanation
DO...LOOP loops let a program execute a series of instructions indefinitely
or until a specified condition terminates the loop. The simplest form is
shown here:

' {$PBASIC 2.5}

DO
 DEBUG "Error...", CR
 PAUSE 2000
LOOP

In this example the error message will be printed on the Debug screen
every two seconds until the BASIC Stamp is reset. Simple DO...LOOP
loops can be terminated with EXIT.

All 2
NOTE: DO...LOOP requires the
PBASIC 2.5 compiler directive.

DO...LOOP – BASIC Stamp Command Reference

Page 176 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For example:

' {$PBASIC 2.5}

AckPin PIN 0
Pressed CON 1

DO
 DEBUG "Error...", CR
 IF (AckPin = Pressed) THEN EXIT ' wait for user button press
 PAUSE 2000
LOOP
GOTO Initialize ' re-initialize system

In this case the DO...LOOP will continue until the pin called AckPin is
equal to Pressed (1), and then the loop will terminate and continue at the
line GOTO Initialize.

More often than not, you will want to test some condition to determine
whether the code block should run or continue to run. A loop that tests the
condition before running code block is constructed like this:

' {$PBASIC 2.5}

reps VAR Nib

DO WHILE (reps < 3) ' test before loop statements
 DEBUG "*"
 reps = reps + 1
LOOP

In this program the instructions DEBUG "*" and reps = reps + 1 will not
run unless the WHILE condition evaluates as True. Another way to write
the loop is like this:

' {$PBASIC 2.5}

reps VAR Nib

DO
 DEBUG "*"
 reps = reps + 1
LOOP UNTIL (reps >= 3) ' test after loop statements

The difference is that with this loop, the code block will always be run at
least once before the condition is tested and will continue to run as long as
the UNTIL condition evaluates as False.

5: BASIC Stamp Command Reference – DO...LOOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 177

Note that the WHILE test (loop runs WHILE Condition is True) and UNTIL
test (loop runs UNTIL Condition is True) can be interchanged, but they are
generally used as illustrated above.

Demo Program (DO-LOOP.bs2)

' DO-LOOP.bs2
' This program creates a little guessing game. It starts by creating
' a (pseudo) random number between 1 and 10. The inner loop will run
' until the answer is guessed or 10 tries have been attempted. The
' outer loop has no condition and will cause the inner loop code to
' run until the BASIC Stamp is reprogrammed.

' {$STAMP BS2}
' {$PBASIC 2.5}

rVal VAR Word ' random value
answer VAR Byte ' game answer
guess VAR Byte ' player guess
tries VAR Nib ' number of tries

Main:
 DO
 RANDOM rVal
 answer = rVal.LOWBYTE */ 10 + 1 ' create 1 - 10 answer
 tries = 0

 DO ' get answer until out of tries
 DEBUG CLS,
 "Guess a number (1 - 10): "
 DEBUGIN DEC guess ' get new guess
 tries = tries + 1 ' update tries count
 LOOP UNTIL ((tries = 10) OR (guess = answer))

 IF (guess = answer) THEN ' test reason for loop end
 DEBUG CR, "You got it!"
 ELSE
 DEBUG CR, "Sorry ... the answer was ", DEC answer, "."
 ENDIF
 PAUSE 1000
 LOOP ' run again
 END

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

DO...LOOP – BASIC Stamp Command Reference

Page 178 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – DTMFOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 179

DTMFOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DTMFOUT Pin, { OnTime, OffTime, } [Tone {, Tone…}]

Function
Generate dual-tone, multifrequency tones (DTMF, i.e., telephone “touch”
tones).

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode during generation of
tones and set to input mode afterwards.

• OnTime is an optional variable/constant/expression (0 – 65535)
specifying a duration of the tone. The unit of time and the default
time for OnTime is described in Table 5.19.

• OffTime is an optional variable/constant/expression (0 – 65535)
specifying the length of silent pause after a tone (or between tones, if
multiple tones are specified). The unit of time and the default time
for OffTime is described in Table 5.19.

• Tone is a variable/constant/expression (0 – 15) specifying the DTMF
tone to generate. Tones 0 through 11 correspond to the standard
layout of the telephone keypad, while 12 through 15 are the fourth-
column tones used by phone test equipment and in ham-radio
applications.

Quick Facts
Table 5.19: DMTFOUT Quick Facts.

 BS2, BS2e BS2sx BS2p BS2pe BS2px
Default OnTime 200 ms 80 ms 55 ms 196 ms 34 ms
Default OffTime 50 ms 50 ms 50 ms 50 ms 50 ms
Units in OnTime 1 ms 0.4 ms 0.265 ms 1 ms 0.166 ms
Units in OffTime 1 ms 1 ms 1 ms 1 ms 1 ms

Related Command FREQOUT

Explanation
DTMF tones are used to dial the phone or remotely control certain radio
equipment. The BASIC Stamp can generate these tones digitally using the
DTMFOUT instruction. Figure 5.4 shows how to connect a speaker or
audio amplifier to hear these tones and Figure 5.5 shows how to connect
the BASIC Stamp to the phone line.

All 2

DTMFOUT – BASIC Stamp Command Reference

Page 180 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The following DTMFOUT instruction will generate DTMF tones on I/O
pin 10:

DTMFOUT 10, [6, 2, 4, 8, 3, 3, 3] ' Call Parallax

If the BASIC Stamp is connected to the phone line properly, the above
command would be equivalent to dialing 624-8333 from a phone keypad.
If you wanted to slow the pace of the dialing to accommodate a noisy
phone line or radio link, you could use the optional OnTime and OffTime
values:

DTMFOUT 10, 500, 100, [6, 2, 4, 8, 3, 3, 3] ' Call Parallax, slowly

In this example, on a BS2 the OnTime is set to 500 ms (1/2 second) and
OffTime to 100 ms (1/10th second).

 Tone Value Corresponding Telephone Key
0 – 9 Digits 0 through 9

10 Star (*)
11 Pound (#)

12 – 15 Fourth column tones A through D

Table 5.20: DTMF Tones and
Corresponding Telephone Keys.

from I/O pin
1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss Vss

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

Driving a Speaker

Vss Vss

Figure 5.4: Example RC Filter
Circuits for Driving an Audio
Amplifier (top) or a Speaker
(bottom).

5: BASIC Stamp Command Reference – DTMFOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 181

The BASIC Stamp microcontroller is a purely digital device. DTMF tones
are analog waveforms, consisting of a mixture of two sine waves at
different audio frequencies. So how does a digital device generate analog
output? The BASIC Stamp creates and mixes the sine waves
mathematically, then uses the resulting stream of numbers to control the
duty cycle of a very fast pulse-width modulation (PWM) routine. So
what’s actually coming out of the I/O pin is a rapid stream of pulses. The
purpose of the filtering arrangements shown in Figure 5.4 and Figure 5.5 is
to smooth out the high-frequency PWM, leaving only the lower frequency
audio behind.

Keep this in mind if you want to interface BASIC Stamp's DTMF output to
radios and other equipment that could be adversely affected by the
presence of high-frequency noise on the input. Make sure to filter the
DTMF output thoroughly. The circuits in Figure 5.4 are only a starting
point; you may want to use an active low-pass filter with a roll-off point
around 2 kHz.

Figure 5.5: Example DAA Circuit to
Interface to a Standard Telephone
Line.

Jameco (JC), 1-800-831-4242
or 415-592-8097

Interfacing to the Telephone Line

600-600Ω
transformer

(JC: 117760)

270V “Sidactor”
(DK: P3000AA61-ND

P3000AA61-ND)

10Ω
(both)

3.9V zeners (both)
DK: 1N5228BCT-ND

phone line
(red and green)

0.001µF

0.1µF1 kΩconnect switch (or
relay contacts)

Digi-Key (DK), 1-800-344-4539
or 218-681-6674

from I/O pin

Vss

Demo Program (DTMFOUT.bs2)

' DTMFOUT.bs2
' This demo program is a rudimentary memory dialer. Since DTMF digits fit
' within a nibble (four bits), the program below packs two DTMF digits into
' each byte of three EEPROM data tables. The end of phone number is marked
' by the nibble $F, since this is not a valid phone-dialing digit.
' Conditional compilation sets the timing adjustment factor so that the
' output will sound the same on any BS2 model.

TECHNICAL BACKGROUND.

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

All 2

DTMFOUT – BASIC Stamp Command Reference

Page 182 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' {$STAMP BS2}
' {$PBASIC 2.5}

Spkr PIN 10 ' DTMF output on pin 10

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 TmAdj CON $100 ' x 1.0 (time adjust)
 #CASE BS2SX
 TmAdj CON $280 ' x 2.5
 #CASE BS2P
 TmAdj CON $3C5 ' x 3.77
 #CASE BS2PX
 TmAdj CON $607 ' x 6.03
#ENDSELECT

eeLoc VAR Byte ' EEPROM address of stored number
eeByte VAR Byte ' Byte containing two DTMF digits
dtDig VAR eeByte.NIB1 ' Digit to dial
phone VAR Nib ' Pick a phone #
hiLo VAR Bit ' Bit to select upper and lower nib

Parallax DATA $19,$16,$62,$48,$33,$3F ' Phone: 1-916-624-8333
ParallaxFax DATA $19,$16,$62,$48,$00,$3F ' Phone: 1-916-624-8003
Information DATA $15,$20,$55,$51,$21,$2F ' Phone: 1-520-555-1212

Main:
 FOR phone = 0 TO 2
 ' retrieve address
 LOOKUP phone, [Parallax, ParallaxFax, Information], eeLoc
 GOSUB Dial_Number
 PAUSE 2000
 NEXT
 END

Dial_Number:
 DO
 READ eeLoc, eeByte ' Retrieve byte from EEPROM
 eeLoc = eeLoc + 1 ' point to next pair of digits
 FOR hiLo = 0 TO 1 ' Dial upper and lower digits
 IF (dtDig = $F) THEN EXIT ' Hex $F is end-of-number flag
 DTMFOUT Spkr, ' dial digit
 150 */ TmAdj, 25, [dtDig] ' 150 ms on, 25 ms off
 eeByte = eeByte << 4 ' Shift in next digit
 NEXT
 LOOP UNTIL (dtDig = $F)
 RETURN

5: BASIC Stamp Command Reference – EEPROM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 183

EEPROM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

EEPROM { Location, } (DataItem {, DataItem…})
(See DATA)

Function
Write data to the EEPROM during program download.

• Location is an optional variable/constant (0 – 255) that specifies the
starting location in the EEPROM at which data should be stored. If
no location is given, data is written starting at the next available
location.

• DataItem is a constant (0 – 255) to be stored in EEPROM.

Quick Facts
Table 5.21: EEPROM Quick
Facts.

 BS1

Special Notes Writes values to EEPROM during download.
Can be used to decrease program size.

Related
Commands

READ and WRITE

Explanation
When you download a program into the BASIC Stamp 1, it is stored in the
EEPROM starting at the highest address (255) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The EEPROM directive allows
you to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (i.e.: the EEPROM
directive is not downloaded to the BASIC Stamp 1, but the data it contains
is downloaded).

The simplest form of the EEPROM directive is something like the
following:

EEPROM (100, 200, 52, 45)

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you’ve stored there.

WRITING SIMPLE, SEQUENTIAL DATA.

1

All 2

EEPROM – BASIC Stamp Command Reference

Page 184 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The EEPROM directive uses a counter, called a pointer, to keep track of
available EEPROM addresses. The value of the pointer is initially 0. When
a program is downloaded, the EEPROM directive stores the first byte
value at the current pointer address, then increments (adds 1 to) the
pointer. If the program contains more than one EEPROM directive,
subsequent EEPROM directives start with the pointer value left by the
previous EEPROM directive. For example, if the program contains:

EEPROM (72, 69, 76, 76, 79)
EEPROM (104, 101, 108, 108, 111)

The first EEPROM directive will start at location 0 and increment the
pointer for each data value it stores (1, 2, 3, 4 and 5). The second EEPROM
directive will start with the pointer value of 5 and work upward from
there. As a result, the first 10 bytes of EEPROM will look like the
following:

 EEPROM Location (address)
 0 1 2 3 4 5 6 7 8 9
Contents 72 69 76 76 79 104 101 108 108 111

Table 5.22: Example EEPROM
Storage.

What if you don’t want to store values starting at location 0? Fortunately,
the EEPROM directive has an option to specify the next location to use.
You can specify the next location number (to set the pointer to) by using
the optional Location argument before the list of DataItems. The following
code writes the same data in Table 5.22 to locations 50 through 59:

EEPROM 50, (72, 69, 76, 76, 79, 104, 101, 108, 108, 111)

In this example, the Location argument is given and tells the EEPROM
directive to store the following DataItem(s) starting at location 50. The
DataItems in the list are stored in their respective locations (50, 51, 52… 59).

It is important to realize that the entire BASIC Stamp 1 EEPROM is
overwritten during programming. Any EEPROM location not containing
a PBASIC program or DataItems from an EEPROM directive is written
with a 0.

A common use for EEPROM is to store strings; sequences of bytes
representing text. PBASIC converts quoted text like "A" into the
corresponding ASCII character code (65 in this case). To make data entry
easier, you can place quotes around a whole chunk of text used in an

THE EEPROM POINTER (COUNTER).

WRITING DATA TO OTHER LOCATIONS.

WRITING TEXT STRINGS.

IMPORTANT CONCEPT: HOW DATA AND
PROGRAMS ARE DOWNLOADED INTO

EEPROM.

5: BASIC Stamp Command Reference – EEPROM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 185

EEPROM directive, and PBASIC will understand it to mean a series of
bytes (see the last line of code below). The following three EEPROM
directives are equivalent:

EEPROM (72, 69, 76, 76, 79)
EEPROM ("H", "E", "L", "L", "O")
EEPROM ("HELLO")

All three lines of code, above, will result in the numbers 72, 69, 76, 76, and
79 being stored into EEPROM upon downloading. These numbers are
simply the ASCII character codes for "H", "E", "L", "L", and "O",
respectively. See the demo program, below, for an example of storing and
reading multiple text strings.

The EEPROM is organized as a sequential set of byte-sized memory
locations. The EEPROM directive only stores bytes into EEPROM. If you
try to store a word-sized value, for example: EEPROM (1125), only the
lower byte of the value will be stored (in this case, 101). This does not
mean that you can't store word-sized values, however. A word consists of
two bytes, called a low-byte and a high-byte. If you wanted to store the
value 1125 using the EEPROM directive you'll have to calculate the low-
byte and the high-byte and insert them in the list in the proper order, as in:

EEPROM (101, 4)

The directive above will store the two bytes into two sequential EEPROM
locations (the low-byte first, followed by the high-byte). We calculated
this in the following manner: 1) high-byte is INT(value / 256) and 2) low-
byte is value – (high-byte * 256).

To retrieve a word-sized value, you'll need to use two READ commands
and a word-sized variable. For example,

SYMBOL result = W0 ' word-sized variable
SYMBOL resultLo = B0 ' B0 is the low-byte of W0
SYMBOL resultHi = B1 ' B1 is the high-byte of W0

EEPROM (101, 4)

READ 0, resultLo
READ 1, resultHi
DEBUG #result

This code would write the low-byte and high-byte of the number 1125 into
locations 0 and 1 during download. When the program runs, the two

WRITING WORD VALUES VS. BYTE VALUES.

EEPROM – BASIC Stamp Command Reference

Page 186 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

READ commands will read the low-byte and high-byte out of EEPROM
(reconstructing it in a word-sized variable) and then display the value on
the screen. See the READ and WRITE commands for more information.

Demo Program (EEPROM.bs1)

' EEPROM.bs1
' This program stores a couple of text strings into EEPROM with the EEPROM
' directive and then sends them, one character at a time via the SEROUT
' command. This is a good demonstration of how to save program space by
' storing large amounts of data in EEPROM directly, rather than embedding
' the data into SEROUT commands.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL SOut = 0 ' serial output

SYMBOL idx = B2 ' Holds current location number
SYMBOL phrase = B3
SYMBOL char = B4 ' Holds current character to print

Phrases:
 EEPROM ("Here is a long message that needs to be transmitted.", 13, 0)
 EEPROM ("Here is some more text to be transmitted.", 13, 0)

Main:
 idx = 0
 FOR phrase = 1 TO 2 ' select phrase
 GOSUB Print_It ' print the phrase
 PAUSE 3000 ' Pause for 3 seconds
 NEXT
 END

Print_It:
 READ idx, char ' get next character
 idx = idx + 1 ' point to next EEPROM location
 IF char = 0 THEN Print_Done ' if 0, we're done with this block
 SEROUT SOut, N2400, (char) ' otherwise, transmit it
 'DEBUG #@char ' -- for demo with DEBUG (slower)
 GOTO Print_It

Print_Done:
 RETURN ' return to caller

1

5: BASIC Stamp Command Reference – END

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 187

END BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

END

Function
End the program, placing the BASIC Stamp into low-power mode
indefinitely. This is equivalent to having a program that does not loop
continuously; once the BASIC Stamp reaches the end of the PBASIC
program, it enters low-power mode indefinitely. The END command is
optional.

Quick Facts

Table 5.23: END Quick Facts.

Note: Current measurements are
based on 5-volt power, no extra
loads, and 75°F ambient
temperature.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Current

Draw During
Run

1 mA 3 mA 25 mA 60 mA 40 mA 15 mA 55 mA

Current
Draw During

Sleep
25 µA 50 µA 200 µA 500 µA 350 µA 36 µA 450 µA

Related
Commands

NAP and
SLEEP

NAP, SLEEP and STOP
NAP, SLEEP, STOP and

POLLWAIT

Explanation
END puts the BASIC Stamp into its inactive, low-power mode. In this
mode the Stamp's current draw (excluding loads driven by the I/O pins) is
reduced to the amount shown in Table 5.23. END keeps the BASIC Stamp
inactive until the reset line is activated, the power is cycled off and back on
or the PC downloads another program.

Just as with the SLEEP command, pins will retain their input or output
settings after the BASIC Stamp is deactivated by END. For example, if the
BASIC Stamp is powering an LED when END executes, the LED will stay
lit after END, but every 2.3 seconds, there will be a visible wink of the LED
as the output pin switches to the input direction for 18 ms (60 µs on the
BS2pe). (See the SLEEP command for more information).

1 All 2

END – BASIC Stamp Command Reference

Page 188 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – EXIT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 189

EXIT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

EXIT

Function
Causes the immediate termination of a loop construct (DO...LOOP,
FOR...NEXT).

Quick Facts

Table 5.24: EXIT Quick Facts.

 All BS2 Models
Maximum EXITs per Loop 16

Related Commands DO...LOOP and FOR...NEXT

Explanation
The EXIT instruction allows a program to terminate a loop structure
before the loop limit test is executed. While not required, EXIT is usually
used as part of an IF...THEN construct to test a secondary condition for
terminating a loop, or for testing a termination condition of an
unconditional DO...LOOP structure.

For example, the following subroutine will send characters from a DATA
statement to a serial port until a 0 byte is encountered in the data:

' {$PBASIC 2.5}

DO
 READ eeAddr, char ' get character from DATA statement
 eeAddr = eeAddr + 1 ' update address pointer
 IF (char = 0) THEN EXIT ' if 0, end of string
 DEBUG char ' otherwise, transmit the character
LOOP ' get next character
RETURN

Demo Program (EXIT.bs2)

' EXIT.bs2
' This program demonstrates the early termination of DO...LOOP and
' FOR..NEXT loop structures. IF...THEN is used to test a condition
' and when true, EXIT will terminate the loop.

' {$STAMP BS2}
' {$PBASIC 2.5}

col VAR Nib

All 2
NOTE: EXIT requires the
PBASIC 2.5 compiler directive.

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

EXIT – BASIC Stamp Command Reference

Page 190 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

row VAR Nib

Setup:
 col = 0

Main:
 DO WHILE (col < 10) ' attempt 10 iterations
 FOR row = 0 TO 15 ' attempt 16 iterations
 IF (row > 9) THEN EXIT ' terminate when row > 9
 DEBUG CRSRXY, (col * 8), row, ' print col/row at location
 DEC col, "/", DEC row, CR
 NEXT
 col = col + 1 ' update column
 IF (col = 3) THEN EXIT ' terminate when col = 3
 LOOP
 END

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 191

FOR…NEXT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

FOR Counter = StartValue TO EndValue { STEP {-} StepValue }

 Statement(s)

NEXT { Counter }

FOR Counter = StartValue TO EndValue { STEP StepValue }

 Statement(s)
NEXT { Counter }

Function
Create a repeating loop that executes the Statement(s), one or more
program lines that form a code block, between FOR and NEXT,
incrementing or decrementing Counter according to StepValue until the
value of the Counter variable passes the EndValue.

• Counter is a variable (usually a byte or a word) used as a counter.

• StartValue is a variable/constant/expression (0 – 65535) that
specifies the initial value of the variable (Counter).

• EndValue is a variable/constant/expression (0 – 65535) that specifies
the end value of the variable (Counter). When the value of Counter is
outside of the range StartValue to EndValue, the FOR...NEXT loop
stops executing and the program goes on to the instruction after
NEXT.

• StepValue is an optional variable/constant/expression (0 – 65535) by
which the Counter increases or decreases with each iteration through
the FOR…NEXT loop. On the BS1, use a minus sign (-) in front of
the StepValue to indicate a negative step. On all BS2 models, if
StartValue is larger than EndValue, PBASIC understands StepValue to
be negative, even though no minus sign is used.

• Statement is any valid PBASIC instruction.

NOTE: Expressions are not allowed as
arguments on the BS1.

NOTE: Use a minus sign to indicate
negative StepValues on the BS1.

1

1

1

All 2

FOR…NEXT – BASIC Stamp Command Reference

Page 192 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS1 All BS2 Models

Max. Nested Loops 8 16
To Decrement

Counter Variable
Set StartValue > EndValue and

enter negative StepValue*
Set StartValue > EndValue

Counter Comparison Exit loop if Counter exceeds
EndValue

Exit loop if Counter outside range
set by StartValue to EndValue

Related Commands None DO...LOOP and EXIT

Table 5.25: FOR...NEXT Quick
Facts.

*NOTE: For the BS1, direction (increment or decrement) cannot be changed at run-time.

Explanation
FOR...NEXT loops let your program execute a series of instructions for a
specified number of repetitions (called iterations). By default, each time
through the loop, the Counter variable is incremented by 1. It will continue
to loop until the value of Counter is outside of the range set by StartValue
and EndValue. Also, FOR…NEXT loops always execute at least once. The
simplest form is shown here:

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 1 TO 3 ' repeat with reps = 1, 2, 3
 DEBUG "*" ' put * on screen for each repetition
NEXT

In the above code, the FOR command sets reps = 1. Then the DEBUG line
(within the FOR…NEXT loop) is executed; printing an asterisk (*) on the
screen. When the BASIC Stamp sees the NEXT command, it goes back to
the previous FOR command, adds 1 to reps and compares the result to the
range set by StartValue and EndValue. If reps is still within range, it
executes the code in the loop again. Each time the FOR...NEXT loop
executes, the value of reps is updated (incremented by 1) and the code
within the loop (the DEBUG line) is executed; printing another asterisk on
the screen. This code will run through the loop three times; setting reps to
1, 2 and 3, and printing three asterisks on the screen. After the third loop,
again the BASIC Stamp goes back up to the FOR command, adds 1 to reps
and compares the result (4 in this case) to the range. Since the range is 1 to
3 and the value is 4 (outside the range) the FOR…NEXT loop is done and
the BASIC Stamp will jump down to the first line of code following the
NEXT command.

You can view the changing values of reps by including the reps variable in
a DEBUG command within the loop:

NOTE: Replace the first line with
SYMBOL reps = B0
on the BS1.

SIMPLEST FORM OF FOR...NEXT.

PROCESSING A FOR…NEXT LOOP.

NOTE: On the BS1, the loop will
continue until Counter has gone
past EndValue.

1

1

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 193

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 1 TO 3 ' repeat with reps = 1, 2, 3
 DEBUG DEC reps, CR ' print rep number
NEXT

Running this example should display "1" , "2", and "3" on the screen.

FOR…NEXT can also be made to decrement (rather than increment) the
Counter variable. The BS1 does this when you specify a negative StepValue
(as well as a StartValue that is greater than the EndValue). All other BASIC
Stamp models do this automatically when the StartValue is greater than
the EndValue. Examples of both are shown below:

SYMBOL reps = B0 ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 STEP -1 ' repeat with reps = 3, 2, 1
 DEBUG #reps, CR ' print reps number
NEXT

-- or --

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 ' repeat with reps = 3, 2, 1
 DEBUG DEC reps, CR ' print reps number
NEXT

Note that the code for all the BS2 models did not use the optional STEP
argument. This is because we wanted to decrement by positive 1 anyway
(the default unit) and the BASIC Stamp realizes it needs to decrement
because the StartValue is greater than the EndValue. A negative StepValue
on any BS2 model would be treated as its positive, twos complement
counterpart. For example, –1 in twos complement is 65535. So the
following code executes only once:

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 STEP -1 ' try to decrement 3 by 65535
 DEBUG DEC reps, CR ' print reps number
NEXT

The above code would run through the loop once with reps set to 3. The
second time around, it would decrement reps by 65535 (-1 is 65535 in twos
complement) effectively making the number –65532 (4 in twos
complement) which is outside the range of the loop.

DECREMENTING THE COUNTER INSTEAD

OF INCREMENTING IT.

1

All 2

All 2

All 2

NOTE: Change the first line as noted
above and replace line 3 with
DEBUG #Reps, CR

1

FOR…NEXT – BASIC Stamp Command Reference

Page 194 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

All the arguments in the FOR…NEXT command can be constants,
variables or expressions on all BS2 models. This leads to some interesting
uses. For example, if you make the StartValue and EndValue a variable,
and change their values within the loop, you'll change the behavior of the
loop itself. Try the following:

{' $PBASIC 2.5}

reps VAR Byte ' counter for the FOR/NEXT loop
startVal VAR Byte
endVal VAR Byte

startVal = 1 ' initialize startVal to 1
endVal = 3 ' initialize endVal to 3

FOR reps = startVal TO endVal ' repeat for 1 to 3
 DEBUG DEC reps, CR
 IF (reps = 3) THEN ' if reps =3, swap startVal/endVal
 startVal = 3 ' otherwise continue loop
 endVal = 1
 ENDIF
NEXT

Here the loop starts with a range of 1 to 3. First, the DEBUG line prints the
value of reps. Then the IF…THEN line makes a decision; if reps is equal to
3, then swap the order of startVal and endVal, otherwise continue the loop
execution. The next time through the loop (after startVal and endVal have
been swapped), reps will be decremented instead of incremented because
startVal is greater than endVal. The result is a display on the screen of the
numbers 1, 2, 3, 2, 1.

The following example uses the value of reps as the StepValue. This creates
a display of power's of 2 (1, 2, 4, 8, 16, 32, 64, etc):

reps VAR Word ' counter for the loop

FOR reps = 1 TO 256 STEP reps ' each loop add current value of reps
 DEBUG DEC ? reps ' show reps in Debug window
NEXT

There is a potential bug that you should be careful to avoid. The BASIC
Stamp uses unsigned 16-bit integer math for any math operation it
performs, regardless of the size of values or variables. The maximum
value the BASIC Stamp can internally calculate is 65535 (the largest 16-bit

WATCH OUT FOR 16-BIT ROLLOVER, OR

VARIABLE RANGE, ERRORS.

USING VARIABLES AS ARGUMENTS.

NOTE: For BS1's, change line 1 to
SYMBOL reps = W0
and line 3 to
DEBUG reps

NOTE: The increment/decrement
direction of the FOR…NEXT loop
cannot be changed on the BS1.

1

1

All 2

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 195

number). If you add 1 to 65535, you get 0 as the 16-bit register rolls over
(like a car’s odometer does when you exceed the maximum mileage it can
display). Similarly, if you subtract 1 from 0, you'll get 65535 as the 16-bit
register rolls under (a rollover in the opposite direction).

If you write a FOR...NEXT loop who's StepValue would cause Counter to go
past 65535, this rollover may cause the loop to execute more times than
you expect. Try the following example:

reps VAR Word ' counter for the loop

FOR reps = 0 TO 65535 STEP 3000 ' each loop add 3000
 DEBUG DEC ? reps ' show reps in Debug window
NEXT

The value of reps increases by 3000 each trip through the loop. As it
approaches the EndValue, an interesting thing happens; reps is: 57000,
60000, 63000, 464, 3464... It passes the EndValue, rolls over and keeps
going. That’s because the result of the calculation 63000 + 3000 exceeds the
maximum capacity of a 16-bit number and then rolls over to 464. When
the result of 464 is tested against the range (“Is Reps > 0 and is Reps <
65535?”) it passes the test and the loop continues.

A similar symptom can be seen in a program who's EndValue is mistakenly
set higher than what the counter variable can hold. The example below
uses a byte-sized variable, but the EndValue is set to a number greater than
what will fit in a byte:

SYMBOL reps = B2 ' counter for the loop

FOR reps = 0 TO 300 ' each loop add 1
 DEBUG reps ' show reps in Debug window
NEXT

-- or --

reps VAR Byte ' counter for the loop

FOR reps = 0 TO 300 ' each loop add 1
 DEBUG DEC ? reps ' show reps in Debug window
NEXT

Here, reps is a byte variable; which can only hold the number range 0 to
255. The EndValue is set to 300, however; greater than 255. This code will
loop endlessly because when reps is 255 and the FOR…NEXT loop adds 1,

NOTE: For BS1's, change line 1 to
SYMBOL reps = W0
and line 3 to
DEBUG reps

1

1

All 2

FOR…NEXT – BASIC Stamp Command Reference

Page 196 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

reps becomes 0 (bytes will rollover after 255 just like words will rollover
after 65535). The result, 0, is compared against the range (0 – 255) and it is
found to be within the range, so the FOR…NEXT loop continues.

It's important to realize that on all the BS2 models, the test is against the
entire range, not just the EndValue. The code below is a slight modification
of the previous example (the StartValue is 10 instead of 0) and will not loop
endlessly.

reps VAR Byte ' counter for the loop

FOR reps = 10 TO 300 ' each loop add 1
 DEBUG DEC ? reps ' show reps in Debug window
NEXT

reps still rolls over to 0, as before, however, this time it is outside the range
of 10 to 255. The loop stops, leaving reps at 0. Note that this code is still in
error since reps will never reach 300 until it is declared as a Word.

Demo Program (FOR-NEXT.bs1)

' FOR-NEXT.bs1
' This example uses a FOR...NEXT loop to churn out a series of sequential
' squares (numbers 1, 2, 3, 4... raised to the second power) by using a
' variable to set the FOR...NEXT StepValue, and incrementing StepValue
' within the loop. Sir Isaac Newton is generally credited with the
' discovery of this technique.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL square = B2 ' FOR/NEXT counter
SYMBOL stepSize = B3 ' step size increases by 2 each loop

Setup:
 stepSize = 1
 square = 1

Main:
 FOR square = 1 TO 250 STEP stepSize ' show squares up to 250
 DEBUG square ' display on screen
 stepSize = stepSize + 2 ' add 2 to stepSize
 NEXT ' loop until square > 250
 END

NOTE: On the BS1, the loop will
continue until Counter has gone past
EndValue. The rollover error will still
occur if the BS1 cannot determine if
Counter went past EndValue.

All 2

1

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 197

Demo Program (FOR-NEXT.bs2)

' FOR-NEXT.bs2
' This example uses a FOR...NEXT loop to churn out a series of sequential
' squares (numbers 1, 2, 3, 4... raised to the second power) by using a
' variable to set the FOR...NEXT StepValue, and incrementing StepValue
' within the loop. Sir Isaac Newton is generally credited with the
' discovery of this technique.

' {$STAMP BS2}
' {$PBASIC 2.5}

square VAR Byte ' FOR/NEXT counter
stepSize VAR Byte ' step size increases by 2 each loop

Setup:
 stepSize = 1
 square = 1

Main:
 FOR square = 1 TO 250 STEP stepSize ' show squares up to 250
 DEBUG DEC ? square ' display on screen
 stepSize = stepSize + 2 ' add 2 to stepSize
 NEXT ' loop until square > 250
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

FOR…NEXT – BASIC Stamp Command Reference

Page 198 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – FREQOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 199

FREQOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See SOUND)
FREQOUT Pin, Duration, Freq1 { , Freq2 }

Function
Generate one or two sine-wave tones for a specified Duration.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode.

• Duration is a variable/constant/expression (0 - 65535) specifying the
amount of time to generate the tone(s). The unit of time for Duration
is described in Table 5.26.

• Freq1 is a variable/constant/expression (0 – 32767) specifying
frequency of the first tone. The unit of Freq1 is described in Table
5.26.

• Freq2 is an optional argument exactly like Freq1. When specified,
two frequencies will be mixed together on the specified I/O pin.

Quick Facts
Table 5.26: FREQOUT Quick
Facts.

 BS2, BS2e BS2sx BS2p BS2pe BS2px
Units in
Duration

1 ms 0.4 ms 0.265 ms 1 ms 0.166 ms

Units in
Freq1 and

Freq2
1 Hz 2.5 Hz 3.77 Hz 1.51 Hz 6.03 Hz

Range of
Frequency

0 to 32767 Hz 0 to 81917 Hz 0 to 123531 Hz 0 to 49478 Hz 0 to 197585 Hz

Related
Commands

DTMFOUT and PWM

Explanation
FREQOUT generates one or two sine waves using a pulse-width
modulation algorithm. The circuits shown in Figure 5.6 will filter the
signal in order to play the tones through a speaker or audio amplifier.
Here’s a simple FREQOUT command:

FREQOUT 2, 1000, 2500

SIMPLEST FORM OF FREQOUT.

1

All 2

FREQOUT – BASIC Stamp Command Reference

Page 200 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

On the BS2, this command generates a 2500 Hz tone for 1 second (1000 ms)
on I/O pin 2. See Table 5.26 for timing data on other BASIC Stamp
models.
To play two tones on the same I/O pin at once:

FREQOUT 2, 1000, 2500, 3000

This will generate a 2500 Hz and 3000 Hz tone for 1 second. The
frequencies will mix together for a chord- or bell-like sound. To generate a
silent pause, specify frequency value(s) of 0.

from I/O pin
1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss Vss

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

Driving a Speaker

Vss Vss

Figure 5.6: Example RC filter
circuits for driving an audio
amplifier(top) or a speaker (bottom).

The circuits in Figure 5.6 work by filtering out the high-frequency PWM
used to generate the sine waves. FREQOUT works over a very wide range
of frequencies (as shown in Table 5.26) so at the upper end of its range,
those PWM filters will also filter out most of the desired frequency. You
may find it necessary to reduce values of the parallel capacitors shown in
the circuit, or to devise a custom active filter for your application.

FREQUENCY CONSIDERATIONS.

GENERATING TWO TONES AT ONCE.

5: BASIC Stamp Command Reference – FREQOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 201

Demo Program (FREQOUT.bs2)

' FREQOUT.bs2
' This program demonstrates sound-effects generation by the BASIC Stamp.
' Conditional compilation sets timing and frequency adjustment factors so
' that the output will sound the same on any BS2 model.

' {$STAMP BS2}
' {$PBASIC 2.5}

Spkr PIN 10 ' output pin for FREQOUT

#SELECT $STAMP
 #CASE BS2, BS2E
 TmAdj CON $100 ' x 1.0 (time adjust)
 FrAdj CON $100 ' x 1.0 (freq adjust)
 #CASE BS2SX
 TmAdj CON $280 ' x 2.5
 FrAdj CON $066 ' x 0.4
 #CASE BS2P
 TmAdj CON $3C5 ' x 3.77
 FrAdj CON $044 ' x 0.265
 #CASE BS2PE
 TmAdj CON $100 ' x 1.0
 FrAdj CON $0A9 ' x 0.662
 #CASE BS2PX
 TmAdj CON $607 ' x 6.03
 FrAdj CON $2A ' x 0.166
#ENDSELECT

Main:
 DEBUG "Let's make a call...", CR
 ' combine 350 Hz & 440 Hz
 FREQOUT Spkr, 2000 */ TmAdj, 350 */ FrAdj, 440 */ FrAdj
 ' dial number (digits 150 ms on, 25 ms off)
 DTMFOUT Spkr, 150 */ TmAdj, 25, [5, 5, 5, 1, 2, 1, 2]
 PAUSE 500

 ' bad connection (SIT sequence)
 FREQOUT Spkr, 375 */ TmAdj, 985 */ FrAdj
 FREQOUT Spkr, 375 */ TmAdj, 1371 */ FrAdj
 FREQOUT Spkr, 375 */ TmAdj, 1777 */ FrAdj

 DEBUG "Oops! -- try again...", CR
 PAUSE 1000
 DTMFOUT Spkr, 150 */ TmAdj, 25, [5, 5, 5, 2, 2, 2, 2]
 DEBUG "Ringing"
 FREQOUT Spkr, 2000 */ TmAdj, 440 */ FrAdj, 480 */ FrAdj
 PAUSE 4000
 FREQOUT Spkr, 2000 */ TmAdj, 440 */ FrAdj, 480 */ FrAdj
 INPUT Spkr
 END

All 2

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

FREQOUT – BASIC Stamp Command Reference

Page 202 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – GET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 203

GET BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

GET Location, { WORD } Variable { , { WORD } Variable... }

Function
Read the value from Scratch Pad RAM (SPRAM) Location and store in
Variable.

• Location is a variable/constant/expression (0 – 63 for BS2e and
BS2sx and 0 – 131 for BS2p, BS2pe, and BS2px) that specifies the
SPRAM location to read from.

• Variable is a variable (usually a byte, or word if using the optional
WORD modifier) in which to store the value.

Quick Facts
Table 5.27: GET Quick Facts.

 BS2e and BS2sx BS2p, BS2pe, and BS2px
Scratch Pad RAM

Size and
Organization

64 bytes (0 – 63). Organized as
bytes only.

136 bytes (0 – 135). Organized as
bytes only.

General Purpose
Locations

0 - 62 0 – 126

Special Use
Location

Location 63: Active program slot
number (read only).

Location 127: READ/WRITE slot and
Active Program slot (read only).

Locations 128-135: Polled Interrupt
status (read only).

Related
Commands

PUT
PUT and STORE,

and SPSTR formatter.
PBASIC 2.5

Syntax Options
Multiple sequential variables may be read from the Scratch Pad RAM.

The optional WORD modifier may be specified to retrieve 16-bit values.

Explanation
The GET command reads a value from the specified Scratch Pad RAM
location and stores it into Variable. All values in all locations can be
retrieved from within any of the 8 program slots.

SPRAM is useful for passing data to programs in other program slots and
for additional workspace. It is different than regular RAM in that symbol
names cannot be assigned directly to locations and each location is always
configured as a byte only. The following code will read the value at
location 25, store it in a variable called temp and display it:

USES FOR SCRATCH PAD RAM.

NOTE: The optional arguments require
PBASIC 2.5.

GET – BASIC Stamp Command Reference

Page 204 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

temp VAR Byte

GET 25, temp ' retrieve byte from location 25
DEBUG DEC temp

When using the PBASIC 2.5 directive, multiple sequential variables may
be read from the Scratch Pad RAM, starting at Location, and the WORD
modifier may be specified to retrieve 16-bit values.

' {$PBASIC 2.5}

temp VAR Byte
temp2 VAR Word

GET 25, temp, Word temp2 ' retrieve byte from location 25
 ' and word from locations 26 and 27
DEBUG DEC temp, CR
DEBUG DEC temp2

The low nibble of location 63 (BS2e and BS2sx) and location 127 (BS2p,
BS2pe, and BS2px) is a special, read-only location that always contains the
number of the currently running program slot. On the BS2p, BS2pe, and
BS2px, the high nibble of location 127 also contains the current program
slot that will be used for the READ and WRITE commands. See the demo
program below for an example of use.

Table 5.28 shows the layout of all SPRAM registers.

5: BASIC Stamp Command Reference – GET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 205

Table 5.28: Layout of SPRAM
Registers.

NOTE: Scratch Pad RAM can
only be accessed with the GET
and PUT commands. Scratch
Pad RAM cannot have variable
names assigned to it.

Location BS2e and BS2sx BS2p, BS2pe, and BS2px
0...62 General Purpose RAM General Purpose RAM

63
Bits 0-3: Active program

slot number.
General Purpose RAM

64..126 n/a General Purpose RAM
127 n/a Bits 0-3, Active program slot #. Bits 4-7, program

slot for READ and WRITE operations.

128 n/a Polled input trigger status of Main I/O pins 0-7
(0 = not triggered, 1 = triggered).

129 n/a Polled input trigger status of Main I/O pins 8-15
(0 = not triggered, 1 = triggered).

130 n/a Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131 n/a Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132 n/a Bits 0-3: Polled-interrupt mode, set by
POLLMODE

133 n/a Bits 0-2: Polled-interrupt “run” slot, set by
POLLRUN.

134 n/a Bit 0: Active I/O group; 0 = Main I/O,
1 = Auxiliary I/O.

135 n/a

Bit 0: Polled-output status (set by POLLMODE);
 0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined,
 1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE);
 0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status;
 0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state;
 0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state;
 0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event
 Occurred. (Cleared by POLLMODE only).
Bit 7: Polling status; 0 = not active, 1 = active.

Demo Program (GET_PUT1.bsx)

' GET_PUT1.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' slot location is read using GET to display the currently running program
' number. Then a set of values are written (PUT) into locations 0 TO 9.
' Afterwards, program number 1 is RUN. This program is a BS2SX project
' consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run on the BS2e,
' BS2p, BS2pe and BS2px without modification.

' {$STAMP BS2sx, GET_PUT2.BSX}
' {$PBASIC 2.5}

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

GET – BASIC Stamp Command Reference

Page 206 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

Setup:
 GET Slot, value
 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 value = (idx + 3) * 8
 PUT idx, value
 DEBUG " Writing: ", DEC2 value, " to location: ", DEC2 idx, CR
 NEXT
 DEBUG CR
 RUN 1
 END

 Demo Program (GET_PUT2.bsx)

' GET_PUT2.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' the Slot location is read using GET to display the currently running
' program number. Then a set of values are read (GET) from locations
' 0 to 9 and displayed on the screen for verification. This program is a
' BS2SX project consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run
' on the BS2e, BS2p, BS2pe, and BS2px without modification.

' {$STAMP BS2sx}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

5: BASIC Stamp Command Reference – GET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 207

Setup:
 GET Slot, value
 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 GET idx, value
 DEBUG " Reading: ", DEC2 value, " from location: ", DEC2 idx, CR
 NEXT
 END

GET – BASIC Stamp Command Reference

Page 208 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – GOSUB

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 209

GOSUB BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

GOSUB Address

Function
Store the address of the next instruction after GOSUB, then go to the point
in the program specified by Address; with the intention of returning to the
stored address.

• Address is a label that specifies where to go.

Quick Facts
Table 5.29: GOSUB Quick Facts.

 BS1 All BS2 Models
Max. GOSUBs
per program

16 255

Max. nested
GOSUBs

4 4

Related
Commands

GOTO ON...GOSUB and GOTO

Explanation
GOSUB is a close relative of GOTO, in fact, its name means, "GO to a
SUBroutine". When a PBASIC program reaches a GOSUB, the program
executes the code beginning at the specified address label. Unlike GOTO,
GOSUB also stores the address of the instruction immediately following
itself. When the program encounters a RETURN command, it interprets it
to mean, “go to the instruction that follows the most recent GOSUB.” In
other words, a GOSUB makes the BASIC Stamp do a similar operation as
you do when you see a table or figure reference in this manual; 1) you
remember where you are, 2) you go to the table or figure and read the
information there, and 3) when you've reached the end of it, you "return"
to the place you were reading originally.

GOSUB is mainly used to execute the same piece of code from multiple
locations. If you have, for example, a block of three lines of code that need
to be run from 10 different locations in your entire program you could
simply copy and paste those three lines to each of those 10 locations. This
would amount to a total of 30 lines of repetitive code (and extra space
wasted in the program memory). A better solution is to place those three
lines in a separate routine, complete with it's own label and followed by a

GOSUB CAN SAVE EEPROM

(PROGRAM) SPACE.

1 All 2

GOSUB – BASIC Stamp Command Reference

Page 210 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

RETURN command, then just use a GOSUB command at each of the 10
locations to access it. This technique can save a lot of program space.

Try the example below:

Main:
 GOSUB Hello
 DEBUG "How are you?"
 END

Hello:
 DEBUG "Hello, my friend!", CR
 RETURN

The above code will start out by GOSUB'ing to the section of code
beginning with the label Hello. It will print "Hello, my friend!" on the
screen then RETURN to the line after the GOSUB… which prints "How are
you?" and ENDs. Note: colons (:) are placed after labels, as in “ “Main: “
and “Hello:” but the colon is not used on references to these labels such as
in the “GOSUB Hello” line.

There's another interesting lesson here; what would happen if we removed
the END command from this example? Since the BASIC Stamp reads the
code from left to right / top to bottom (like the English language) once it
had returned to and run the "How are you?" line, it would naturally "fall
into" the Hello routine again. Additionally, at the end of the Hello routine,
it would see the RETURN again (although it didn't GOSUB to that routine
this time) and because there wasn't a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn't allow itself to "fall into" a subroutine.

A limited number of GOSUBs are allowed per program (as shown in Table
5.29), and they may be nested only four levels deep. In other words, the
subroutine that’s the destination of a GOSUB can contain a GOSUB to
another subroutine, and so on, to a maximum depth (total number of
GOSUBS before the first RETURN) of four. Any deeper, and the program
will "forget" its way back to the starting point (the instruction following
the very first GOSUB).

When GOSUBS are nested, each RETURN takes the program back to the
instruction after the most-recent GOSUB. As is mentioned above, if the

WATCH OUT FOR SUBROUTINES THAT

YOUR PROGRAM CAN "FALL INTO."

GOSUB LIMITATIONS.

NOTE: On the BS1, a RETURN
without a GOSUB will return the
program to the last GOSUB (or will end
the program if no GOSUB was
executed).

1

5: BASIC Stamp Command Reference – GOSUB

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 211

BASIC Stamp encounters a RETURN without a previous GOSUB, the
entire program starts over from the beginning. Take care to avoid these
phenomena.

Demo Program (GOSUB.bs1)

' GOSUB.bs1
' This program is a guessing game that generates a random number in a
' subroutine called Pick_A_Number. It is written to stop after ten
' guesses. To see a common bug associated with GOSUB, delete or comment
' out the line beginning with END after the FOR-NEXT loop. This means
' that after the loop is finished, the program will wander into the
' Pick_A_Number subroutine. When the RETURN at the end executes, the
' program will go back to the beginning of the program. This will cause
' the program to execute endlessly. Make sure that your programs can't
' accidentally execute subroutines!

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL rounds = B2 ' number of reps
SYMBOL numGen = W0 ' random number holder
SYMBOL myNum = B3 ' random number, 1-10

Setup:
 numGen = 11500 ' initialize random "seed"

Main:
 FOR rounds = 1 TO 10
 DEBUG CLS, "Pick a number from 1 to 10", CR
 GOSUB Pick_A_Number
 PAUSE 2000 ' dramatic pause
 DEBUG "My number was: ", #myNum ' show the number
 PAUSE 1000 ' another pause.
 NEXT
 DEBUG CLS, "Done"
 END ' end program

' Random-number subroutine. A subroutine is just a piece of code with
' the RETURN instruction at the end. Always make sure your program enters
' subroutines with a GOSUB. If you don't, the RETURN won't have the
' correct address, and your program will have a bug!

Pick_A_Number:
 RANDOM numGen ' stir up the bits of NumGen.
 DEBUG numGen, CR
 myNum = numGen / 6550 MIN 1 ' scale to fit 1-10 range.
 RETURN ' go back to 1st instruction
 ' after GOSUB that got us here

1

GOSUB – BASIC Stamp Command Reference

Page 212 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (GOSUB.bs2)

' GOSUB.bs2
' This program is a guessing game that generates a random number in a
' subroutine called Pick_A_Number. It is written to stop after ten
' guesses. To see a common bug associated with GOSUB, delete or comment
' out the line beginning with END after the FOR-NEXT loop. This means
' that after the loop is finished, the program will wander into the
' Pick_A_Number subroutine. When the RETURN at the end executes, the
' program will go back to the beginning of the program. This will cause
' the program to execute endlessly. Make sure that your programs can't
' accidentally execute subroutines!

' {$STAMP BS2}
' {$PBASIC 2.5}

rounds VAR Byte ' number of reps
numGen VAR Word ' random number holder
myNum VAR Byte ' random number, 1-10

Setup:
 numGen = 11500 ' initialize random "seed"

Main:
 FOR rounds = 1 TO 10
 DEBUG CLS, "Pick a number from 1 to 10", CR
 GOSUB Pick_A_Number
 PAUSE 2000 ' dramatic pause
 DEBUG "My number was: ", DEC myNum ' show the number
 PAUSE 1000 ' another pause.
 NEXT
 DEBUG CLS, "Done"
 END ' end program

' Random-number subroutine. A subroutine is just a piece of code with
' the RETURN instruction at the end. Always make sure your program enters
' subroutines with a GOSUB. If you don't, the RETURN won't have the
' correct address, and your program will have a bug!

Pick_A_Number:
 RANDOM numGen ' stir up the bits of NumGen.
 DEBUG DEC ? numGen
 myNum = numGen / 6550 MIN 1 ' scale to fit 1-10 range.
 RETURN ' go back to 1st instruction
 ' after GOSUB that got us here

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – GOTO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 213

GOTO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

GOTO Address

Function
Go to the point in the program specified by Address.

• Address is a label that specifies where to go.

Quick Facts
Table 5.30: GOTO Quick Facts.

 BS1 All BS2 Models
Related

Commands
BRANCH and GOSUB ON...GOTO, BRANCH and GOSUB

Max. GOTOs
per Program

Unlimited, but good programming practices
suggest using the least amount possible.

Explanation
The GOTO command makes the BASIC Stamp execute the code that starts
at the specified Address location. The BASIC Stamp reads PBASIC code
from left to right / top to bottom, just like in the English language. The
GOTO command forces the BASIC Stamp to jump to another section of
code.

A common use for GOTO is to create endless loops; programs that repeat a
group of instructions over and over. For example:

Start:
 DEBUG "Hi", CR
GOTO Start

The above code will print "Hi" on the screen, over and over again. The
GOTO Start line simply tells it to go back to the code that begins with the
label Start. Note: colons (:) are placed after labels, as in “Start:” to further
indicate that they are labels, but the colon is not used on references to
labels such as in the “GOTO Start” line.

Demo Program (GOTO.bs2)

' GOTO.bs2
' This program is not very practical, but demonstrates the use of GOTO to
' jump around the code. This code jumps between three different routines,
' each of which print something different on the screen. The routines are
' out of order for this example.

1 All 2

1 All 2

NOTE: This is written for the BS2 but
can be used for the BS1 and all other
BS2 models as well, by modifying the
$STAMP directive accordingly.

GOTO – BASIC Stamp Command Reference

Page 214 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

'{$STAMP BS2}

GOTO Routine1

Routine2:
 DEBUG "We're in routine #2",CR
 PAUSE 1000
GOTO Routine3

Routine1:
 DEBUG "We're in routine #1",CR
 PAUSE 1000
GOTO Routine2

Routine3:
 DEBUG "We're in routine #3",CR
 PAUSE 1000
GOTO Routine1

5: BASIC Stamp Command Reference – HIGH

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 215

HIGH BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px BS2px

HIGH Pin

Function
Make the specified pin output high.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set high. This pin will be placed into output mode.

Quick Facts
Table 5.31: HIGH Quick Facts.

 BS1 and all BS2 Models
Related

Commands
LOW and TOGGLE

Explanation
The HIGH command sets the specified pin to 1 (a +5 volt level) and then
sets its mode to output. For example,

HIGH 6

does exactly the same thing as:

OUT6 = 1
DIR6 = 1

Using the HIGH command is faster and more concise, in this case.

Connect an LED and a resistor as shown in Figure 5.7 for demo program
HIGH.bs2, below.

Figure 5.7: Example LED Circuit. P0

470 Ω

LED

Vss

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1

1 All 2

All 2

HIGH – BASIC Stamp Command Reference

Page 216 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (HIGH.bs2)

' HIGH.bs2
' This simple program sets I/O pin 0 high for 1/2 second and low for
' 1/2 second in an endless loop. Connect an LED to P0 for a simple
' blinker.

' {$STAMP BS2}

Main:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
 GOTO Main
 END

1 All 2

NOTE: This is written for the BS2 but
can be used for the BS1 and all other
BS2 models as well, by modifying the
$STAMP directive accordingly.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 217

I2CIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

I2CIN Pin, SlaveID, { Address { \LowAddress }, } [InputData]

Function
Receive data from a device using the I2C protocol.

• Pin is a variable/constant/expression (0 or 8) that specifies which
I/O pins to use. I2C devices require two I/O pins to communicate.
The Pin argument serves a double purpose; specifying the first pin
(for connection to the chip's SDA pin) and, indirectly, the other
required pin (for connection to the chip's SCL pin). See explanation
below. Both I/O pins will be toggled between output and input
mode during the I2CIN command and both will be set to input
mode by the end of the I2CIN command.

• SlaveID is a variable/constant/expression (0 – 255) indicating the
unique ID of the I2C chip.

• Address is an optional variable/constant/expression (0 – 255)
indicating the desired address within the I2C chip to receive data
from. The Address argument may be used with the optional
LowAddress argument to indicate a word-sized address value.

• LowAddress is an optional variable/constant/expression (0 – 255)
indicating the low-byte of the word-sized address within the I2C
chip to receive data from. This argument must be used along with
the Address argument.

• InputData is a list of variables and modifiers that tells I2CIN what to
do with incoming data. I2CIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

I2CIN – BASIC Stamp Command Reference

Page 218 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS2p, BS2pe, and BS2px

Values for Pin Pin = 0 Pin = 8
I/O Pin

Arrangement
0: Serial Data (SDA) pin
1: Serial Clock (SCL) pin

8: Serial Data (SDA) pin
9: Serial Clock (SCL) pin

Transmission
Rate

Approximately 81 kbits/sec on a BS2p, 45 kbits/sec on a BS2pe, and 83
kbits/sec on a BS2px (not including overhead).

Special Notes
Both the SDA and SCL pins must have 1 kΩ - 4.7 kΩ pull-up resistors.
The I2CIN command does not allow for multiple masters.
The BASIC Stamp cannot operate as an I2C slave device.

Related
Command

I2COUT

Table 5.32: I2CIN Quick Facts.

Explanation
The I2C protocol is a form of synchronous serial communication developed
by Phillips Semiconductors. It only requires two I/O pins and both pins
can be shared between multiple I2C devices. The I2CIN command allows
the BASIC Stamp to receive data from an I2C device.

The following is an example of the I2CIN command:

result VAR Byte
I2CIN 0, $A1, 0, [result]

This code will transmit a "read" command to an I2C device (connected to
I/O pins 0 and 1) and then will receive one byte and store it in the variable
result. Though it may seem strange, the I2CIN command first transmits
some data and then receives data. It must first transmit information (ID,
read/write and address) in order to tell the I2C device what information it
would like to receive. The exact information transmitted ($A1, 0) depends
on the I2C device that is being used.

The above example will read a byte of data from location 0 of a 24LC16B
EEPROM from Microchip. Figure 5.8 shows the proper wiring for this
example to work. The SlaveID argument ($A1) is both the ID of the chip
and the command to read from the chip; the 1 means read. The Address
argument (0) is the EEPROM location to read from.

A SIMPLE I2CIN EXAMPLE.

NOTE: The I2C command will make up
to 8 attempts to connect to the
addressed device. If the device does
not properly respond, the I2C command
will timeout and the InputData will
remain unchanged..

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 219

Figure 5.8: Example Circuit for the
I2CIN command and a 24LC16B
EEPROM.

Note: The 4.7 kΩ
resistors are required for the
I2CIN command to function
properly.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

The I2CIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below. (Assume the 24LC16B EEPROM is
used and it has the string, "Value: 3A:101" stored, starting at location 0).

value VAR Byte(13)

I2CIN 0, $A1, 0, [value] ' receive the ASCII value for "V"
I2CIN 0, $A1, 0, [DEC value] ' receive the number 3
I2CIN 0, $A1, 0, [HEX value] ' receive the number $3A
I2CIN 0, $A1, 0, [BIN value] ' receive the number %101
I2CIN 0, $A1, 0, [STR value\13] ' receive the string "Value: 3A:101"

Table 5.33 and Table 5.34 below list all the available special formatters and
conversion formatters available to the I2CIN command. See the SERIN
command for additional information and examples of their use.

Table 5.33: I2CIN Special
Formatters.

Special Formatter Action
SKIP Length Ignore Length bytes of characters.

SPSTR L
Input a character stream of length L bytes (up to 126) into
Scratch Pad RAM, starting at location 0. Use GET to retrieve
the characters.

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified,
an end character E causes the string input to end before
reaching length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an
array variable, optionally limited to L characters. If the
optional L argument is left off, the end of the array-string must
be marked by a byte containing a zero (0).

RECEIVING FORMATTED DATA.

I2CIN – BASIC Stamp Command Reference

Page 220 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited to
1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.34: I2CIN Conversion
Formatters.

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 221

The I2C protocol has a well-defined standard for the information passed at
the start of each transmission. First of all, any information sent must be
transmitted in units of 1 byte (8-bits). The first byte, we call the SlaveID, is
an 8-bit pattern whose upper 7-bits contain the unique ID of the device
you wish to communicate with. The lowest bit indicates whether this is a
write operation (0) or a read operation (1). Figure 5.9 shows this format.

Figure 5.9: Slave ID Format.

7

A6

6

A5

5

A4

4

A3

3

A2

2

A1

1

A0

0

R/W

The second byte, immediately following the SlaveID, is the optional
Address. It indicates the 8-bit address (within the device) containing the
data you would like to receive. Note that the Address argument is optional
and may be left unspecified for devices that don't require an Address
argument.

Some devices require more than 8 bits of address. For this case, the
optional LowAddress argument can be used for the low-byte of the required
address. When using the LowAddress argument, the Address argument is
effectively the high-byte of the address value. For example, if the entire
address value is 2050, use 8 for the Address argument and 2 for the
LowAddress argument (8 * 256 + 2 = 2050).

Following the last address byte is the first byte of data. This data byte may
be transmitted or received by the BASIC Stamp. In the case of the I2CIN
command, this data byte is transmitted by the device and received by the
BASIC Stamp. Additionally, multiple data bytes can follow the address,
depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of these device limitations and program
accordingly.

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2CIN command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.10.

THE I2C PROTOCOL FORMAT.

USING LONG ADDRESSES.

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

I2CIN – BASIC Stamp Command Reference

Page 222 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

Figure 5.10: I2C Transmission
Format.

Since the I2CIN command is intended for input only, it actually overrides
the "R/W" bit (bit 0) in the SlaveID argument. This is done so that it can
use the I2C protocol's "Combined Format" for receiving data. Put simply,
this means a command such as: I2CIN 0, $A1, 10, [Result] actually
transmits $A0, then 10, then $A1 and then it reads the data back from the
device. The $A0 means "write", the 10 is the address to write to, and
finally, the $A1 indicates a change of direction; to "read" the location,
instead. Even though the I2CIN command really doesn't care what the
value of the SlaveID's LSB is, it is suggested that you still set it
appropriately for clarity.

Also note that the I2CIN command does not support multiple I2C masters
and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)

' I2C.bsp
' This program demonstrates writing and reading every location in a 24LC16B
' EEPROM using the BS2p/BS2pe's I2C commands. Connect the BS2p, BS2pe, or
' BS2px to the 24LC16B DIP EEPROM as shown in the diagram in the I2CIN or
' I2COUT command description.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe, or BS2px."
#ENDIF

SDA PIN 0 ' I2C SDA pin
SCL PIN SDA + 1

SPECIAL NOTE ABOUT I2CIN

INPLIMENTATION.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 223

addr VAR Word ' internal address
block VAR Nib ' block address in 24LC16
value VAR Byte ' value to write
check VAR Nib ' for checking retuned values
result VAR Byte(16) ' array for returned value

Write_To_EEPROM:
 DEBUG "Writing...", CR
 PAUSE 2000
 FOR addr = 0 TO 2047 STEP 16 ' loop through all addresses
 block = addr.NIB2 << 1 ' calculate block address
 value = addr >> 4 ' create value from upper 8 bits
 ' write 16 bytes
 I2COUT SDA, $A0 | block, addr, [REP value\16]
 PAUSE 5
 DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, " ",
 "Value: ", DEC3 value, CR
 NEXT
 PAUSE 2000

Read_From_EEPROM:
 DEBUG CR, "Reading...", CR
 PAUSE 2000
 FOR addr = 0 TO 2047 STEP 16
 block = addr.NIB2 << 1
 value = addr >> 4
 I2CIN SDA, $A1 | block, addr, [STR result\16]
 FOR check = 0 TO 15
 IF (result(check) <> value) THEN Error
 NEXT
 DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, " ",
 "Value: ", DEC3 result, CR
 NEXT
 PAUSE 100
 DEBUG CR, "All locations passed"
 END

Error:
 DEBUG "Error at location: ", DEC4 addr + check, CR,
 "Found: ", DEC3 result(check), ", Expected: ", DEC3 value
 END

I2CIN – BASIC Stamp Command Reference

Page 224 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 225

I2COUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

I2COUT Pin, SlaveID, { Address { \LowAddress }, } [OutputData]

Function
Send data to a device using the I2C protocol.

• Pin is a variable/constant/expression (0 or 8) that specifies which
I/O pins to use. I2C devices require two I/O pins to communicate.
The Pin argument serves a double purpose; specifying the first pin
(for connection to the chip's SDA pin) and, indirectly, the other
required pin (for connection to the chip's SCL pin). See explanation
below. Both I/O pins will be toggled between output and input
mode during the I2COUT command and both will be set to input
mode by the end of the I2COUT command.

• SlaveID is a variable/constant/expression (0 – 255) indicating the
unique ID of the I2C chip.

• Address is an optional variable/constant/expression (0 – 255)
indicating the desired address within the I2C chip to send data to.
The Address argument may be used with the optional LowAddress
argument to indicate a word-sized address value.

• LowAddress is an optional variable/constant/expression (0 – 255)
indicating the low-byte of the word-sized address within the I2C
chip to receive data from. This argument must be used along with
the Address argument.

• OutputData is a list of variables, constants, expressions and
formatters that tells I2COUT how to format outgoing data. I2COUT
can transmit individual or repeating bytes, convert values into
decimal, hexadecimal or binary text representations, or transmit
strings of bytes from variable arrays. These actions can be combined
in any order in the OutputData list.

I2COUT – BASIC Stamp Command Reference

Page 226 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS2p, BS2pe, and BS2px

Values for Pin Pin = 0 Pin = 8

I/O Pin Arrangement 0: Serial Data (SDA) pin
1: Serial Clock (SCL) pin

8: Serial Data (SDA) pin
9: Serial Clock (SCL) pin

Transmission
Rate

Approximately 81 kbits/sec on a BS2p, 45 kbits/sec on a BS2pe,
and 83 kbits/sec on a BS2px (not including overhead).

Special Notes
The SDA and SCL pins must have 1 kΩ - 4.7 kΩ pull-up resistors.
The I2CIN command does not allow for multiple masters.
The BASIC Stamp cannot operate as an I2C slave device.

Related Command I2CIN

Table 5.35: I2COUT Quick Facts.

Explanation
The I2C protocol is a form of synchronous serial communication developed
by Phillips Semiconductors. It only requires two I/O pins and both pins
can be shared between multiple I2C devices. The I2COUT command
allows the BASIC Stamp to send data to an I2C device.

The following is an example of the I2COUT command:

I2COUT 0, $A0, 5, [100]

This code will transmit a "write" command to an I2C device (connected to
I/O pins 0 and 1), followed by an address of 5 and finally will transmit the
number 100.

The above example will write a byte of data to location 5 of a 24LC16B
EEPROM from Microchip. Figure 5.11 shows the proper wiring for this
example to work. The SlaveID argument ($A0) is both the ID of the chip
and the command to write to the chip; the 0 means write. The Address
argument (5) is the EEPROM location to write to.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

Figure 5.11: Example Circuit for the
I2COUT command and a 24LC16B
EEPROM.

Note: The 4.7 kΩ resistors are
required for the I2COUT
command to function properly.

A SIMPLE I2COUT EXAMPLE.

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 227

The I2COUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume the 24LC16B EEPROM is being used).

value VAR Byte
value = 65

I2COUT 0, $A0, 0, [value] ' send "A"
I2COUT 0, $A0, 0, [REP value\5] ' send "AAAAA"
I2COUT 0, $A0, 0, [DEC value] ' send "6" and "5"
I2COUT 0, $A0, 0, [HEX value] ' send "4" and "1"
I2COUT 0, $A0, 0, [BIN value] ' send "1000001"

Table 5.36 and Table 5.37 list all the available formatters for the I2COUT
command. See the DEBUG and SEROUT commands for additional
information and examples of their use.

Table 5.36: I2COUT Conversion
Formatters.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1,3

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4}
Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.
3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD

Conversion” on page 97.

SENDING AND FORMATTING DATA.

I2COUT – BASIC Stamp Command Reference

Page 228 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display
"x = binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

Table 5.37: I2COUT Special
Formatters

The I2C protocol has a well-defined standard for the information passed at
the start of each transmission. First of all, any information sent must be
transmitted in units of 1 byte (8-bits). The first byte, we call the SlaveID, is
an 8-bit pattern whose upper 7-bits contain the unique ID of the device
you wish to communicate with. The lowest bit indicates whether this is a
write operation (0) or a read operation (1). Figure 5.12 shows this format.

7

A6

6

A5

5

A4

4

A3

3

A2

2

A1

1

A0

0

R/W

Figure 5.12: Slave ID Format

The second byte, immediately following the SlaveID, is the optional
Address. It indicates the 8-bit address (within the device) containing the
data you would like to receive. Note that the Address argument is optional
and may be left unspecified for devices that don't require an Address
argument.

Some devices require more than 8 bits of address. For this case, the
optional LowAddress argument can be used for the low-byte of the required
address. When using the LowAddress argument, the Address argument is
effectively the high-byte of the address value. For example, if the entire
address value is 2050, use 8 for the Address argument and 2 for the
LowAddress argument (8 * 256 + 2 = 2050).

Following the last address byte is the first byte of data. This data byte may
be transmitted or received by the BASIC Stamp. In the case of the I2COUT
command, this data byte is transmitted by the BASIC Stamp and received
by the device. Additionally, multiple data bytes can follow the address,

THE I2C PROTOCOL FORMAT.

USING LONG ADDRESSES.

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 229

depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of this, and program accordingly.

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2COUT command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.13.

Figure 5.13: I2C Transmission
Format

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

Since the I2COUT command is intended for output only, it actually
overrides the "R/W" bit (bit 0) in the SlaveID argument. This is done to
avoid device conflicts should the value be mistyped. Put simply, this
means commands such as: I2COUT 0, $A0, 10, [0] and I2COUT 0, $A1,
10, [0] both transmit the same thing ($A0, then 10, then the data). Even
though the I2COUT command really doesn't care what the value of the
SlaveID's LSB is, it is suggested that you still set it appropriately for clarity.

Also note that the I2COUT command does not support multiple I2C
masters and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)

' I2C.bsp
' This program demonstrates writing and reading every location in a 24LC16B
' EEPROM using the BS2p/BS2pe's I2C commands. Connect the BS2p, BS2pe, or
' BS2px to the 24LC16B DIP EEPROM as shown in the diagram in the I2CIN or

SPECIAL NOTE ABOUT I2COUT

INPLIMENTATION.

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

NOTE: This example program can be
used with the BS2p, BS2pe and
BS2px. This program uses conditional
compilation techniques; see Chapter 3 .

I2COUT – BASIC Stamp Command Reference

Page 230 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' I2COUT command description.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe or BS2px."
#ENDIF

SDA PIN 0 ' I2C SDA pin
SCL PIN SDA + 1

addr VAR Word ' internal address
block VAR Nib ' block address in 24LC16
value VAR Byte ' value to write
check VAR Nib ' for checking retuned values
result VAR Byte(16) ' array for returned value

Write_To_EEPROM:
 DEBUG "Writing...", CR
 PAUSE 2000
 FOR addr = 0 TO 2047 STEP 16 ' loop through all addresses
 block = addr.NIB2 << 1 ' calculate block address
 value = addr >> 4 ' create value from upper 8 bits
 ' write 16 bytes
 I2COUT SDA, $A0 | block, addr, [REP value\16]
 PAUSE 5
 DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, " ",
 "Value: ", DEC3 value, CR
 NEXT
 PAUSE 2000

Read_From_EEPROM:
 DEBUG CR, "Reading...", CR
 PAUSE 2000
 FOR addr = 0 TO 2047 STEP 16
 block = addr.NIB2 << 1
 value = addr >> 4
 I2CIN SDA, $A1 | block, addr, [STR result\16]
 FOR check = 0 TO 15
 IF (result(check) <> value) THEN Error
 NEXT
 DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, " ",
 "Value: ", DEC3 result, CR
 NEXT
 PAUSE 100
 DEBUG CR, "All locations passed"
 END

Error:
 DEBUG "Error at location: ", DEC4 addr + check, CR,
 "Found: ", DEC3 result(check), ", Expected: ", DEC3 value
 END

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 231

IF…THEN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

IF Condition(s) THEN Address

IF Condition(s) THEN Statement(s) { ELSE Statement(s) }

IF Condition(s) THEN
 Statement(s)
{ ELSEIF Condition(s) THEN
 Statement(s)… }
 { ELSE
 Statement(s) }
ENDIF

Function
Evaluate Condition(s) and, if true, go to the Address or execute the
Statement(s) following THEN, otherwise process the ELSEIF/ELSE
block(s), if provided. ELSEIF is optional and works just like IF, but is only
evaluated if the Condition(s) in the preceding IF is false. The ELSE block is
optional and is executed if all Condition(s) in all preceding IF/ELSEIFs are
false. The program will continue at the next line of code (single-line
syntax) or the line that follows ENDIF (multi-line syntax) unless Address or
Statement(s) are executed that cause the program to jump.

• Condition is a statement, such as “x = 7” that can be evaluated as
true or false. Condition can be a very simple or very complex
relationship, as described below.

• Address is a label that specifies where to go in the event that
Condition(s) is true.

• Statement is any valid PBASIC instruction. Multiple statements
may be placed on the same line (though not recommended) by
separating each statement with a colon (:).

All 2

NOTE: PBASIC 1.0 and
PBASIC 2.0 only support
IF Condition(s) THEN Address.
PBASIC 2.5 supports all syntax
variations.

1 All 2

All 2

IF…THEN – BASIC Stamp Command Reference

Page 232 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS1 All BS2 Models

Comparison
Operators

=, <>, >, <, >=, <= =, <>, >, <, >=, <=

Conditional
 Logic Operators

AND, OR NOT, AND, OR, XOR

Format of
Condition

Variable Comparison Value;
where Value is a variable

or constant

Value1 Comparison Value2;
where Value1 and Value2 can by

any of variable, constant or
expression

Parentheses Not Allowed Allowed
Max nested
IF…THENs

n/a 16

Max ELSEIFs
per IF

n/a 16

Max ELSEs per IF n/a 1
Related Command None SELECT…CASE

Table 5.38: IF...THEN Quick Facts.

Explanation
IF...THEN is PBASIC's decision maker that allows one block of code or
another to run based on the value (True or False) of a condition. The
condition that IF...THEN tests is written as a mixture of comparison and
logic operators. The available comparison operators are:

Comparison Operator
Symbol

Definition

= Equal
<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.39: IF...THEN Comparison
Operators.

Comparisons are always written in the form: Value1 Comparison Value2.
The values to be compared can be any combination of variables (any size),
constants, or expressions.

The following example is an IF…THEN command with a simple
condition:

IF value < 4000 THEN Main

This code will compare the value of value to the number 4000. If value is
less than 4000, the condition is true and the program will jump (implied

NOTE: On the BS1, expressions
are not allowed as arguments.
Also, the Value1 (to the left of
comparison) must be a variable.

1

A SIMPLE FORM OF IF…THEN

1 All 2

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 233

GOTO) to the label called Main. This is the simplest form of IF…THEN
and is the only form supported by PBASIC 1.0 and PBASIC 2.0.

The Condition(s) argument is very powerful and flexible. In the next few
pages we’ll demonstrate this flexibility in great detail and afterwards we’ll
discuss the additional, optional arguments allowed by PBASIC 2.5.

Here's a complete example of IF...THEN in action:

value VAR Word

Main:
 PULSIN 0, 1, value
 DEBUG DEC value, cr
 IF value < 4000 THEN Main
 DEBUG "Pulse value was greater than 3999!"

Here, the BASIC Stamp will look for and measure a pulse on I/O pin 0,
then compare the result, value, against 4000. If value is less than (<) 4000, it
will jump back to Main. Each time through the loop, it displays the
measured value and once it is greater than or equal to 4000, it displays,
"Value was greater than 3999!"

On all BS2 models, the values can be expressions as well. This leads to
very flexible and sophisticated comparisons. The IF…THEN statement
below is functionally the same as the one in the program above:

IF value < (45 * 100 – (25 * 20)) THEN Val_Low

Here the BASIC Stamp evaluates the expression: 45 * 100 = 4500, 25 * 20 =
500, and 4500 – 500 = 4000. Then the BASIC Stamp performs the
comparison: is value < 4000? Another example that is functionally the
same:

IF (value / 100) < 40 THEN Val_Low

It's important to realize that all comparisons are performed using
unsigned, 16-bit math. This can lead to strange results if you mix signed
and unsigned numbers in IF...THEN conditions. Watch what happens
here when we include a signed number (–99):

WATCH OUT FOR UNSIGNED MATH

COMPARISON ERRORS

All 2

All 2

All 2

ALL ABOUT CONDITION(S).

NOTE: For BS1's, change line 1 to
SYMBOL value = W0
and line 4 to
DEBUG #value, CR

IF…THEN – BASIC Stamp Command Reference

Page 234 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 Test:
 IF -99 < 100 THEN Is_Less
 DEBUG "Greater than or equal to 100"
 END

Is_Less:
 DEBUG "Less than 100"
 END

Although –99 is obviously less than 100, the program will say it is greater.
The problem is that –99 is internally represented as the two’s complement
value 65437, which (using unsigned math) is greater than 100. This
phenomena will occur whether or not the negative value is a constant,
variable or expression.

IF...THEN supports the conditional logic operators NOT, AND, OR, and
XOR to allow for more sophisticated conditions, such as multi-part
conditions. See Table 5.38 for a list of the operators and Table 5.40 for
their effects.

The NOT operator inverts the outcome of a condition, changing false to
true, and true to false. The following IF...THENs are equivalent:

IF x <> 100 THEN Not_Equal
IF NOT x = 100 THEN Not_Equal

The operators AND, OR, and XOR can be used to join the results of two
conditions to produce a single true/false result. AND and OR work the
same as they do in everyday speech. Run the example below once with
AND (as shown) and again, substituting OR for AND:

value1 VAR Byte
value2 VAR Byte

Setup:
 value1 = 5
 value2 = 9

Main:
 IF value1 = 5 AND value2 = 10 THEN Is_True
 DEBUG "Statement is False"
 END

Is_True:
 DEBUG "Statement is True"
 END

NOTE: For BS1's, change lines1 and 2
to:
SYMBOL value1 = B2
SYMBOL value2 = B3

LOGICAL OPERATORS (NOT, AND, OR

AND XOR).

NOTE: The NOT and XOR operators
are not available on the BS1.

1

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 235

The condition “value1 = 5 AND value2 = 10” is not true. Although value1
is 5, value2 is not 10. The AND operator works just as it does in English;
both conditions must be true for the statement to be true. The OR operator
also works in a familiar way; if one or the other or both conditions are
true, then the statement is true. The XOR operator (short for exclusive-
OR) may not be familiar, but it does have an English counterpart: If one
condition or the other (but not both) is true, then the statement is true.

Table 5.40 below summarizes the effects of the conditional logic operators.
On all BS2 models you can alter the order in which comparisons and
logical operations are performed by using parentheses. Operations are
normally evaluated left-to-right. Putting parentheses around an operation
forces PBASIC 2.0 and PBASIC 2.5 to evaluate it before operations that are
not in parentheses.

Table 5.40: Conditional Logic
Operators Truth Tables.

NOTE: The NOT and XOR operators
are not available on the BS1.

Truth Table for Logical Operator: NOT
Condition A NOT A

False True
True False

Truth Table for Logical Operator: AND

Condition A Condition B A AND B
False False False
False True False
True False False
True True True

Truth Table for Logical Operator: OR

Condition A Condition B A OR B
False False False
False True True
True False True
True True True

Truth Table for Logical Operator: XOR

Condition A Condition B A XOR B
False False False
False True True
True False True
True True False

1

NOTE: On the BS1, parentheses are
not allowed within arguments.

1

IF…THEN – BASIC Stamp Command Reference

Page 236 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Internally, the BASIC Stamp defines “false” as 0 and “true” as any value
other than 0. Consider the following instructions:

flag VAR Bit

Setup:
 flag = 1

Test:
 IF flag THEN Is_True
 DEBUG "False"
 END

Is_True:
 DEBUG "True"
 END

Since flag is 1, IF...THEN would evaluate it as true and print the message
“True” on the screen. Suppose you changed the IF...THEN command to
read “IF NOT flag THEN Is_True.” That would also evaluate as true.
Whoa! Isn’t NOT 1 the same thing as 0? No, at least not in the 16-bit world
of the BASIC Stamp.

Internally, the BASIC Stamp sees a bit variable containing 1 as the 16-bit
number %0000000000000001. So it sees the NOT of that as
%1111111111111110. Since any non-zero number is regarded as true, NOT
1 is true. Strange but true.

The easiest way to avoid the kinds of problems this might cause is to
always use a conditional operator with IF...THEN. Change the example
above to read IF flag = 1 THEN is_True. The result of the comparison
will follow IF...THEN rules. Also, the logical operators will work as they
should; IF NOT Flag = 1 THEN is_True will correctly evaluate to false
when flag contains 1.

This also means that you should only use the "named" conditional logic
operators NOT, AND, OR, and XOR with IF...THEN. The conditional logic
operators format their results correctly for IF...THEN instructions. The
other logical operators, represented by symbols ~, &, |, and ^ do not; they
are binary logic operators.

The remainder of this discussion only applies to the extended IF…THEN
syntax supported by PBASIC 2.5.

INTERNAL REPRESENTATION OF BOOLEAN

VALUES (TRUE VS. FALSE).

AVOIDING ERRORS WITH BOOLEAN

RESULTS.

All 2

All 2

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 237

In addition to supporting everything discussed above, PBASIC 2.5
provides enhancements to the IF…THEN command that allow for more
powerful, structured programming. In prior examples we’ve only used
the first syntax form of this command: IF Condition(s) THEN Address. That
form, while handy in some situations, can be quite limiting in others. For
example, it is common to need to perform a single instruction based on a
condition. Take a look at the following code:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x ' display num
 IF (x // 2) = 0 THEN DEBUG " EVEN" ' even num?
NEXT

This example prints the numbers 1 through 20 on the screen but every
even number is also marked with the text “ EVEN.” The IF…THEN
command checks to see if x is even or odd and, if it is even (i.e.: x // 2 = 0),
then it executes the statement to the right of THEN: DEBUG “ EVEN.” If it
was odd, it simply continued at the following line, NEXT.

Suppose you also wanted to mark the odd numbers. You could take
advantage of the optional ELSE clause, as in:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x
 IF (x // 2) = 0 THEN DEBUG " EVEN" ELSE DEBUG “ ODD”
NEXT

This example prints the numbers 1 through 20 with “ EVEN” or “ ODD”
to the right of each number. For each number (each time through the
loop) IF…THEN asks the question, “Is the number even?” and if it is it
executes DEBUG “ EVEN” (the instruction after THEN) or, if it is not even
it executes DEBUG “ ODD” (the instruction after ELSE). It’s important to
note that this form of IF…THEN always executes code as a result of
Condition(s); it either does “this” (THEN) or “that” (ELSE).

IF…THEN WITH A SINGLE STATEMENT

IF…THEN – BASIC Stamp Command Reference

Page 238 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The IF…THEN in the previous example is called a “single-line” syntax. It
is most useful where you only have one instruction to run as the result of a
Condition. Sometimes this form may be a little hard to read, like in our
above example. For these cases, it would be better to use the “multi-line”
syntax of IF…THEN. The multi-line format allows the same flexibility as
the single-line format, but is easier to read in most cases and requires an
ENDIF statement at the end. For example, our IF…THEN line above
could be re-written as:

IF (x // 2) = 0 THEN
 DEBUG " EVEN" ' even number
ELSE
 DEBUG " ODD" ' odd number
ENDIF

This example runs exactly the same way, is much easier to read and also
leaves extra room to add some helpful comments on the right. We also
indented the Statement(s) for clarity and suggest you do the same.

Did you notice that multi-line syntax requires ENDIF to mark the end of
the IF…THEN…ELSE construct? That is because the Statement(s)
argument can be multiple instructions on multiple lines, so without
ENDIF there is no way to know just where the IF…THEN…ELSE ends.

Occasionally, it may be necessary to have compound IF statements. One
way to achieve this is through nested IF…THEN…END constructs:

' {$PBASIC 2.5}

value VAR Word

DO
 PULSIN 0, 1, value ' measure pulse input
 DEBUG DEC value, CR
 IF (value > 4000) THEN ' evaluate duration
 DEBUG "Value was greater than 4000"
 ELSE
 IF (value = 4000) THEN
 DEBUG "Value was equal to 4000"
 ELSE
 DEBUG "Value was less than 4000"
 ENDIF
 ENDIF
 DEBUG CR, CR
 PAUSE 1000
LOOP

SINGLE-LINE VS. MULTI-LINE IF…THENS

NESTED IF…THENS

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 239

Here, the BASIC Stamp will look for and measure a pulse on I/O pin 0,
then compare the result, value, against 4000. Based on this comparison, a
message regarding the pulse width value will be printed.

If value is greater than 4000, “Value was greater than 4000” is printed to
the screen. Look what happens if value is not greater than 4000… the code
in the ELSE block is run, which is another IF…THEN…ELSE statement.
This “nested” IF…THEN statement checks if value is equal to 4000 and if it
is, it prints “Value was equal to 4000” or, if it was not equal, the last ELSE
code block executes, printing “Value was less than 4000.” Up to sixteen
(16) IF…THENs can be nested like this.

The nesting option is great for many situations, but, like single-line syntax,
may be a little hard to read, especially if there are multiple nested
statements or there is more than one instruction in each of the Statement(s)
arguments. Additionally, every multi-line IF…THEN construct must end
with ENDIF, resulting in two ENDIFs right near each other in our
example; one for the innermost IF…THEN and one for the outermost
IF…THEN. For this reason, IF…THEN supports an optional ELSEIF
clause. The ELSEIF clause takes the place of a nested IF…THEN and
removes the need for multiple ENDIFs. Our IF…THEN construction from
the example above could be rewritten to:

' {$PBASIC 2.5}

IF (value > 4000) THEN ' evaluate duration
 DEBUG "Value was greater than 4000"
ELSEIF (value = 4000) THEN
 DEBUG "Value was equal to 4000"
ELSE
 DEBUG "Value was less than 4000"
ENDIF

This IF…THEN construct does the same thing as in the previous example:

1) if value is greater than 4000:
it displays “Value was greater than 4000”

2) else, if value is equal to 4000 (the ELSEIF part):
it displays “Value was equal to 4000”

3) and finally (ELSE) if none of the above were true:
it displays “Value was less than 4000”

USING THE ELSEIF CLAUSE

IF…THEN – BASIC Stamp Command Reference

Page 240 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Note that an IF…THEN construct can have as many as sixteen (16) ELSEIF
clauses, but a maximum of only one (1) ELSE clause.

There are three demo programs below. The first two demonstrate the
PBASIC 1.0 (BS1) and PBASIC 2.0 (all BS2 models) form of the IF…THEN
command. The last example demonstrates the PBASIC 2.5 (all BS2
models) form of IF…THEN.

Demo Program (IF-THEN.bs1)

' IF-THEN.bs1
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL sample = W0 ' Random number to be tested
SYMBOL samps = B2 ' Number of samples taken
SYMBOL temp = B3 ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG #sample, "divides by 3", CR ' show sample divisible by 3
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN.bs2)

' IF-THEN.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 241

' {$STAMP BS2}
' {$PBASIC 2.0}

sample VAR Word ' Random number to be tested
samps VAR Nib ' Number of samples taken
temp VAR Nib ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG DEC5 sample, " divides by 3", CR
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN-ELSE.bs2)

' IF-THEN-ELSE.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS2}
' {$PBASIC 2.5} ' version 2.5 required

sample VAR Word ' Random number to be tested
hits VAR Nib ' Number of hits
misses VAR Word ' Number of misses

Setup:
 sample = 11500

Main:
 DO
 RANDOM sample ' Put a random number into sample
 IF ((sample // 3) = 0) THEN ' divisible by 3?
 DEBUG DEC5 sample, ' - yes, print value and message
 " is divisible by 3", CR

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

IF…THEN – BASIC Stamp Command Reference

Page 242 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 hits = hits + 1 ' count hits (divisible by 3)
 ELSE
 misses = misses + 1 ' count misses
 ENDIF
 LOOP UNTIL (hits = 10) ' quit after 10 hits

 DEBUG CR,
 "All done.", CR, CR, ' display results
 "Hits: ", DEC hits, CR,
 "Misses: ", DEC misses, CR,
 "Samples: ", DEC (hits + misses)
 END

5: BASIC Stamp Command Reference – INPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 243

INPUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

INPUT Pin

Function
Make the specified pin an input.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to input mode.

Quick Facts
Table 5.41: INPUT Quick Facts.

 BS1 All BS2 Models
Input Pin
Variables

PINS; PIN0 through PIN7 INS; IN0 through IN15

Related
Commands

OUTPUT and REVERSE

Explanation
There are several ways to make a pin an input. When a program begins,
all of the BASIC Stamp's pins are inputs. Commands that rely on input
pins, like PULSIN and SERIN, automatically change the specified pin to
input. Writing 0s to particular bits of the variable DIRS makes the
corresponding pins inputs. And then there’s the INPUT command.

When a pin is an input, your program can check its state by reading the
corresponding INS variable (PINS on the BS1). For example:

INPUT 4

Hold:
 IF IN4 = 0 THEN Hold ' stay here until P4 = 1

The code above will read the state of P4 as set by external circuitry. If
nothing is connected to P4, it will alternate between states (1 or 0)
apparently at random.

What happens if your program writes to the OUTS bit (PINS bit on the
BS1) of a pin that is set up as an input? The value is stored in OUTS (PINS
on the BS1), but has no effect on the outside world. If the pin is changed to
output, the last value written to the corresponding OUTS bit (or PINS bit

1 All 2

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the PIN argument on the BS1 is 0 – 7.

1

All 2

INPUT – BASIC Stamp Command Reference

Page 244 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

on the BS1) will appear on the pin. The demo program shows how this
works.

Demo Program (INPUT.bs1)

' INPUT.bs1
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of PINS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS1}
' {$PBASIC 1.0}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ", #PIN7, CR

 PIN7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: "
 DEBUG #PIN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: "
 DEBUG #PIN7

Demo Program (INPUT.bs2)

' INPUT.bs2
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of INS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ",

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – INPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 245

 BIN1 IN7, CR

 OUT7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: ",
 BIN1 IN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: ",
 BIN1 IN7

INPUT – BASIC Stamp Command Reference

Page 246 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – IOTERM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 247

IOTERM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

IOTERM Port

Function
Switch control to main I/O pins or auxiliary I/O pins (on the BS2p40 only)
depending on state of Port.

• Port is a variable/constant/expression (0 – 1) that specifies which
I/O port to use.

Quick Facts
Table 5.42: IOTERM Quick Facts.

 BS2p, BS2pe, and BS2px
Values for Port 0 = switch to main I/O group, 1 = switch to auxiliary I/O group.

I/O pin IDs 0 – 15 (after IOTERM command, all references affect physical pins 5 –
20 or 21 – 36 depending on state of Port).

Special Notes Both the BS2p and BS2pe 24-pin modules accept this command,
however, only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

AUXIO and MAINIO

Explanation
The BS2p, BS2pe and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's I/O pins are organized into two groups, called main
and auxiliary. The I/O pins in each group can be accessed in the same
manner (by referencing I/O pins 0 – 15) but access is only possible within
one group at a time. The IOTERM command causes the BASIC Stamp to
affect either the main or auxiliary I/O pins in all further code until the
MAINIO, AUXIO or another IOTERM command is reached, or the BASIC
Stamp is reset or power-cycled. The value of Port determines which group
of I/O pins will be referenced. Using 0 for Port will switch to the main
I/O group and using 1 for Port will switch to the auxiliary group.

The following example illustrates this:

HIGH 0 ' make P0 high
IOTERM 1 ' Port = 1, so switch to auxiliary pins
LOW 0 ' make X0 low

The first line of the above example will set I/O pin 0 of the main I/O pins
(physical pin 5) high. Afterward, the IOTERM command tells the BASIC

A SIMPLE IOTERM EXAMPLE.

IOTERM – BASIC Stamp Command Reference

Page 248 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Stamp that all commands following it should affect the auxiliary I/O pins
(Port = 1). The following LOW command will set I/O pin 0 of the
auxiliary I/O pins (physical pin 21) low.

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are AUXIO and MAINIO.

Demo Program (AUX_MAIN_TERM.bsp)

' AUX_MAIN_TERM.bsp
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM
' commands to affect I/O pins in the auxiliary and main I/O groups.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2SX
 #ERROR "Program requires BS2p40"
 #CASE BS2P, BS2PE, BS2PX
 DEBUG "Note: This program designed for the BS2p40.", CR
#ENDSELECT

port VAR Bit

Main:
 DO
 MAINIO ' Switch to main I/O pins
 TOGGLE 0 ' Toggle state of I/O pin P0
 PWM 1, 100, 40 ' Generate PWM on I/O pin P1

 AUXIO ' Switch to auxiliary I/O pins
 TOGGLE 0 ' Toggle state of I/O pin X0
 PULSOUT 1, 1000 ' Generate a pulse on I/O pin X1
 PWM 2, 100, 40 ' Generate PWM on I/O pin X2

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

2p

NOTE: This example program will
tokenize with the 24-pin BS2p, BS2pe,
and BS2px but its effects can only be
seen on the BS2p40. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 249

LCDCMD BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LCDCMD Pin, Command

Function
Send a command to an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins
to operate. Note that LCDCMD, LCDIN and LCDOUT use a 4-bit
interface to the LCD which requires a specific initialization sequence
before LCDIN and LCDOUT can be used. Specifics on the
initialization sequence will follow. The Pin argument serves a
double purpose; specifying the first pin and, indirectly, the group of
other required pins. See explanation below. All I/O pins will be set
to output mode.

• Command is a variable/constant/expression (0 – 255) indicating the
LCD command to send.

Quick Facts
Table 5.43: LCDCMD Quick Facts.

 BS2p, BS2pe, and BS2px
Values for Pin 0, 1, 8 or 9

I/O Pin
Arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O Pin
Arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special Notes LCDCMD is designed to use the LCD's 4-bit mode only.
Related Commands LCDIN and LCDOUT

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p, BS2pe, and BS2px to interface directly to standard LCD displays that
feature a Hitachi 44780 controller (part #HD44780A). This includes many
1 x 16, 2 x 16 and 4 x 20 character LCD displays.

The Hitachi 44780 LCD controller supports a number of special
instructions for initializing the display, moving the cursor, changing the
default layout, etc. The LCDCMD command is used to send one of these

NOTE: LCDCMD, LCDIN and
LCDOUT use a 4-bit interface to the
LCD which requires a specific
initialization sequence before LCDIN
and LCDOUT can be used; read more
below.

LCDCMD – BASIC Stamp Command Reference

Page 250 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

instructions to the LCD. It is most commonly used to initialize the display
upon a power-up or reset condition.

The following is an example of the LCDCMD command:

LCDOUT 0, 24

The above code will send the Scroll Left command (represented by the
number 24) to the LCD whose enable pin is connected to I/O pin 0. This
will cause the LCD display to scroll, or shift, the entire display one
character to the left.

You may have noticed that the Pin argument in the example above was 0.
The LCDCMD command actually uses more than just this I/O pin,
however. The LCDCMD command requires seven I/O pins. This is
because the standard LCD displays have a parallel interface, rather than a
serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and will
result in the use of the I/O pins shown in Table 5.43. Figure 5.14 shows
the required wiring for the above command to work.

Figure 5.14: Example LCD Circuit.
Shown with all connections
necessary for the LCDCMD, LCDIN
and LCDOUT commands.

A SIMPLE LCDCMD EXAMPLE.

WIRING THE BASIC STAMP TO AN LCD.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 251

Note that we could have used 1 for the Pin argument and moved the
LCD's Enable pin (pin 6) to I/O pin 1. Similarly, using 9 for the Pin
argument would have required us to wire the LCD's pins to I/O pins 9
through 15, rather than I/O pins 0 and 2 through 7.

When the LCD is first powered-up, it defaults to an 8-bit interface and
must be configured for a 4-bit buss before sending commands like the one
shown above. This process is known as initializing the LCD and is the
first thing your program should do upon starting up. The following code
is a good example of LCD initialization.

Init_LCD:
 PAUSE 1000 ' allow LCD to self-initialize first
 LCDCMD 0, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD 0, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD 0, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD 0, %00100000 ' set data bus to 4-bit mode
 LCDCMD 0, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD 0, %00001100 ' display on without cursor
 LCDCMD 0, %00000110 ' auto-increment cursor

This initialization code is the most commonly used sequence for a 2 x 16
and 4 x 20 LCD display (the 2-line mode instruction sets the 4 x 20 to 4-line
mode). The PAUSE 1000 command is optional, but only if your program
takes more than approximately 700 ms before it executes the InitLCD code
above. Without it, upon powering your circuit, the BASIC Stamp may talk
to the LCD too early, the LCD will then miss some of the commands and
the display will operate strangely, or not at all.

Do not change the "wake-up" and "4-bit mode" sequence commands.
However, the commands below the line that says, "Set data bus to 4-bit
mode" may be modified to set other desired modes.

Table 5.44 shows the most commonly used LCD commands. Here's an
example:

LCDCMD 0, 16

This will make the LCD's cursor move left by one character (16 is the
Cursor Left command), even if the cursor is not visible. The next character

INITIALIZING THE LCD; THE MOST
IMPORTANT STEP!

COMMON LCD COMMANDS.

LCDCMD – BASIC Stamp Command Reference

Page 252 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

printed on the display (with the LCDOUT command) will appear at the
current cursor's location. Here's another example:

LCDCMD 0, 128 + 64

The above command will move the cursor to the first character position on
the second line (on a 2 x 16 display). 128 is the Move To Display Address
command and 64 is the location number. See the "Character Positioning"
section, below, for more information.

 Command
(in decimal)

Description

Do Nothing 0 Don't perform any special operation.
Clear Display 1 Clear the display and move cursor to home position.
Home Display 2 Move cursor and display to home position.

Inc Cursor 6 Set cursor direction to right, without a display shift.
Display Off 8 Turn off display (display data is retained).
Display On 12 Turn on display without cursor (display is restored).

Blinking Cursor 13 Turn on display with blinking cursor.
Underline Cursor 14 Turn on display with underline cursor.

Cursor Left 16 Move cursor left one character.
Cursor Right 20 Move cursor right one character.

Scroll Left 24 Scroll display left one character.
Scroll Right 28 Scroll display right one character.

Move To CGRAM
Address

64 + address Move pointer to character RAM location.

Move To DDRAM
Address

128 + address Move cursor to Display Data RAM location.

Table 5.44: Common LCD
Commands. These are supported
by LCDs with the Hitachi 44780
controller.

While most users will only need the commands shown in Table 5.44
above, Table 5.45 below details all of the instructions supported by the
LCD (for advanced users). Many instructions are multipurpose,
depending on the state of special bits. Clever manipulation of the
instruction bits will allow for powerful control of the LCD.

The last command shown above (Move To DDRAM Address) is used to
move the cursor to a specific position on the LCD. The LCD's DDRAM
(Display Data RAM) is a fixed size with a unique position number for each
character cell. The viewable portion of the DDRAM depends on the LCD's
logical view position (which can be altered with the Scroll Display
command). The default view position is called the Home position; it
means that the display's upper left character corresponds to DDRAM

CHARACTER POSITIONING: MOVING THE
CURSOR.

A NOTE ABOUT ADVANCED LCD
COMMANDS.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 253

location 0. Figure 5.15 indicates the position numbers for characters on the
LCD screen.

Table 5.45: All LCD Commands
(for advanced users). These are
supported by LCDs with the
Hitachi 44780 controller.

 Command Code (in binary) Description
 7 6 5 4 3 2 1 0

Clear Display 0 0 0 0 0 0 0 1
Clear entire display and move
cursor home (address 0).

Home Display 0 0 0 0 0 0 1 0
Move cursor home and return
display to home position.

Entry Mode 0 0 0 0 0 1 M S
Sets cursor direction (M: 0=left,
1=right) and display scrolling (S:
0=no scroll, 1=scroll)

Display/Cursor 0 0 0 0 1 D U B
Sets display on/off (D), underline
cursor (U) and blinking block
cursor (B). (0=off, 1=on)

Scroll Display /
Shift Cursor

0 0 0 1 C M 0 0
Shifts display or cursor (C:
0=cursor, 1=display) left or right
(M: 0=left, 1=right).

Function Set 0 0 1 B L F 0 0

Sets buss size (B: 0=4-bits,
1=8-bits), number of lines (L:
0=1-line, 1=2-lines) and font size
(F: 0=5x8, 1=5x10)

Move To CGRAM
Address

0 1 A A A A A A
Move pointer to character RAM
location specified by address (A)

Move To DDRAM
Address

1 A A A A A A A
Move cursor to display RAM
location specified by address (A)

Note that Figure 5.15 shows the most common DDRAM mapping, though
some LCD's may have organized the DDRAM differently. A little
experimentation with your LCD may reveal this.

Figure 5.15: LCD Character
Positions.

NOTE: Many 1 x 16 displays
conform to the position numbers
shown on Line 1 of the 2 x 16
display.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

16

80

39

103

…

…
Line 1:

Line 2:

On-screen positions* Off-screen positions*

2 x 16 Display

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Line 1:

Line 2:

4 x 20 Display

Line 3:

Line 4:

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

16 17 18 19

80 81 83

36 37 38 39

100101102103

*Assuming the display is in the home position.

82

LCDCMD – BASIC Stamp Command Reference

Page 254 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

On a standard 2 x 16 character display, the following command would
move the cursor to the third column of the second line:

LCDCMD 0, 128 + 66

The number 128 tells the LCD we wish to move the cursor and 66 is the
location number of the desired position. Similarly, sending just 128
(128 + 0) would move the cursor to the first character of the first line (the
upper left character if the display is at the home position).

You may have noticed that the 2 x 16 display has many locations that are
not visible; they are beyond the right edge of the screen. These locations
(16 – 39 and 80 to 103) become important for scrolling operations. For
example, it is possible to move the cursor to location 16, print some text
there and then issue a number of Scroll Left instructions (LCDCMD 0, 24)
to slowly scroll the text onto the display from right to left. If you did so,
the DDRAM positions that were on the left of the screen would now be
past the left edge of the screen. For example,

LCDCMD 0, 24
LCDCMD 0, 24

would cause the screen to scroll to the left by two characters. At this point,
the upper-left character in the display would actually be DDRAM location
2 and the lower-left character would be DDRAM location 66. Locations 0,
1, 64 and 65 would be off the left edge of the LCD and would no longer be
visible. Some interesting effects can be achieved by taking advantage of
this feature.

The 4 x 20 LCD has a strange DDRAM map. The upper-right character is
location 19 and the next location, 20, appears as the first character of the
third line. This strange mapping is due to constraints in the LCD
controller and the manufacturers design, and unfortunately makes the
scrolling features virtually useless on the 4 x 20 displays.

Even though the LCD requires many pins to talk to it, only the Enable pin
needs to remain dedicated to the LCD and all the other pins can be
multiplexed (shared) with certain other devices (if wired carefully). In
addition, the I/O pin connected to the LCD's R/W pin is only necessary if
the LCDIN command will be used in the application. If the LCDIN
command will not be used, LCD pin 5 (R/W pin) can be connected to

SCROLLING THE DISPLAY.

NOTES ON DDRAM MAPPING FOR 4 X 20
LCDS.

DETAILS ON LCD WIRING.

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 255

ground, the 4 resistors on LCD pins 7-10 may be removed (connecting pins
7-10 directly to ground). Note that even though this change will leave
BASIC Stamp I/O pin 2 disconnected, it will still be set to output mode
for each LCDCMD and LCDOUT command executed.

Demo Program (LCDINIT.bsp)

' LCDINIT.bsp
' This program demonstrates initialization and printing on a 2 x 16
' character LCD display. The set of "LCD constants", below, are provided
' as pre-defined and useful LCD commands, though not all are actually
' used in this program.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe or BS2px."
#ENDIF

Lcd PIN 0

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right
LcdDDRam CON $80 ' Display Data RAM
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

Init_LCD:
 PAUSE 1000 ' allow LCD to self-initialize first
 LCDCMD Lcd, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00100000 ' set data bus to 4-bit mode
 LCDCMD Lcd, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD Lcd, %00001100 ' display on without cursor
 LCDCMD Lcd, %00000110 ' auto-increment cursor

Main:
 DO
 LCDOUT Lcd, LcdCls, ["Hello, World!"]
 LCDOUT Lcd, LcdLine2, ["How are you?"]

NOTE: This example program can be
used with the BS2p, BS2pe, and BS2px
by changing the $STAMP directive
accordingly.

LCDCMD – BASIC Stamp Command Reference

Page 256 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 PAUSE 3000
 LCDCMD Lcd, LcdCls
 PAUSE 500
 LOOP
 END

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 257

LCDIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LCDIN Pin, Command, [InputData]

Function
Receive data from an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins
to operate. The Pin argument serves a double purpose; specifying
the first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode initially
and the upper I/O pins (4 – 7 or 12 – 15) will be set to input mode by
the end of the LCDIN command.

• Command is a variable/constant/expression (0 – 255) indicating the
LCD command to send.

• InputData is a list of variables and formatters that tells LCDIN what
to do with incoming data. LCDIN can store data in a variable or
array, interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.46: LCDIN Quick Facts.

 BS2p, BS2pe, and BS2px
Values for Pin 0, 1, 8 or 9

I/O Pin
Arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O Pin
Arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special Notes LCDIN is designed to use the LCD's 4-bit mode only.
Related

Commands
LCDCMD and LCDOUT

LCDIN – BASIC Stamp Command Reference

Page 258 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p, BS2pe, and BS2px to interface directly to standard LCD displays that
feature a Hitachi 44780 controller (part #HD44780A). This includes many
1 x 16, 2 x 16 and 4 x 20 character LCD displays.

The LCDIN command is used to send one instruction and then receive at
least one data byte from the LCD's Character Generator RAM or Display
Data RAM. The following is an example of the LCDIN command:

char VAR Byte
LCDIN 0, 128, [char]

The above code will read the character value at location 0 of the DDRAM.
See the "Character Positioning" section, of the LCDCMD command
description on page 252 for more information.

The LCDIN command actually uses more than just the I/O pin specified
by the Pin argument. The LCDIN command requires seven I/O pins. This
is because the standard LCD displays have a parallel interface, rather than
a serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and will
result in the use of the I/O pins shown in Table 5.46. Please refer to the
LCDCMD command description for information on page properly wiring
the LCD display.

When the LCD is first powered-up, it defaults to an 8-bit interface and
must be properly configured for a 4-bit buss before sending commands
like the one shown above. This process is known as initializing the LCD
and is the first thing your program should do upon starting up. Please
refer to the LCDCMD command description for information on properly
initializing the LCD display.

The LCDIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below (assume the LCD display has "Value:
3A:101" starting at the first character of the first line on the screen).

A SIMPLE LCDIN EXAMPLE.

TWO VERY IMPORTANT STEPS:
1) WIRING THE BASIC STAMP TO AN LCD.
2) INITIALIZING THE LCD.

RECEIVING FORMATTED DATA.

NOTE: LCDCMD, LCDIN and
LCDOUT use a 4-bit interface to the
LCD which requires a specific
initialization sequence before LCDIN
and LCDOUT can be used; read more
below.

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 259

value VAR Byte(13)
LCDIN 0, 128, [value] 'receive the ASCII value for "V"
LCDIN 0, 128, [DEC value] 'receive the number 3.
LCDIN 0, 128, [HEX value] 'receive the number $3A.
LCDIN 0, 128, [BIN value] 'receive the number %101.
LCDIN 0, 128, [STR value\13] 'receive the string "Value: 3A:101"

Table 5.47 and Table 5.48 list all the special formatters and conversion
formatters available to the LCDIN command. See the SERIN command for
additional information and examples of their use.

Some possible uses of the LCDIN command are 1) in combination with the
LCDOUT command to store and read data from the unused DDRAM or
CGRAM locations (as extra variable space), 2) to verify that the data from
a previous LCDOUT command was received and processed properly by
the LCD, and 3) to read character data from CGRAM for the purposes of
modifying it and storing it as a custom character.

Table 5.47: LCDIN Special
Formatters.

Special Formatter Action

SPSTR L
Input a character string of length L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the
characters.

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67 or
“ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

LCDIN – BASIC Stamp Command Reference

Page 260 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.48: LCDIN Conversion
Formatters

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data see Appendix C.

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 261

Demo Program (LCDIN.bsp)

' LCDIN.bsp
' This program demonstrates initialization, printing and reading
' from a 2 x 16 character LCD display.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe or BS2px."
#ENDIF

Lcd PIN 0

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right
LcdDDRam CON $80 ' Display Data RAM
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

char VAR Byte(16)

Init_LCD:
 PAUSE 1000 ' allow LCD to self-initialize first
 LCDCMD Lcd, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00100000 ' set data bus to 4-bit mode
 LCDCMD Lcd, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD Lcd, %00001100 ' display on without cursor
 LCDCMD Lcd, %00000110 ' auto-increment cursor

Main:
 DO
 LCDOUT Lcd, LcdCls, ["Hello!"]
 GOSUB Read_LCD_Screen
 PAUSE 3000
 LCDOUT Lcd, LcdCls, ["I'm a 2x16 LCD!"]
 GOSUB Read_LCD_Screen
 PAUSE 3000
 LOOP

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

LCDIN – BASIC Stamp Command Reference

Page 262 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Read_LCD_Screen:
 DEBUG "LCD now says: "
 LCDIN Lcd, LcdLine1, [STR char\16]
 DEBUG STR char\16, CR
 RETURN

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 263

LCDOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LCDOUT Pin, Command, [OutputData]

Function
Send data to an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins
to operate. The Pin argument serves a double purpose; specifying
the first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode.

• Command is a variable/constant/expression (0 – 255) indicating an
LCD command to send.

• OutputData is a list of variables, constants, expressions and
formatters that tells LCDOUT how to format outgoing data.
LCDOUT can transmit individual or repeating bytes, convert values
into decimal, hex or binary text representations, or transmit strings
of bytes from variable arrays. These actions can be combined in any
order in the OutputData list.

Quick Facts
Table 5.49: LCDOUT Quick Facts.

 BS2p, BS2pe, and BS2px
Values for Pin 0, 1, 8 or 9

I/O Pin Arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O Pin Arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special Notes LCDOUT is designed to use the LCD's 4-bit mode only.
Related Commands LCDCMD and LCDIN

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p, BS2pe, and BS2px to interface directly to standard LCD displays that
feature a Hitachi 44780 controller (part #HD44780A). This includes many
1 x 16, 2 x 16 and 4 x 20 character LCD displays.

NOTE: LCDCMD, LCDIN and
LCDOUT use a 4-bit interface to the
LCD which requires a specific
initialization sequence before LCDIN
and LCDOUT can be used; read more
below.

LCDOUT – BASIC Stamp Command Reference

Page 264 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The LCDOUT command is used to send one instruction followed by at
least one data byte to the LCD. The data that is output is written to the
LCD's Character Generator RAM or Display Data RAM. The following is
an example of the LCDOUT command:

LCDOUT 0, 1, ["Hello World!"]

The above code will clear the LCD screen and then send "Hello World!" to
the screen. The first argument (0) is the starting I/O pin number and the
second argument (1) is the LCD's instruction for Clear Screen.

The LCDOUT command actually uses more than just the I/O pin specified
by the Pin argument. The LCDOUT command requires seven I/O pins.
This is because the standard LCD displays have a parallel interface, rather
than a serial one. The Pin argument can be the numbers 0, 1, 8 or 9 and
will result in the use of the I/O pins shown in Table 5.49. Please refer to
the LCDCMD command description for information on properly wiring
the LCD display.

When the LCD is first powered-up, it defaults to an 8-bit interface and
must be properly configured for a 4-bit buss before sending commands
like the one shown above. This process is known as initializing the LCD
and is the first thing your program should do upon starting up. Please
refer to the LCDCMD command description for information on properly
initializing the LCD display.

The LCDOUT command's OutputData argument is exactly like that of the
DEBUG and SEROUT command's OutputData argument. This means data
can be sent as literal text, ASCII character values, repetitive values,
decimal, hexadecimal and binary translations and string data as in the
examples below.

value VAR Byte

value = 65

LCDOUT 0, 0, [value] ' send "A"
LCDOUT 0, 0, [REP value\5] ' send "AAAAA"
LCDOUT 0, 0, [DEC value] ' send "6" and "5"
LCDOUT 0, 0, [HEX value] ' send "4" and "1"
LCDOUT 0, 0, [BIN value] ' send "1000001"

A SIMPLE LCDOUT EXAMPLE.

TWO VERY IMPORTANT STEPS:
1) WIRING THE BASIC STAMP TO AN LCD.
2) INITIALIZING THE LCD.

SENDING AND FORMATTING DATA.

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 265

Table 5.50 and Table 5.51 list all the available conversion formatters and
special formatters available to the LCDOUT command. See the DEBUG
and SEROUT commands for additional information and examples of their
use.

Table 5.50: LCDOUT Conversion
Formatters.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1,3

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4}
Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2
1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:

DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.
3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD

Conversion” on page 97.

Table 5.51: LCDOUT Special
Formatters.

Special Formatter Action

?
Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with conversion
formatters (ex: BIN ? x to display "x = binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end of
RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

The Command argument is useful for proceeding a set of data with a
special LCD instruction. For example, the code below will move the
cursor to location 64 (the first character on the second line) and print "Hi":

LCDOUT 0, 128 + 64, ["Hi"]

The next example, below, will turn on the blinking block cursor and print
"Yo!":

USING THE COMMAND ARGUMENT.

LCDOUT – BASIC Stamp Command Reference

Page 266 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

LCDOUT 0, 13, ["Yo!"]

Most of the time, you will want to send data without preceding it with a
command. To do this, simply use 0 for the Command argument, as in:

LCDOUT 0, 0, ["Hello there!"]

Another use for the LCDOUT command is to access and create custom
characters. The Hitachi 44780 controller has a built-in character set that is
similar to the ASCII character set (at least for the first 128 characters).
Most of these characters are stored in ROM and are not changeable,
however, the first eight characters (ASCII 0 though 7) are programmable.

Each of the programmable characters is five pixels wide and eight pixels
tall. It takes eight bytes to describe each character; one byte per row (the
left-most three bits are ignored). For example, the character at ASCII
location 0 is defined by the bit patterns stored in bytes 0 through 7 of
Character Generator RAM (CGRAM). The character at ASCII location 1 is
defined by the bit patterns stored in bytes 8 through 15 of CGRAM, and so
on.

To create a custom character, use some graph paper to plot out the bit
pattern (on and off pixels) in a 5 x 8 pattern, as shown in Figure 5.16. Then
calculate the corresponding binary value of the bit pattern for each of the
eight rows of character data.

4 3 2 1 0
Byte 0:

Character Cell Structure and Data

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:
Byte 6:
Byte 7:

---------Bits---------

xxx00000
xxx01010
xxx00000
xxx00100
xxx10001
xxx01110
xxx00000
xxx00000

Binary Values
00
10
00
04
17
14
00
00

Decimal Values

Figure 5.16: LCD Character
Structure.

After the data is calculated for each character (8 byte values per character),
use the LCDOUT command with the "Move To CGRAM Address"
instruction to insert the data into the character's CGRAM locations. For
example, the code below will store the character shown in Figure 5.16 into

CREATING CUSTOM CHARACTERS.

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 267

character 0's CGRAM data locations. Then it will place the cursor back on
the display (DDRAM) and print the character on the screen.
LCDOUT 0, 64+0, [00, 10, 00, 04, 17, 14, 00, 00]
LCDOUT 0, 128+0, ["Custom Char: ", 0]

The number 64 in the Command argument is the LCD's "Move to CGRAM
Address" instruction and the 0 that is added to it is the location of the first
row of data for the character 0. The LCDOUT command will write the
first OutputData value (00) to this location, the second OutputData value
(10) to location 1, etc. If we wanted this custom character to affect
character 1, instead of 0, we'd have to adjust the value of the "Move To..."
command, i.e.: 64+8. To affect character 2, we'd use 64+16.

To try the example above, don't forget to execute the LCD initialization
code (shown in the LCDCMD description) first and never forget to move
the cursor back to the screen (as with the last command, above) when
you're done writing the character data to CGRAM.

Demo Program (LCDOUT.bsp)

' LCDOUT.bsp
' This program demonstrates initialization and printing on a 2x16
' character LCD display.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe or BS2px."
#ENDIF

Lcd PIN 0

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right
LcdDDRam CON $80 ' Display Data RAM
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

Init_LCD:
 PAUSE 1000 ' allow LCD to self-initialize first

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

LCDOUT – BASIC Stamp Command Reference

Page 268 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 LCDCMD Lcd, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00100000 ' set data bus to 4-bit mode
 LCDCMD Lcd, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD Lcd, %00001100 ' display on without cursor
 LCDCMD Lcd, %00000110 ' auto-increment cursor

 LCDOUT Lcd, LcdCGRam, ' load custom character map
 [$00, $0A, $0A, $00, $11, $0E, $06, $00]

Main:
 DO
 LCDOUT Lcd, LcdCls, ["Hello my friend."]
 PAUSE 750
 LCDOUT Lcd, LcdLine2, ["How are you?"]
 PAUSE 1500
 LCDCMD Lcd, LcdCls
 LCDOUT Lcd, LcdLine1 + 1, ["I'm doing just"]
 LCDOUT Lcd, LcdLine2 + 4, ["fine! ", 0]
 PAUSE 2000
 LOOP
 END

5: BASIC Stamp Command Reference – LET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 269

LET BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

{ LET } Variable = Value

Function
Sets Variable equal to the value of Value.

• Value is a variable/constant/expression. (0-65535).

• Variable is a variable which will be set equal to Value.

Explanation
LET is an optional instruction for the BASIC Stamp 1 that can be used with
variable assignment statements, such as A = 5 and B = A + 2, etc. This
instruction is not required and only exists on the BASIC Stamp 1. LET was
a commonly used command in early forms of BASIC, and was originally
included in the BS1 command set to accommodate programmers from that
generation. Parallax recommends that all new BASIC Stamp 1 programs
use assignment statements without the LET command.

Demo Program (LET.bs1)

' LET.bs1
' This example demonstrates the use of LET in assignment statements, which
' is optional and not recommended. Note that the Lunchtime and
' Dinnertime routines do essentially the same thing, but the Dinnertime
' method is recommended(even though the pricing scheme is not!)

' {$PBASIC 1.0}
' {$STAMP BS1}

SYMBOL salad = B1
SYMBOL bread = B2
SYMBOL soup = B3
SYMBOL lunch = B4
SYMBOL dinner = B5

Lunchtime:
 LET salad = 3
 LET bread = 1
 LET soup = 4
 LUNCH = salad + bread + soup
 DEBUG "lunch = $", #lunch, "plus local tax.", CR

Dinnertime:
 salad = 4
 bread = 2
 soup = 5

1

1

LET – BASIC Stamp Command Reference

Page 270 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 dinner = salad + bread + soup
 DEBUG "Dinner = $",# lunch, "plus local tax.", CR

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 271

LOOKDOWN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKDOWN Target, (Value0, Value1, ...ValueN), Variable
LOOKDOWN Target, { ComparisonOp } [Value0, Value1, ...ValueN], Variable

Function
Compare Target value to a list of values and store the index number of the
first value that matches into Variable. If no value in the list matches,
Variable is left unaffected. On all BS2 models, the optional ComparisonOp is
used as criteria for the match; the default criteria is "equal to."

• Target is a variable/constant/expression (0 – 65535) to be compared
to the values in the list.

• ComparisonOp is an optional comparison operator (as described in
Table 5.53) to be used as the criteria when comparing values. When
no ComparisonOp is specified, equal to (=) is assumed. This
argument is not available on the BS1.

• Values are variables/constants/expressions (0 – 65535) to be
compared to Target.

• Variable is a variable (usually a byte) that will be set to the index (0 –
255) of the matching value in the Values list. If no matching value is
found, Variable is left unaffected.

Quick Facts
Table 5.52: LOOKDOWN Quick
Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If value list
contains no

match…
Variable is left unaffected

Related
Command

LOOKUP

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a
topic and get the page number. LOOKDOWN searches for a target value
in a list, and stores the index number of the first match in a variable. For
example:

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

All 2

LOOKDOWN – BASIC Stamp Command Reference

Page 272 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SYMBOL value = B0
SYMBOL result = B1
value = 17
result = 15

LOOKDOWN value, (26, 177, 13, 1, 0, 17, 99), result
DEBUG "Value matches item ", #result, "in list"

-- or --

value VAR Byte
result VAR Nib
value = 17
result = 15

LOOKDOWN value, [26, 177, 13, 1, 0, 17, 99], result
DEBUG "Value matches item ", DEC result, " in list"

DEBUG prints, “Value matches item 5 in list” because the value (17)
matches item 5 of [26, 177, 13, 1, 0, 17, 99]. Note that index numbers count
up from 0, not 1; that is, in this list, 26 is item 0.

What happens if the value doesn’t match any of the items in the list? Try
changing “Value = 17” to “Value = 2.” Since 2 is not on the list,
LOOKDOWN leaves result unaffected. Since result contained 15 before
LOOKDOWN executed, DEBUG prints “Value matches item 15 in list.”
By strategically setting the initial value of result, as we have here, your
program can be written to detect when an item was not found in the list.

Don’t forget that text phrases are just lists of byte values, so they too are
eligible for LOOKDOWN searches, as in this example:

SYMBOL value = B0
SYMBOL result = B1

value = "f"
result = 255

LOOKDOWN value, ("The quick brown fox"), result
DEBUG "Value matches item ", #result, "in list"

-- or --

THE INDEX NUMBER OF THE FIRST ITEM IS

0, NOT 1.

USING TEXT IN THE VALUE LIST.

1

All 2

1

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 273

value VAR Byte
result VAR Nib

value = "f"
result = 255

LOOKDOWN value, ["The quick brown fox"], result
DEBUG "Value matches item ", DEC result, " in list"

DEBUG prints, “Value matches item 16 in list” because the character at
index item 16 is "f" in the phrase, “The quick brown fox”.

The examples above show LOOKDOWN working with lists of constants,
but it also works with variables and expressions also. Note, however, that
expressions are not allowed as argument on the BS1.

On all BS2 models, the LOOKDOWN command can also use another
criteria (other than "equal to") for its list. All of the examples above use
LOOKDOWN’s default comparison operator, =, that searches for an exact
match. The entire list of ComaprisonOps is shown in Table 5.53. The
"greater than" comparison operator (>) is used in the following example:

value VAR Byte
result VAR Nib

value = 17
result = 15

LOOKDOWN value, >[26, 177, 13, 1, 0, 17, 99], result
DEBUG "Value greater than item ", DEC result, " in list"

DEBUG prints, “Value greater than item 2 in list” because the first item the
value 17 is greater than is 13 (which is item 2 in the list). Value is also
greater than items 3 and 4, but these are ignored, because LOOKDOWN
only cares about the first item that matches the criteria. This can require a
certain amount of planning in devising the order of the list. See the demo
program below.

LOOKDOWN comparison operators (Table 5.53) use unsigned 16-bit
math. They will not work correctly with signed numbers, which are
represented internally as two’s complement (large 16-bit integers). For
example, the two’s complement representation of -99 is 65437. So
although -99 is certainly less than 0, it would appear to be larger than zero

LOOKDOWN CAN USE VARIABLES AND

EXPRESSIONS IN THE VALUE LIST.

USING LOOKDOWN'S COMPARISON

OPERATORS.

WATCH OUT FOR UNSIGNED MATH
ERRORS WHEN USING THE COMPARISON

OPERATORS.

All 2

All 2

LOOKDOWN – BASIC Stamp Command Reference

Page 274 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

to the LOOKDOWN comparison operators. The bottom line is: Don’t used
signed numbers with LOOKDOWN comparisons.

ComparisonOp Symbol Description
= Find the first value Target is equal to

<> Find the first value Target is not equal to
> Find the first value Target is greater than
< Find the first value Target is less than

>= Find the first value Target is greater than or equal to
<= Find the first value Target is less than or equal to

Table 5.53: LOOKDOWN
Comparison Operators.

A common application for LOOKDOWN is to use it in conjunction with
the BRANCH, ON...GOTO, or ON...GOSUB commands to create selective
jumps based on a simple variable input:

' {$PBASIC 2.5}

cmd VAR Byte

DO
 DEBUG CLS, "Enter cmd (SLMH): "
 DEBUGIN cmd
 LOOKDOWN cmd, ["SLMH"], cmd
 ON cmd GOSUB _Stop, _Low, _Medium, _High
 IF cmd > 3 THEN DEBUG CLS, "Command not in list"
 PAUSE 2000
 END
LOOP

_Stop:
 DEBUG CLS, "Stop"
 RETURN

_Low:
 DEBUG CLS, "Low"
 RETURN

_Medium:
 DEBUG CLS, "Medium"
 RETURN

_High:
 DEBUG CLS, "High"
 RETURN

In this example, the program waits for a key. Here's what happens when
"M" is pressed and cmd contains “M” (ASCII 77). LOOKDOWN finds that
this is item 2 of a list of one-character commands and stores 2 into cmd.
ON...GOSUB then goes to item 2 of its list, which is the program label

USING LOOKDOWN WITH BRANCH ,
ON...GOTO OR ON...GOSUB TO JUMP
BASED ON VALUES.

All 2

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 275

“_Medium” at which point DEBUG prints “Medium” on the PC screen
then returns to the main loop. This is a powerful method for interpreting
user input, and a lot neater than the alternative IF...THEN instructions.

Another great use of LOOKDOWN is in combination with LOOKUP to
"map" non-contiguous sets of numbers together. For example, you may
have an application where certain numbers are received by the BASIC
Stamp and, in response, the BASIC Stamp needs to send a specific set of
numbers. This may be easy to code if the numbers are contiguous, or
follow some known algebraic equations… but what if they don't? The
table below shows some sample, non-contiguous inputs and the
corresponding outputs the BASIC Stamp needs to respond with:

Table 5.54: Non-
Contiguous Number
Example.

Each of these values received (inputs): Needs to result in each of these values
sent (outputs):

5 16
14 17
1 18

43 24
26 10
22 12
30 11

So, if we receive the number 5, we need to output 16. If we received 43,
we need to output 24, and so on. These numbers are not contiguous and
they don't appear to be derived from any simple algorithm. We can solve
this problem with two lines of code, as follows:

LOOKDOWN value, [5, 14, 1, 43, 26, 22, 30], value
LOOKUP value, [16, 17, 18, 24, 10, 12, 11], value

Assuming our received number is in value, the first line (LOOKDOWN)
will find the value in the list and store the index of the location that
matches back into value. (This step "maps" the non-contiguous numbers: 5,
14, 1, etc, to a contiguous set of numbers: 0, 1, 2, etc). The second line
(LOOKUP) takes our new value, finds the number at that location and
stores it back into value. If the received value was 14, LOOKDOWN stores
1 into value and LOOKUP looks at the value at location 1 and stores 17 in
value. The number 43 gets mapped to 3, 3 gets mapped to 24, and so on.
This is a quick and easy fix for a potentially messy problem!

Demo Program (LOOKDOWN.bs1)

USING LOOKDOWN WITH LOOKUP TO
"MAP" NON-CONTIGUOUS SETS OF

NUMBERS.

1

LOOKDOWN – BASIC Stamp Command Reference

Page 276 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' LOOKDOWN.bs1
' This program uses LOOKDOWN followed by LOOKUP to map the numbers:
' 0, 10, 50, 64, 71 and 98 to 35, 40, 58, 62, 79, and 83,
' respectively. All other numbers are mapped to 255.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL num = W0 ' holds current number
SYMBOL result = W1 ' holds mapped result

Main:
 FOR num = 0 TO 100
 result = 255 ' default value for no match
 LOOKDOWN num, (0, 10, 50, 64, 71, 98), result
 LOOKUP result, (35, 40, 58, 62, 79, 83), result
 DEBUG "Num = ", #num, "Result = ", #result, CR
 PAUSE 100
 NEXT
 END

Demo Program (LOOKDOWN.bs2)

' LOOKDOWN.bs2
' This program uses LOOKDOWN to determine the number of decimal
' digits in a number. Since LOOKDOWN uses a zero-indexed table, the
' output will be the number of digits minus one, so this gets
' corrected in the following line. Note that zero is considered a
' valid number and has one digit.

' {$STAMP BS2}
' {$PBASIC 2.5}

aNum VAR Word ' the number to study
stpSz VAR Word ' FOR-NEXT step size
numDig VAR Nib ' digits in aNum

Setup:
stpSz = 2

Main:
 FOR aNum = 0 TO 15000 STEP stpSz
 LOOKDOWN aNum, <[0, 10, 100, 1000, 10000, 65535], numDig
 ' right-justify output
 DEBUG "aNum = ", REP " "\(5-numDig), DEC aNum, TAB,
 "Digits = ", DEC numDig, CR
 PAUSE 250
 LOOKDOWN aNum, <[0, 10, 100, 1000, 10000, 65535], stpSz
 LOOKUP stpSz, [2, 2, 5, 25, 250, 500, 1000], stpSz
 NEXT
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 277

LOOKUP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKUP Index, (Value0, Value1, ...ValueN), Variable
LOOKUP Index, [Value0, Value1, ...ValueN], Variable

Function
Find the value at location Index and store it in Variable. If Index exceeds the
highest index value of the items in the list, Variable is left unaffected.

• Index is a variable/constant/expression (0 – 255) indicating the list
item to retrieve.

• Values are variables/constants/expressions (0 – 65535).

• Variable is a variable that will be set to the value at the Index location.
If Index exceeds the highest location number, Variable is left
unaffected.

Quick Facts
Table 5.55: LOOKUP Quick Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If index
 exceeds the

highest
location…

Variable is left unaffected

Related
Command

LOOKDOWN

Explanation
LOOKUP retrieves an item from a list based on the item’s position, Index,
in the list. For example:

SYMBOL index = B2
SYMBOL result = B3

index = 3
result = 255

LOOKUP index, (26, 177, 13, 1, 0, 17, 99), result
DEBUG "Item ", #index, "is: ", #result

-- or --

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

1

LOOKUP – BASIC Stamp Command Reference

Page 278 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

index VAR Byte
result VAR Byte

index = 3
result = 255

LOOKUP index, [26, 177, 13, 1, 0, 17, 99], result
DEBUG "Item ", DEC index, " is: ", DEC result

In this example, DEBUG prints “Item 3 is: 1.” Note that the first location
number is 0. In the list above, item 0 is 26, item 1 is 177, etc.

If index is beyond the end of the list, the result variable is unchanged. In
the example above, if index were greater than 6, the message would have
reported the result to be 255, because that’s what result contained before
LOOKUP executed.

Don’t forget that text phrases are just lists of byte values, so they too are
eligible for LOOKUP searches, as in this example:

SYMBOL index = B2
SYMBOL result = B3

index = 16
result = " "

LOOKUP index, ("The quick brown fox"), result
DEBUG @result

-- or --

index VAR Byte
result VAR Byte

index = 16
result = " "

LOOKUP index, ["The quick brown fox"], result
DEBUG ASC ? result

DEBUG prints, “Result = 'f' ” because the character at index item 16 is "f"
in the phrase, “The quick brown fox”.

The examples above show LOOKUP working with lists of constants, but it
also works with variables and expressions also. Note, however, that
expressions are not allowed as argument on the BS1.

THE INDEX NUMBER OF THE FIRST ITEM IS

0, NOT 1.

LOOKUP CAN USE VARIABLES AND

EXPRESSIONS IN THE VALUE LIST.

USING TEXT IN THE VALUE LIST.

All 2

All 2

1

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 279

A great use of LOOKUP is in combination with LOOKDOWN to "map"
non-contiguous sets of numbers together. For example, you may have an
application where certain numbers are received by the BASIC Stamp and,
in response, the BASIC Stamp needs to send a specific set of numbers.
This may be easy to code if the numbers are contiguous, or follow some
known algebraic equations… but what if they don't? The table below
shows some sample, non-contiguous inputs and the corresponding
outputs the BASIC Stamp needs to respond with:

Table 5.56: Non-Contiguous
Number Example.

Each of these values received
(inputs):

Needs to result in each of these
values sent (outputs):

5 16
14 17
1 18

43 24
26 10
22 12
30 11

So, if we receive the number 5, we need to output 16. If we received 43,
we need to output 24, and so on. These numbers are not contiguous and
they don't appear to be derived from any simple algorithm. We can solve
this problem with two lines of code, as follows:

LOOKDOWN value, [5, 14, 1, 43, 26, 22, 30], value
LOOKUP value, [16, 17, 18, 24, 10, 12, 11], value

Assuming our received number is in value, the first line (LOOKDOWN)
will find the value in the list and store the index of the location that
matches back into value. (This step "maps" the non-contiguous numbers: 5,
14, 1, etc, to a contiguous set of numbers: 0, 1, 2, etc). The second line
(LOOKUP) takes our new value, finds the number at that location and
stores it back into value. If the received value was 14, LOOKDOWN stores
1 into value and LOOKUP looks at the value at location 1 and stores 17 in
value. The number 43 gets mapped to 3, 3 gets mapped to 24, and so on.
This is a quick and easy fix for a potentially messy problem!

Demo Program (LOOKUP.bs1)

' LOOKUP.bs1
' This program uses Lookup to create a Debug-window animation of a spinning
' propeller. The animation consists of the four ASCII characters | / - \
' which, when printed rapidly in order at a fixed location, appear to spin.
' A little imagination helps a lot here....

USING LOOKUP WITH LOOKDOWN TO
"MAP" NON-CONTIGUOUS SETS OF

NUMBERS.

1

LOOKUP – BASIC Stamp Command Reference

Page 280 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL idx = B2
SYMBOL frame = B3

Spinner:
 LOOKUP idx, ("|/-\"), frame ' lookup current frame character
 DEBUG CLS, "Spinner: ", #@frame ' display
 idx = idx + 1 // 4 ' update frame index (0..3)
 GOTO Spinner ' loop forever
 END

Demo Program (LOOKUP.bs2)

' LOOKUP.bs2
' This program uses LOOKUP to create a Debug-window animation of a spinning
' propeller. The animation consists of the four ASCII characters | / - \
' which, when printed rapidly in order at a fixed location, appear to spin.
' A little imagination helps a lot here....

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Nib
frame VAR Byte

Spinner:
 DO
 LOOKUP idx, ["|/-\"], frame ' lookup current frame character
 DEBUG HOME, "Spinner: ", frame ' display
 PAUSE 150 ' pause between frames
 idx = idx + 1 // 4 ' update frame index (0..3)
 LOOP ' loop forever
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – LOW

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 281

LOW BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOW Pin

Function
Make the specified pin output low.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set low. This pin will be placed into output mode.

Quick Facts
Table 5.57: LOW Quick Facts.

 BS1 and all BS2 Models
Related

Commands
HIGH and TOGGLE

Explanation
The LOW command sets the specified pin to 0 (a 0 volt level) and then sets
its mode to output. For example,

LOW 6

does exactly the same thing as:

OUT6 = 0
DIR6 = 1

Using the LOW command is faster, in this case.

Connect an LED and a resistor as shown in Figure 5.17 for the demo
program below.

Figure 5.17: Example LED Circuit.

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1 All 2

1

All 2

LOW – BASIC Stamp Command Reference

Page 282 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (LOW.bs2)

' LOW.bs2
' This simple program sets I/O pin 0 high for 1/2 second and low for
' 1/2 second in an endless loop. Connect an LED to P0 for a simple
' blinker.

' {$STAMP BS2}

Main:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
 GOTO Main
 END

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

1 All 2

5: BASIC Stamp Command Reference – MAINIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 283

MAINIO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

MAINIO

Function
Switch from control of auxiliary I/O pins to main I/O pins (on the BS2p40
only).

Quick Facts

Table 5.58: MAINIO Quick Facts.

 BS2p, BS2pe, and BS2px

I/O pin IDs 0 – 15 (just like auxiliary I/O, but after MAINIO command, all references
affect physical pins 5 – 20).

Special Notes The 24-pin BS2p, BS2pe, and BS2px accept this command, however,
only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

AUXIO and IOTERM

Explanation
The BS2p, BS2pe and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing AUXIO or IOTERM commands. The MAINIO command causes
the BASIC Stamp to affect the main I/O pins (the default) instead of the
auxiliary I/O pins in all further code until the AUXIO or IOTERM
command is reached, or the BASIC Stamp is reset or power-cycled.

The following example illustrates this:

AUXIO ' switch to auxiliary pins
HIGH 0 ' make X0 high
MAINIO ' switch to main pins
LOW 0 ' make P0 low

The first line of the above example will tell the BASIC Stamp to affect the
auxiliary I/O pins in the commands following it. Line 2, sets I/O pin 0 of
the auxiliary I/O pins (physical pin 21) high. Afterward, the MAINIO
command tells the BASIC Stamp that all commands following it should
affect the main I/O pins. The last command, LOW, will set I/O pin 0 of
the main I/O pins (physical pin 5) low.

A SIMPLE MAINIO EXAMPLE.

MAINIO – BASIC Stamp Command Reference

Page 284 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are AUXIO and IOTERM.

Demo Program (AUX_MAIN_TERM.bsp)

' AUX_MAIN_TERM.bsp
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM
' commands to affect I/O pins in the auxiliary and main I/O groups.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2SX
 #ERROR "Program requires BS2p40"
 #CASE BS2P, BS2PE, BS2PX
 DEBUG "Note: This program designed for the BS2p40.", CR
#ENDSELECT

port VAR Bit

Main:
 DO
 MAINIO ' Switch to main I/O pins
 TOGGLE 0 ' Toggle state of I/O pin P0
 PWM 1, 100, 40 ' Generate PWM on I/O pin P1

 AUXIO ' Switch to auxiliary I/O pins
 TOGGLE 0 ' Toggle state of I/O pin X0
 PULSOUT 1, 1000 ' Generate a pulse on I/O pin X1
 PWM 2, 100, 40 ' Generate PWM on I/O pin X2

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

2p

NOTE: This example program will
tokenize with the 24-pin BS2p, BS2pe,
and BS2px, but its effects can only be
seen on the BS2p40. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference – NAP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 285

NAP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

NAP Duration

Function
Enter sleep mode for a short time. Power consumption is reduced as
indicated in Table 5.59 assuming no loads are being driven.

• Duration is a variable/constant/expression (0 – 7) that specifies the
duration of the reduced-power nap. The duration is (2^Duration) *
18 ms. Table 5.60 indicates the nap length for any given Duration.

Quick Facts
Table 5.59: NAP Quick Facts.

Note: Current measurements are
based on 5-volt power, no extra
loads, and 75°F ambient
temperature.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Current Draw
During Run

1 mA 3 mA 25 mA 60 mA 40 mA 15 mA 55 mA

Current Draw
During NAP

25 µA 50 µA 200 µA 500 µA 350 µA 36 µA 450 µA

Related
Commands

END and SLEEP END, SLEEP, and POLLWAIT

Accuracy of
Nap

-50 to 100% (±10% @ 75°F with stable power supply)

Explanation
NAP uses the same shutdown/startup mechanism as SLEEP, with one big
difference. During SLEEP, the BASIC Stamp automatically compensates
for variations in the speed of the watchdog timer oscillator that serves as
its alarm clock. As a result, longer SLEEP intervals are accurate to
approximately ±1 percent.

Table 5.60: Duration and Resulting
Length of NAP.

Duration Length of Nap
0 18 ms
1 36 ms
2 72 ms
3 144 ms
4 288 ms
5 576 ms
6 1152 ms (1.152 seconds)
7 2304 ms (2.304 seconds)

NAP intervals are directly controlled by the watchdog timer without
compensation. Variations in temperature, supply voltage, and
manufacturing tolerance of the BASIC Stamp's interpreter chip can cause

NOTE: Expressions are not allowed as
arguments on the BS1.

NAP ACCURACY NOTES.

1 All 2

1

NAP – BASIC Stamp Command Reference

Page 286 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

the actual timing to vary by as much as –50, +100 percent (i.e., a Duration
of 0, NAP can range from 9 to 36 ms). At room temperature with a fresh
battery or other stable power supply, variations in the length of a NAP
will be less than ±10 percent.

One great use for NAP is in a battery-powered application where at least a
small amount of time is spent doing nothing. For example, you may have
a program that loops endlessly, performing some task, that pauses for
approximately 100 ms each time through the loop. You could replace your
PAUSE 100 with NAP 3, as long as the timing of the 100 ms pause was
not critical. The NAP 3 would effectively pause your program for about
144 ms and, at the same time, would place the BASIC Stamp in low-power
mode, which would extend your battery life.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during a NAP, current will be interrupted
for about 18 ms (60 µs on the BS2pe) when the BASIC Stamp wakes up.
The reason is that the watchdog-timer reset that awakens the BASIC
Stamp also causes all of the pins to switch to input mode for
approximately 18 ms (60 µs on the BS2pe). When the interpreter firmware
regains control of the processor, it restores the I/O direction dictated by
your program.

If you plan to use END, NAP, POLLWAIT or SLEEP in your programs,
make sure that your loads can tolerate these power outages. The simplest
solution is often to connect resistors high or low (to +5V or ground) as
appropriate to ensure a continuing supply of current during the reset
glitch.

The demo program can be used to demonstrate the effects of the NAP
glitch with an LED and resistor as shown in Figure 5.18.

A GREAT USE FOR NAP; FREE POWER

SAVINGS.

TIPS FOR DRIVING LOADS DURING NAP.

5: BASIC Stamp Command Reference – NAP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 287

Figure 5.18: Example LED Circuit.

Demo Program (NAP.bs2)

' NAP.bs2
' The program below lights an LED by placing a low on pin 0. This completes
' the circuit from +5V, through the LED and resistor, to ground. During the
' NAP interval, the LED stays lit, but blinks off for a fraction of a sec.
' This blink is caused by the NAP wakeup mechanism during wakeup, all pins
' briefly slip into input mode, effectively disconnecting them from loads.

' {$STAMP BS2}

Setup:
 LOW 0 ' turn LED on

Snooze:
 NAP 4 ' nap for 288 ms
 GOTO Snooze
 END

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

NAP – BASIC Stamp Command Reference

Page 288 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 289

ON BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

ON Offset GOTO Address1, Address2, ...AddressN

ON Offset GOSUB Address1, Address2, ...AddressN

Function
GOTO or GOSUB to the Address specified by Offset (if in range). ON is
similar in operation to BRANCH with the exception that program
execution can optionally return to the line following ON (if using
ON…GOSUB).

• Offset is a variable/constant/expression (0 - 255) that specifies the
index (0 - N) of the address, in the list, to GOTO or GOSUB to.

• Address is a label that specifies where to go for a given Offset. ON
will ignore any list entries beyond offset 255.

Quick Facts
Table 5.61: ON Quick Facts.

 All BS2 Models
Limit of Address

Entries
256

Maximum GOSUBs
per Program

255 (each ON…GOSUB counts as one GOSUB,
regardless of number of address list entries)

Maximum Nested
GOSUBS

4

Related Commands BRANCH, GOTO and GOSUB

Explanation
The ON instruction is like saying, “Based ON the value of Offset, GOTO or
GOSUB to one of these Addresses.” ON is useful when you want to write
something like this:

IF (value = 0) THEN GOTO Case_0 ' "GOTO" jump table
IF (value = 1) THEN GOTO Case_1
IF (value = 2) THEN GOTO Case_2

- or -

IF (value = 0) THEN GOSUB Case_0 ' "GOSUB" jump table
IF (value = 1) THEN GOSUB Case_1
IF (value = 2) THEN GOSUB Case_2

NOTE: ON requires PBASIC 2.5. All 2

All 2

ON – BASIC Stamp Command Reference

Page 290 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

You can use ON to organize each of these two examples into single
statements:

ON value GOTO Case_0, Case_1, Case_2 ' "GOTO" jump table

- or -

ON value GOSUB Case_0, Case_1, Case_2 ' "GOSUB" jump table

This works like the previous IF...THEN example. If the value isn’t in range
(in this case if value is greater than 2), ON does nothing and the program
continues with the next instruction after ON.

See the GOTO and GOSUB command descriptions for more information.

Demo Program (ON-GOTO.bs2)

' ON-GOTO.bs2
' This program shows how the value of idx controls the destination of the
' ON...GOTO instruction.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Byte

Main:
 DEBUG "idx: ", DEC idx, " "
 ON idx GOTO Case_0, Case_1, Case_2 ' if idx = 0..2 goto label
 DEBUG "ON..GOTO target error.", CR ' message if idx is out of range

Update:
 idx = idx + 1 // 4 ' force idx to be 0..3
 PAUSE 1000
 GOTO Main

Case_0:
 DEBUG "Running Case_0 routine", CR
 GOTO Update

Case_1:
 DEBUG "Running Case_1 routine", CR
 GOTO Update

Case_2:
 DEBUG "Running Case_2 routine", CR
 GOTO Update

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 291

Demo Program (ON-GOSUB.bs2)

' ON-GOSUB.bs2
' This program demonstrates a simple task manager that can be used
' in a variety of applications. It is particularly useful in
' robotics and industrial applications. The advantage of this
' design is that task code modules may be called from other places
' in the program, including other tasks, and the overall program flow
' is maintained.

' {$STAMP BS2}
' {$PBASIC 2.5}

task VAR Nib

Main:
 DO
 ON task GOSUB Task_0, Task_1, Task_2 ' run current task
 task = task + 1 // 3 ' update task pointer
 PAUSE 1000
 LOOP
 END

Task_0:
 DEBUG "Running Task 0", CR
 RETURN

Task_1:
 DEBUG "Running Task 1", CR
 RETURN

Task_2:
 DEBUG "Running Task 2", CR
 RETURN

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

ON – BASIC Stamp Command Reference

Page 292 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – OUTPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 293

OUTPUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OUTPUT Pin

Function
Make the specified pin an output.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to output mode.

Quick Facts
Table 5.62: OUTPUT Quick
Facts.

 BS1 and all BS2 Models
Related

Commands
INPUT and REVERSE

Explanation
There are several ways to make a pin an output. Commands that rely on
output pins, like PULSOUT and SEROUT, automatically change the
specified pin to output. Writing 1s to particular bits of the variable DIRS
makes the corresponding pins outputs. And then there’s the OUTPUT
command.

When a pin is an output, your program can change its state by writing to
the corresponding bit in the OUTS variable (PINS on the BS1). For
example:

OUTPUT 4
OUT4 = 1

When your program changes a pin from input to output, whatever state
happens to be in the corresponding bit of OUTS (PINS on the BS1) sets the
initial state of the pin. To simultaneously make a pin an output and set its
state use the HIGH and LOW commands.

Demo Program (INPUT_OUTPUT.bs1)

' INPUT_OUTPUT.bs1
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of PINS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of PINS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

EFFECTS OF SETTING AN INPUT PIN TO AN

OUTPUT.

1

1 All 2

1

All 2

OUTPUT – BASIC Stamp Command Reference

Page 294 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS1}
' {$PBASIC 1.0}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ", #PIN7, CR

 PIN7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: "
 DEBUG #PIN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: "
 DEBUG #PIN7
 END

Demo Program (INPUT_OUTPUT.bs2)

' INPUT_OUTPUT.bs2
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of INS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ",
 BIN1 IN7, CR

 OUT7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: ",
 BIN1 IN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: ",
 BIN1 IN7
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 295

OWIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWIN Pin, Mode, [InputData]

Function
Receive data from a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWIN command and will be set to input
mode by the end of the OWIN command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• InputData is a list of variables and modifiers that tells OWIN what to
do with incoming data. OWIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.63: OWIN Quick Facts.

 BS2p, BS2pe, and BS2px
Receive Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Commands OWOUT

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWIN command
allows the BASIC Stamp to receive data from a 1-wire device.

The following is an example of the OWIN command:

result VAR Byte

OWIN 0, 1, [result]

A SIMPLE OWIN EXAMPLE.

OWIN – BASIC Stamp Command Reference

Page 296 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

This code will transmit a "reset" pulse to a 1-Wire device (connected to I/O
pin 0) and then will detect the device's "presence" pulse and then receive
one byte and store it in the variable result.

The Mode argument is used to control placement of reset pulses (and
detection of presence pulses) and to designate byte vs. bit input and
normal vs. high speed. Figure 5.19 shows the meaning of each of the 4
bits of Mode. Table 5.64 shows just some of the 16 possible values and
their effect.

Low/Hi Byte/Bit BERes

0

FERes

123

Front-End Reset
0=no reset
1=generate reset before data

Back-End Reset
0=no reset
1=generate reset after data

Low/High Speed
0=low
1=high

Byte/Bit Transfer
0=byte
1=bit

Figure 5.19: Mode Format.

Mode Effect
0 No Reset, Byte mode, Low speed
1 Reset before data, Byte mode, Low speed
2 Reset after data, Byte mode, Low speed
3 Reset before and after data, Byte mode, Low speed
4 No Reset, Bit mode, Low speed
5 Reset before data, Bit mode, Low speed
8 No Reset, Byte mode, High speed
9 Reset before data, Byte mode, High speed

Table 5.64: OWIN Mode Values.

NOTE: The BS2pe is not capable
of high-speed transfers.

The proper value for Mode depends on the 1-Wire device and the portion
of the communication you’re working on. Please consult the data sheet for
the device in question to determine the correct value for Mode. In many
cases, however, when using the OWIN command, Mode should be set for
either No Reset (to receive data from a transaction already started by a
OWOUT command) or a Back-End Reset (to terminate the session after
data is received). This may vary due to device and application
requirements, however.

When using the Bit (rather than Byte) mode of data transfer, all variables
in the InputData argument will only receive one bit. For example, the
following code could be used to receive two bits using this mode:

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 297

bitOne VAR Byte
bitTwo VAR Byte

OWIN 0, 6, [bitOne, bitTwo]

In the code above, we chose the value “6” for Mode. This sets Bit transfer
and Back-End Reset modes. Also, we could have chosen to make the
bitOne and bitTwo variables each a byte in size, but they still would only
have received one bit each in the OWIN command (due to the Mode we
chose).

The OWIN command’s InputData argument is similar to the SERIN
command’s InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below. (Assume a 1-Wire device is used and
that it transmits the string, “Value: 3A:101” every time it receives a Front-
End Reset pulse).

value VAR Byte(13)

OWIN 0, 1, [value] ‘ receive ASCII value for “V”
OWIN 0, 1, [DEC value] ‘ receive the number 3
OWIN 0, 1, [HEX value] ‘ receive the number $3A
OWIN 0, 1, [BIN value] ‘ receive the number %101
OWIN 0, 1, [STR value\13] ‘ receive “Value: 3A:101”

Table 5.65 and Table 5.66 list all the special formatters and conversion
formatters available to the OWIN command. See the SERIN command for
additional information and examples of their use.

Table 5.65: OWIN Special
Formatters.

Special Formatter Action

SPSTR L
Input a character string of length L bytes (up to 126) into
Scratch Pad RAM, starting at location 0. Use GET to retrieve
the characters.

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified,
an end character E causes the string input to end before
reaching length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an
array variable, optionally limited to L characters. If the
optional L argument is left off, the end of the array-string must
be marked by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

RECEIVING FORMATTED DATA.

OWIN – BASIC Stamp Command Reference

Page 298 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

\Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.66: OWIN Conversion
Formatters

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 299

The 1-Wire protocol has a well-defined standard for transaction sequences.
Every transaction sequence consists of four parts: 1) Initialization, 2) ROM
Function Command, 3) Memory Function Command, and 4)
Transaction/Data. Additionally, the ROM Function Command and
Memory Function Command are always 8 bits wide (1 byte in size) and is
sent least-significant-bit (LSB) first.

The Initialization part consists of a reset pulse (generated by the master)
and will be followed by a presence pulse (generated by all slave devices).
Figure 5.20 details the reset pulse generated by the BASIC Stamp and a
typical presence pulse generated by a 1-wire slave, in response.

Figure 5.20: OWIN Reset and
Presence Pulse.

BASIC Stamp’s
Reset Pulse
Apx. 564 sµ

Device’s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp
driven by 1-wire device

+5 (vdd)

0 (vss)

This reset pulse is controlled by the lowest two bits of the Mode argument
in the OWIN command. It can be made to appear before the ROM
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex:
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all
(ex: Mode = 0). See the section on Mode, above, for more information.

Following the Initialization part is the ROM Function Command. The
ROM Function Command is used to address the desired 1-Wire device.
Table 5.67 shows common ROM Function Commands. If only a single
1-Wire device is connected, the Skip ROM command may be used to
address it. If more than one 1-Wire device is attached, the BASIC Stamp
will ultimately have to address them individually using the Match ROM
command.

THE 1-WIRE PROTOCOL FORMAT.

OWIN – BASIC Stamp Command Reference

Page 300 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Command Value (in Hex) Action

Read ROM $33
Reads the 64-bit ID of the 1-Wire device. This command
can only be used if there is a single 1-wire device on the
line.

Match ROM $55
This command, followed by a 64-bit ID, allows the BASIC
Stamp to address a specific 1-Wire device.

Skip ROM $CC
Address a 1-Wire device without its 64-bit ID. This
command can only be used if there is a single 1-wire
device on the line.

Search ROM $F0
Reads the 64-bit IDs of all the 1-Wire devices on the line.
A process of elimination is used to distinguish each
unique device.

Table 5.67: 1-Wire ROM Function
Commands.

The third part, the Memory Function Command, allows the BASIC Stamp
to address specific memory locations, or features, of the 1-Wire device.
Refer to the 1-Wire device's data sheet for a list of the available Memory
Function Commands.

BASIC Stamp’s
Read “0” Slot

Apx. 72 sµ

Recovery Period
Apx 8 sµ

+5 (vdd)

0 (vss)

BASIC Stamp’s
Read “1” Slot

Apx. 72 sµ

driven by BASIC Stamp

time when BASIC Stamp samples line (apx 1 - 10 s)µ

Apx 4 sµ Apx 4 sµ

driven by 1-wire device or pulled-up by 5 k resisterΩ

Figure 5.21: Example Read Slot.

Finally, the Transaction/Data section is used to read or write data to the
1-Wire device. The OWIN command will read data at this point in the
transaction. A read is accomplished by generating a brief low-pulse and
sampling the line within 15 µs of the falling edge of the pulse. This is
called a "Read Slot." Figure 5.21 shows typical Read Slots performed by
the BASIC Stamp. See the OWOUT command for information on Write
Slots.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 301

The demo program uses a Dallas Semiconductor DS1820 Digital
Thermometer device connected as follows. Note that the 4.7 kΩ pull-up
resistor is required for proper operation.

Figure 5.22: DS1820 Circuit.
NOTE: The 4.7 kΩ resistor is
required for proper operation.

Demo Program (OWIN_OWOUT.bsp)

' OWIN_OWOUT.bsp
' This program demonstrates interfacing to a Dallas Semiconductor DS1822
' 1-Wire Digital Thermometer chip using the BS2p's 1-Wire commands. Connect
' the BS2p, BS2pe, or BS2px to the DS1822 as shown in the diagram in the
' OWIN or OWOUT command description. This program uses a simplified
' approach that ignores the fractional portion of the temperature.

' {$STAMP BS2p}
' {$PBASIC 2.5}

DQ PIN 0 ' 1-Wire buss pin

RdROM CON $33 ' read serial number
MatchROM CON $55 ' match SN -- for multiple devices
SkipROM CON $CC ' ignore SN -- use for one device
CvrtTmp CON $44 ' start temperature conversion
RdSP CON $BE ' read DS1822 scratch pad

tempIn VAR Word ' raw temperature
sign VAR tempIn.BIT11 ' 1 = negative temperature
tLo VAR tempIn.BYTE0
tHi VAR tempIn.BYTE1
tSign VAR Bit ' saved sign bit
tempC VAR Word ' final Celsius temp
tempF VAR Word ' final Fahrenheit temp

Main:
 DO
 GOSUB Get_Temperature ' read temperature from DS1822
 DEBUG HOME, ' display
 "DS1822", CR,
 "------", CR,

NOTE: This example program can be
used with the BS2p, BS2pe and BS2px
by changing the $STAMP directive
accordingly.

OWIN – BASIC Stamp Command Reference

Page 302 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 SDEC tempC, " C ", CR,
 SDEC tempF, " F "
 PAUSE 1000
 LOOP
 END

Get_Temperature:
 OWOUT DQ, 1, [SkipROM, CvrtTmp] ' send convert temperature command
 DO ' wait on conversion
 PAUSE 25 ' small loop pad
 OWIN DQ, 4, [tempIn] ' check status (bit transfer)
 LOOP UNTIL (tempIn) ' 1 when complete
 OWOUT DQ, 1, [SkipROM, RdSP] ' read DS1822 scratch pad
 OWIN DQ, 2, [tLo, tHi] ' get raw temp data
 tSign = sign ' save sign bit
 tempC = tempIn >> 4 ' round to whole degrees
 tempC.BYTE1 = $FF * tSign ' correct twos complement bits
 tempF = (ABS tempC) * 9 / 5 ' start F conversion
 IF (tSign) THEN ' finish F conversion
 tempF = 32 - tempF ' C was negative
 ELSE
 tempF = tempF + 32 ' C was positive
 ENDIF
 RETURN

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 303

OWOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWOUT Pin, Mode, [OutputData]

Function
Send data to a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWOUT command and will be set to input
mode by the end of the OWOUT command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• OutputData is a list of variables and modifiers that tells OWOUT
how to format outgoing data. OWOUT can transmit individual or
repeating bytes, convert values into decimal, hexadecimal or binary
text representations, or transmit strings of bytes from variable
arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts
Table 5.68: OWOUT Quick
Facts.

 BS2p, BS2pe, and BS2px
Transmission Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Command OWIN

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWOUT
command allows the BASIC Stamp to send data to a 1-Wire device.

The following is an example of the OWOUT command:

OWOUT 0, 1, [$4E]

A SIMPLE OWOUT EXAMPLE.

OWOUT – BASIC Stamp Command Reference

Page 304 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

This code will transmit a "reset" pulse to a 1-Wire device (connected to I/O
pin 0) and then will detect the device's "presence" pulse and then transmit
one byte (the value $4E).

The Mode argument is used to control placement of reset pulses (and
detection of presence pulses) and to designate byte vs. bit input and
normal vs. high speed. Figure 5.23 shows the meaning of each of the 4
bits of Mode. Table 5.69 shows just some of the 16 possible values and
their effect.

Low/Hi Byte/Bit BERes

0

FERes

123

Front-End Reset
0=no reset
1=generate reset before data

Back-End Reset
0=no reset
1=generate reset after data

Low/High Speed
0=low
1=high

Byte/Bit Transfer
0=byte
1=bit

Figure 5.23: MODE Format.

Mode Effect

0 No Reset, Byte mode, Low speed
1 Reset before data, Byte mode, Low speed
2 Reset after data, Byte mode, Low speed
3 Reset before and after data, Byte mode, Low speed
4 No Reset, Bit mode, Low speed
5 Reset before data, Bit mode, Low speed
8 No Reset, Byte mode, High speed
9 Reset before data, Byte mode, High speed

Table 5.69: OWOUT Mode Values.

NOTE: The BS2pe is not capable
of high-speed transfers.

The proper value for Mode depends on the 1-Wire device and the portion
of the communication you're working on. Please consult the data sheet for
the device in question to determine the correct value for Mode. In many
cases, however, when using the OWOUT command, Mode should be set
for a Front-End Reset (to initialize the transaction). This may vary due to
device and application requirements, however.

When using the Bit (rather than Byte) mode of data transfer, all variables
in the OutputData argument will only transmit one bit. For example, the
following code could be used to send two bits using this mode:

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 305

bitOne VAR Bit
bitTwo VAR Bit

bitOne = 0
bitTwo = 1
OWOUT 0, 5, [bitOne, bitTwo]

In the code above, we chose the value "5" for Mode. This sets Bit transfer
and Front-End Reset modes. Also, we could have chosen to make the
bitOne and bitTwo variables each a byte in size, but the BASIC Stamp
would still only use the their lowest bit (BIT0) as the value to transmit in
the OWOUT command (due to the Mode we chose).

The OWOUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume a 1-wire device is used and that it transmits the string,
"Value: 3A:101" every time it receives a Front-End Reset pulse).

value VAR Byte
value = 65

OWOUT 0, 1, [value] ' send "A"
OWOUT 0, 1, [REP value\5] ' send "AAAAA"
OWOUT 0, 1, [DEC value] ' send "6" and "5"
OWOUT 0, 1, [HEX value] ' send "4" and "1"
OWOUT 0, 1, [BIN value] ' send "1000001"

Table 5.70 and Table 5.71 list all the special formatters and conversion
formatters available to the OWOUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

Table 5.70: OWOUT Special
Formatters.

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display "x =
binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

SENDING AND FORMATTING DATA.

OWOUT – BASIC Stamp Command Reference

Page 306 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1,3

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4}
Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16}
Signed, indicated binary, optionally fixed to 1 – 16 digits (%
prefix)

1,2

Table 5.71: OWOUT Conversion
Formatters.

1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:
DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.
3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD

Conversion” on page 97.

The 1-Wire protocol has a well-defined standard for transaction sequences.
Every transaction sequence consists of four parts: 1) Initialization, 2) ROM
Function Command, 3) Memory Function Command, and 4)
Transaction/Data. Additionally, the ROM Function Command and
Memory Function Command are always 8 bits wide (1 byte in size) and is
sent least-significant-bit (LSB) first.

The Initialization part consists of a reset pulse (generated by the master)
and will be followed by a presence pulse (generated by all slave devices).
Figure 5.24 details the reset pulse generated by the BASIC Stamp and a
typical presence pulse generated by a 1-Wire slave, in response.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 307

Figure 5.24: OWOUT Reset and
Presence Pulse.

BASIC Stamp’s
Reset Pulse
Apx. 564 sµ

Device’s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp
driven by 1-wire device

+5 (vdd)

0 (vss)

This reset pulse is controlled by the lowest two bits of the Mode argument
in the OWOUT command. It can be made to appear before the ROM
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex:
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all
(ex: Mode = 0). See the section on Mode, above, for more information.

Following the Initialization part is the ROM Function Command. The
ROM Function Command is used to address the desired 1-Wire device.
Table 5.72 shows common ROM Function Commands. If only a single
1-wire device is connected, the Skip ROM command may be used to
address it. If more than one 1-wire device is attached, the BASIC Stamp
will ultimately have to address them individually using the Match ROM
command.

Table 5.72: OWOUT ROM
Function Commands.

Command Value (in Hex) Action

Read ROM $33
Reads the 64-bit ID of the 1-Wire device. This command
can only be used if there is a single 1-Wire device on the
line.

Match ROM $55
This command, followed by a 64-bit ID, allows the BASIC
Stamp to address a specific 1-Wire device.

Skip ROM $CC
Address a 1-Wire device without its 64-bit ID. This
command can only be used if there is a single 1-wire
device on the line.

Search ROM $F0
Reads the 64-bit IDs of all the 1-Wire devices on the line.
A process of elimination is used to distinguish each
unique device.

The third part, the Memory Function Command, allows the BASIC Stamp
to address specific memory locations, or features, of the 1-wire device.

OWOUT – BASIC Stamp Command Reference

Page 308 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Refer to the 1-Wire device's data sheet for a list of the available Memory
Function Commands.

Finally, the Transaction/Data section is used to read or write data to the
1-Wire device. The OWOUT command will write data at this point in the
transaction. A write is accomplished by generating a low-pulse of a
varying width to indicate a 0 or a 1. This is called a "Write Slot" and must
be at least 60 µs wide. Figure 5.25 shows typical Write Slots performed by
the BASIC Stamp. See the OWIN command for information on Read Slots.

BASIC Stamp’s
Write “0” Slot
Apx. 72 sµ

Recovery Period
Apx 8 sµ

+5 (vdd)

0 (vss)

BASIC Stamp’s
Write “1” Slot
Apx. 72 sµ

Apx 8 sµ

driven by BASIC Stamp
time when 1-wire device samples line (apx 15 - 45 s)µ

Figure 5.25: Example Write Slots.

The demo program uses a Dallas Semiconductor DS1820 Digital
Thermometer device connected as follows. Note that the 4.7 kΩ pull-up
resistor is required for proper operation.

Figure 5.26: DS1820 Circuit.
NOTE: The 4.7 kΩ resistor is
required for proper operation.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 309

Demo Program (OWIN_OWOUT.bsp)

' OWIN_OWOUT.bsp
' This program demonstrates interfacing to a Dallas Semiconductor DS1822
' 1-Wire Digital Thermometer chip using the BS2p's 1-Wire commands. Connect
' the BS2p, BS2pe or BS2px to the DS1822 as shown in the diagram in the
' OWIN or OWOUT command description. This program uses a simplified
' approach that ignores the fractional portion of the temperature.

' {$STAMP BS2p}
' {$PBASIC 2.5}

DQ PIN 0 ' 1-Wire buss pin

RdROM CON $33 ' read serial number
MatchROM CON $55 ' match SN -- for multiple devices
SkipROM CON $CC ' ignore SN -- use for one device
CvrtTmp CON $44 ' start temperature conversion
RdSP CON $BE ' read DS1822 scratch pad

tempIn VAR Word ' raw temperature
sign VAR tempIn.BIT11 ' 1 = negative temperature
tLo VAR tempIn.BYTE0
tHi VAR tempIn.BYTE1
tSign VAR Bit ' saved sign bit
tempC VAR Word ' final Celsius temp
tempF VAR Word ' final Fahrenheit temp

Main:
 DO
 GOSUB Get_Temperature ' read temperature from DS1822
 DEBUG HOME, ' display
 "DS1822", CR,
 "------", CR,
 SDEC tempC, " C ", CR,
 SDEC tempF, " F "
 PAUSE 1000
 LOOP
 END

Get_Temperature:
 OWOUT DQ, 1, [SkipROM, CvrtTmp] ' send convert temperatrue command
 DO ' wait on conversion
 PAUSE 25 ' small loop pad
 OWIN DQ, 4, [tempIn] ' check status (bit transfer)
 LOOP UNTIL (tempIn) ' 1 when complete
 OWOUT DQ, 1, [SkipROM, RdSP] ' read DS1822 scratch pad
 OWIN DQ, 2, [tLo, tHi] ' get raw temp data
 tSign = sign ' save sign bit
 tempC = tempIn >> 4 ' round to whole degrees
 tempC.BYTE1 = $FF * tSign ' correct twos complement bits

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

OWOUT – BASIC Stamp Command Reference

Page 310 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 tempF = (ABS tempC) * 9 / 5 ' start F conversion
 IF (tSign) THEN ' finish F conversion
 tempF = 32 - tempF ' C was negative
 ELSE
 tempF = tempF + 32 ' C was positive
 ENDIF
 RETURN

5: BASIC Stamp Command Reference – PAUSE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 311

PAUSE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PAUSE Duration

Function
Pause the program (do nothing) for the specified Duration.

• Duration is a variable/constant/expression (0 – 65535) that specifies
the duration of the pause. The unit of time for Duration is 1
millisecond.

Explanation
PAUSE delays the execution of the next program instruction for the
specified number of milliseconds. For example:

Flash:
 LOW 0
 PAUSE 100
 HIGH 0
 PAUSE 100
 GOTO Flash

This code causes pin 0 to go low for 100 ms, then high for 100 ms. The
delays produced by PAUSE are as accurate as the ceramic-resonator time
base (on the BASIC Stamp modules), ±1 percent. When you use PAUSE in
timing-critical applications, keep in mind the relatively low speed of the
PBASIC interpreter. This is the time required for the BASIC Stamp to read
and interpret an instruction stored in the EEPROM.

Demo Program (PAUSE.bs2)

' PAUSE.bs2
' This program demonstrates the PAUSE command's time delays. Once a second,
' the program will put the message "Paused..." on the screen.
' {$STAMP BS2}

Main:
 DEBUG "Paused...", CR
 PAUSE 1000
 GOTO Main

NOTE: Expressions are not allowed as
arguments on the BS1.

1 All 2

1

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

PAUSE – BASIC Stamp Command Reference

Page 312 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 313

POLLIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLIN Pin, State

Function
Specify a polled-input pin and active state.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This I/O pin will be set to input mode.

• State is a variable/constant/expression (0 – 1) that specifies
whether to poll the I/O pin for a low (0) or a high (1) level.

Quick Facts
Table 5.73: POLLIN Quick Facts. BS2p, BS2pe, and BS2px

Available
actions in

response to
reaching the
desired State

1) Nothing,
2) Set polled-output pins to a specified state,
3) Run another program (in a specified program-slot),
4) Wait (pause program execution) until desired State is reached,
5) Any combination of 2, 3 and 4, above.

Special notes

• The polled-input pins are monitored (polled) in-between each command
within the PBASIC code.

• On the BS2p40, polled-input pins can be defined on both Main I/O and
Auxiliary I/O pins. These are all active regardless of which group the
program happens to be using at the time of a polling event.

Useful SPRAM
locations

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the
POLLMODE command section for more information.

Related
commands

POLLMODE, POLLOUT, POLLRUN and POLLWAIT

Explanation
The POLLIN command is used to specify an input pin to monitor, or
"poll", in-between instructions during the rest of the PBASIC program.
The BASIC Stamp will then perform some activity (in-between
instructions) when the specified State is detected. The activity performed
depends on the POLLMODE, POLLOUT and POLLRUN commands.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp module’s interpreter periodically checks the state of the
designated polled-input pins. It "polls" these pins after the end of each
PBASIC command and before it reads the next PBASIC command from the

POLLIN – BASIC Stamp Command Reference

Page 314 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

user program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The following is an example of the POLLIN command:

POLLIN 0, 0
POLLMODE 2

The POLLIN command in the above code will cause the BASIC Stamp to
set I/O pin 0 to an input mode and get ready to poll it for a low (0) state.
The BASIC Stamp will not actually start polling until it is set to the
appropriate mode, however. The second line, POLLMODE, initiates the
polling process (see the POLLMODE description for more information).
From then on, as the BASIC Stamp executes the rest of the program, it will
check for a low level (logic 0) on I/O pin 0, in-between instructions.

In the code above, no obvious action will be noticed since we didn't tell the
BASIC Stamp what to do when it detects a change on the I/O pin. One
possible action the BASIC Stamp can be instructed to take is to change the
state of an output, called a polled-output. Take a look at the next example:

POLLIN 0, 0
POLLOUT 1, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

In this example, in addition to an endless loop, we've added another
polling command called POLLOUT (see the POLLOUT description for
more information). Our POLLOUT command tells the BASIC Stamp to set
I/O pin 1 to an output mode and set it high (1) when it detects the desired
poll state. The poll state is the low (0) level on I/O pin 0 that POLLIN told
it to look for. If the polled-input pin is high, it will set polled-output pin 0
to low (0), instead.

Once the program reaches the endless loop, at Main, it will continuously
print "Looping…" on the PC screen. In between reading the DEBUG
command and the GOTO command (and vice versa) it will check polled-
input pin 0 and set polled-output pin 1 accordingly. In this case, when
I/O pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. When I/O

A SIMPLE POLLIN EXAMPLE.

SETTING ONE OF THE POSSIBLE ACTIONS:
POLLED-OUTPUTS

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 315

pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will continue
to perform this operation, in-between each command in the loop,
endlessly.

It's important to note that, in this example, only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

INPUT 0
OUTPUT 1

Main:
 OUT1 = ~IN0
 DEBUG "Looping...", CR
 OUT1 = ~IN0
 GOTO Main

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-input pins are defined, any one of them can
trigger changes on the polled-output pins that are also defined. For
example:

POLLIN 0, 0
POLLIN 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

This code sets I/O pins 0 and 1 to polled-input pins (looking for a low (0)
state) and sets I/O pins 2 and 3 to polled-output pins (with a high-active

FOR COMPARISON: ACHIEVING THE SAME
EFFECTS WITHOUT THE POLLING

COMMANDS.

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

THE BASIC STAMP "REMEMBERS" THE
POLLING CONFIGURATION FOR THE

DURATION OF THE PBASIC PROGRAM.

POLLIN – BASIC Stamp Command Reference

Page 316 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

state). If either I/O pin 0 or 1 goes low, the BASIC Stamp will set I/O pins
2 and 3 high. This works similar to a logical OR operation. The truth table
below shows all the possible states of these two polled-input pins and the
corresponding states the BASIC Stamp will set the polled-output pins to.

Polled-Inputs Polled-Outputs
0 1 2 3
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Table 5.74: Polled-Inputs /
Polled-Outputs Truth Table.

Normally, any polled-output pins reflect the state changes continuously,
as described above. The POLLMODE command supports another feature,
however, where the polled-output pins will latch the active state; they will
change only once (when the poll state is reached) and stay in the new state
until the PBASIC program tells it to change again. See the POLLMODE
description for more information.

Other possible actions in response to polled-input states are: 1) Running
another program (in a specified program slot), 2) Waiting (pausing
program execution with or without low-power mode) until the poll state is
reached, or 3) Any combination of the above-mentioned actions.

Demo Program (POLL.bsp)

' POLL.bsp
' This program demonstrates POLLIN, POLLOUT, and the use of the POLLMODE
' instruction. Connect active-low inputs to pins 0, 1, 2, and 3. Then
' connect an LED to pin 7. The program will print "." to the Debug
' window until one of the alarm buttons are pressed. This will cause
' the termination of the main loop. At this point the program will
' save the latched bits, clear them (and the polling process), then
' report the input(s) that triggered the alarm.

' {$STAMP BS2p}
' {$PBASIC 2.5}

FDoor PIN 0
BDoor PIN 1
Patio PIN 2
Rst PIN 3
AlarmLed PIN 7

alarms VAR Byte ' alarm bits

POLLED-OUTPUTS CAN BE "LATCHED"
ALSO.

NOTE: This example program can be
used with the BS2p, BS2pe, and BS2px
by changing the $STAMP directive
accordingly.

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 317

idx VAR Nib ' loop control

Setup:
 POLLIN FDoor, 0 ' define alarm inputs
 POLLIN BDoor, 0
 POLLIN Patio, 0
 POLLOUT AlarmLed, 1 ' alarm indicator
 POLLMODE 10 ' activate latched polling
 DEBUG CLS,
 "Alarms Activated", CR

Main:
 DO
 DEBUG "." ' foreground activity
 PAUSE 50
 LOOP UNTIL (AlarmLed = 1) ' loop until LED is on
 GET 128, alarms ' get alarm bits
 POLLMODE 0 ' deactivate polling

Report:
 DEBUG CLS, ' alarms report
 "Front Door : ", CR,
 "Back Door : ", CR,
 "Patio : ", CR

 FOR idx = 0 TO 2 ' scan alarm bits
 DEBUG CRSRXY, 13, idx ' move cursor
 IF (alarms.LOWBIT(idx)) THEN ' report each bit status
 DEBUG "Alarm", CR
 ELSE
 DEBUG "-", CR
 ENDIF
 NEXT
 DEBUG CR, "Press RESET to clear..."
 DO : LOOP UNTIL (Rst = 0) ' wait until Rst pressed
 GOTO Setup
 END

POLLIN – BASIC Stamp Command Reference

Page 318 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 319

POLLMODE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLMODE Mode

Function
Specify a polled command mode.

• Mode is a variable/constant/expression (0 – 15) that indicates the
mode in which to process the polled command configuration.

Quick Facts
Table 5.75: POLLMODE Quick
Facts.

 BS2p, BS2pe, and BS2px

Special Notes

• Polled-output pins will either change states continuously, just once or
not at all, depending on the POLLMODE command.

• A poll-mode of 2 or 4 is required for a POLLWAIT command to work.
• If both polled-outputs and polled-run are active, the polled-output event

will occur before the polled-run event.
Useful SPRAM

Locations
Locations 128 – 135 hold polled interrupt status. See Table 5.77 for
more information.

Related
Commands

POLLIN, POLLOUT, POLLRUN and POLLWAIT

Explanation
The POLLMODE command is used to specify the mode in which polling
events and activities are processed. This activity will occur in-between
instructions during the rest of the PBASIC program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The POLLMODE command sets one of 15 possible modes for the polling
commands. It is used mainly before and/or after any POLLIN, POLLOUT
or POLLRUN commands to disable and enable the polling features as
desired. Table 5.76 shows the mode values and their effect.

POLLMODE – BASIC Stamp Command Reference

Page 320 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Mode Effect

0 Deactivate polling, clear polled-input and output configuration.
1 Deactivate polling, save polled-input and output configuration.
2 Activate polling with polled-output action (and polled-wait) only.
31 Activate polling with polled-run action only.
42 Activate polling with polled-output/polled-wait and polled-run actions.
53 Clear polled-input configuration.
63 Clear polled-output configuration.
73 Clear polled-input and output configuration.

8 – 15 Same at 0 – 7 except polled-output states are latched.

Table 5.76: POLLMODE Mode
Values.

1 After the polled-run action occurs, the mode switches to 1 (deactivated, saved)
2 After the polled-run action occurs, the mode switches to 2 (activated, outputs)
3 These modes do not override the previous mode. Also, the output state of

polled-outputs does not change as a result of these modes.

The polled-run modes, 3 and 4, are unique. As soon as the polled-run
action occurs, the mode switches to 1 (deactivated, saved) or 2 (activated,
outputs), respectively. This is so that the BASIC Stamp doesn't
continuously go to the start of the designated program slot while the
polled-inputs are in the desired poll state. Without this "one shot" feature,
your program would appear to lock-up as long as the polled-inputs are in
the designated state.

The clear configuration modes, 5, 6 and 7, are also unique. These modes
do not override the previous mode. For example, if polled-inputs,
polled-outputs and a polled-run configuration was set and the mode was
set to 4 (activated, outputs and run) and later the program issued a
POLLMODE 6 command, the polled-output configuration would be
cleared but the mode would switch back to 4… still allowing the run
action. This also means if, later still, the program issues a POLLOUT
command, this polled-output would take effect immediately (since the
mode is still 4). Also note that these modes do not change the output state
of previously defined polled-output pins.

The POLLMODE command determines what action, if any, will occur in
response to a polled-input event. This command works in conjunction
with the POLLIN, POLLOUT and POLLRUN commands. The following is
an example of the POLLMODE command:

A SIMPLE POLLMODE EXAMPLE.

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 321

POLLIN 0, 0
POLLOUT 1, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

In this example, the first two lines configure I/O pin 0 as a polled-input
(looking for a low state) and I/O pin 1 as a polled-output (going high if
I/O pin 0 goes low, and vice versa). The third line, POLLMODE, initiates
the polling process and configures polled-outputs to be active. From then
on, as the BASIC Stamp executes the rest of the program, it will check for a
low level (logic 0) on I/O pin 0, in-between instructions and will set I/O
pin 1 accordingly.

If, in the above example, the poll mode was set to 1 (which means
deactivate polling but save configuration) I/O pins 0 and 1 would still be
defined the same way, and I/O pin 1 would still be set to output mode,
but no polling would take place during the rest of the program.

Here's another example that demonstrates mode 1 (deactivate but save
configuration).

POLLIN 0, 0
POLLOUT 1, 1
POLLMODE 2

DEBUG "Polling configured.", CR

Main:
 POLLMODE 1
 DEBUG "No polling allowed here...", CR
 PAUSE 1000
 POLLMODE 2

Poll_Now:
 DEBUG "Polling now...", CR
 GOTO Poll_Now

In this case, polling is configured and activated before "Polling configured"
is printed on the screen. Once we reach the Main routine, however,
polling is disabled (via the POLLMODE 1 command) and no polling
occurs during the printing of "No polling allowed here…" or during the 1
second pause afterward. Finally, polling is activated again, and since the
configuration was saved (because of mode 1, before) the polling activity

POLLMODE – BASIC Stamp Command Reference

Page 322 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

acts just like it did initially for the remainder of the program. The ability
to temporarily disable polling, without changing the configuration, can be
a powerful feature for certain "critical" parts of a program.

The following example contains two programs. The first should be
downloaded into program slot 0 and the second into program slot 1.

' Pgm #1 (Slot 0) -------------

POLLIN 0, 0
POLLOUT 1, 1
POLLRUN 1
POLLMODE 4

Main:
 DEBUG "Running Program 1", CR
 GOTO Main

' Pgm #2 (Slot 1) -------------

Main:
 DEBUG "Running Program 2", CR
 GOTO Main

In this example (containing two programs; one is slot 0 and the other in
slot 1) program 1 (slot 0) will configure polled-input pin 0 to detect a low
state and polled-output 1 to go high in response. Program 1 also
configures a polled-run activity (see the POLLRUN description for more
information) to run the program in slot 1. The POLLMODE setting
activates the polled-output and the polled-run. Then, program 1
continuously prints "Running Program 1" on the PC screen.

Once I/O pin 0 goes low, however, the BASIC Stamp will set I/O pin 1
high, then execution will be switched to the program in slot 1 (program 2).
Program 2 will continuously print "Running Program 2" on the screen.
From this point forward, I/O pin 1 will continue to be set low and high in
response to changes occurring on I/O pin 0, but the polled-run activity is
disabled and the BASIC Stamp endlessly runs the code in program 2's
Main routine.

The highest locations of Scratch Pad RAM contain run-time information
about polled interrupts. See Table 5.77 below.

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 323

Table 5.77: Special Purpose
Scratch Pad RAM Locations.

Location BS2p and BS2pe

127
Bits 0-3, Active program slot #. Bits 4-7, program slot for READ and WRITE
operations.

128
Polled input trigger status of Main I/O pins 0-7
(0 = not triggered, 1 = triggered).

129
Polled input trigger status of Main I/O pins 8-15
(0 = not triggered, 1 = triggered).

130
Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131
Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132 Bits 0-3: Polled-interrupt mode, set by POLLMODE
133 Bits 0-2: Polled-interrupt “run” slot, set by POLLRUN.

134
Bit 0: Active I/O group; 0 = Main I/O,
1 = Auxiliary I/O.

135

Bit 0: Polled-output status (set by POLLMODE); 0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined, 1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE); 0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status; 0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state; 0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state; 0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event Occurred.
 (Cleared by POLLMODE only).
Bit 7: Polling status; 0 = not active, 1 = active.

Demo Program (POLL.bsp)

' POLL.bsp
' This program demonstrates POLLIN, POLLOUT, and the use of the POLLMODE
' instruction. Connect active-low inputs to pins 0, 1, 2, and 3. Then
' connect an LED to pin 7. The program will print "." to the Debug
' window until one of the alarm buttons are pressed. This will cause
' the termination of the main loop. At this point the program will
' save the latched bits, clear them (and the polling process), then
' report the input(s) that triggered the alarm.

' {$STAMP BS2p}
' {$PBASIC 2.5}

FDoor PIN 0
BDoor PIN 1
Patio PIN 2
Rst PIN 3
AlarmLed PIN 7

alarms VAR Byte ' alarm bits
idx VAR Nib ' loop control

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

POLLMODE – BASIC Stamp Command Reference

Page 324 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Setup:
 POLLIN FDoor, 0 ' define alarm inputs
 POLLIN BDoor, 0
 POLLIN Patio, 0
 POLLOUT AlarmLed, 1 ' alarm indicator
 POLLMODE 10 ' activate latched polling
 DEBUG CLS,
 "Alarms Activated", CR

Main:
 DO
 DEBUG "." ' foreground activity
 PAUSE 50
 LOOP UNTIL (AlarmLed = 1) ' loop until LED is on
 GET 128, alarms ' get alarm bits
 POLLMODE 0 ' deactivate polling

Report:
 DEBUG CLS, ' alarms report
 "Front Door : ", CR,
 "Back Door : ", CR,
 "Patio : ", CR

 FOR idx = 0 TO 2 ' scan alarm bits
 DEBUG CRSRXY, 13, idx ' move cursor
 IF (alarms.LOWBIT(idx)) THEN ' report each bit status
 DEBUG "Alarm", CR
 ELSE
 DEBUG "-", CR
 ENDIF
 NEXT
 DEBUG CR, "Press RESET to clear..."
 DO : LOOP UNTIL (Rst = 0) ' wait until Rst pressed
 GOTO Setup
 END

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 325

POLLOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLOUT Pin, State

Function
Specify a polled-output pin and active state.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This I/O pin will be set to output mode.

• State is a variable/constant/expression (0 – 1) that specifies
whether to set the I/O pin low (0) or high (1) when a polled-input
pin changes to its poll state.

Quick Facts
Table 5.78: POLLOUT Quick
Facts.

 BS2p, BS2pe, and BS2px

Special Notes

• The POLLOUT command will immediately change the I/O pin to an
output mode and set its level opposite to that of State, regardless of the
polled-input states or the polled mode.

• Polled-output pins will either change states continuously, just once or
not at all, depending on the POLLMODE command.

• On the BS2p40, polled-output pins can be defined on both main I/O and
auxiliary I/O pins. These are all active regardless of which group the
program happens to be using at the time of a polling event.

• If both polled-outputs and polled-run are active, the polled-output event
will occur before the polled-run event.

Useful SPRAM
Locations

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the
POLLMODE command section for more information.

Related
Commands

POLLMODE, POLLIN, POLLRUN and POLLWAIT

Explanation
The POLLOUT command is used to specify an output pin that changes
states in response to changes on any of the defined polled-input pins. This
activity will occur in-between instructions during the rest of the PBASIC
program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".

POLLOUT – BASIC Stamp Command Reference

Page 326 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The POLLOUT command achieves one of three possible actions in
response to a polled-input event. This command works in conjunction
with the POLLIN and POLLMODE commands. The following is an
example of the POLLOUT command:

POLLIN 0, 0
POLLOUT 1, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

In this example, the POLLOUT command tells the BASIC Stamp to set I/O
pin 1 to an output mode and set it high (1) when it detects the desired poll
state. The poll state is the low (0) level on I/O pin 0 that POLLIN told it to
look for. If the polled-input pin is high, the BASIC Stamp will set
polled-output pin 1 to low (0), instead. The BASIC Stamp will not actually
start polling until it is set to the appropriate mode, however. The third
line, POLLMODE, initiates the polling process (see the POLLMODE
description for more information). From then on, as the BASIC Stamp
executes the rest of the program, it will check for a low level (logic 0) on
I/O pin 0, in-between instructions.

Once the program reaches the endless loop, it will continuously print
"Looping…" on the PC screen. In between reading the DEBUG command
and the GOTO command (and vice versa) it will check polled-input pin 0
and set polled-output pin 1 accordingly. In this case, when I/O pin 0 is set
high, the BASIC Stamp will set I/O pin 1 low. When I/O pin 0 is set low,
the BASIC Stamp will set I/O pin 1 high. It will continue to perform this
operation, in-between each command in the loop, endlessly.

It's important to note that in this example only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

A SIMPLE POLLOUT EXAMPLE.

FOR COMPARISON: ACHIEVING THE SAME
EFFECTS WITHOUT THE POLLING

COMMANDS.

THE BASIC STAMP "REMEMBERS" THE
POLLING CONFIGURATION FOR THE

DURATION OF THE PBASIC PROGRAM.

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 327

INPUT 0
OUTPUT 1

Main:
 OUT1 = ~IN0
 DEBUG "Looping...", CR
 OUT1 = ~IN0
 GOTO Main

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-output pins are defined, all of them change in
response to changes on the polled-input pins. For example:

POLLIN 0, 0
POLLOUT 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

This code sets up I/O pin 0 as a polled-input pin (looking for a low (0)
state) and sets I/O pins 1, 2 and 3 to polled-output pins. Polled-output pin
1 is set to a low-active state and pins 2 and 3 are set to a high-active state.
If I/O pin 0 goes low, the BASIC Stamp will set I/O pin 1 low and I/O
pins 2 and 3 high. The table below shows the two possible states of the
polled-input pin and the corresponding states the BASIC Stamp will set
the polled-output pins to.

Table 5.79: POLLOUT Truth Table.

Polled-Input Polled-Outputs

0 1 2 3
1 1 0 0
0 0 1 1

Normally, any polled-output pins reflect the state changes continuously,
as described above. The POLLMODE command supports another feature,

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

POLLED-OUTPUTS CAN BE "LATCHED"
ALSO.

POLLOUT – BASIC Stamp Command Reference

Page 328 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

however, where the polled-output pins will latch the active state; they will
change only once (when the poll state is reached) and stay in the new state
until the PBASIC program tells it to change again. See the POLLMODE
description for more information.

A clever use of the "latched" feature is to set a polled input on the same pin
as a polled output. This leaves the pin in an input state, and the “latched”
state of that input pin will be saved in the pin’s output latch bit (which is
otherwise not used because the pin was last set to input mode). This gives
us the advantage of having a run-time readable bit that indicates whether
the input pin changed state while we were busy. For example, suppose an
application needed to respond in some way if an input pin goes high, but
it doesn't need to respond immediately, and the other tasks should not be
interrupted. In essence, we need a way to know if the pin has gone high
since the last time we checked it. Look at this example:

alarm VAR OUT0
idx VAR Byte

Setup:
 POLLOUT 0, 1
 POLLIN 0, 0
 POLLMODE 10

Work:
 FOR idx = 1 TO 25
 DEBUG "Working...", CR
 NEXT
 IF (Alarm = 0) THEN Work

Respond:
 DEBUG CR, "Hey, the Alarm was tripped!", CR
 PAUSE 1000
 POLLMODE 10
 GOTO Work

Here, we set I/O pin 0 to a polled-output, then immediately set it to a
polled-input. Then we set the polled-mode to latch the polled-outputs.
Afterwards, the program performs some work, and once in a while, checks
the state of OUT0 (named Alarm in the program). If Alarm is 0, I/O pin 0
was never seen to go high. If, however, Alarm is 1, I/O pin 0 must have
gone high while the program was doing other work, and now it can
respond in the proper manner. This even works if the input pin had gone
high and then low again before we check it (as long as it was high at some
point in between the instructions in our Work routine).

A CLEVER TRICK WITH POLLOUT AND

THE "LATCHED" FEATURE.

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 329

It is important to note that during the time between the POLLOUT and
POLLIN commands, I/O pin 0 will be set to an output direction. This can
cause a temporary short within the circuitry connected to I/O pin 0, so it is
vital that a large enough series resistor (perhaps 100 ohms or greater) be
inserted on that pin to protect the external device and the BASIC Stamp.

Demo Program (POLL.bsp)

' POLL.bsp
' This program demonstrates POLLIN, POLLOUT, and the use of the POLLMODE
' instruction. Connect active-low inputs to pins 0, 1, 2, and 3. Then
' connect an LED to pin 7. The program will print "." to the Debug
' window until one of the alarm buttons are pressed. This will cause
' the termination of the main loop. At this point the program will
' save the latched bits, clear them (and the polling process), then
' report the input(s) that triggered the alarm.

' {$STAMP BS2p}
' {$PBASIC 2.5}

FDoor PIN 0
BDoor PIN 1
Patio PIN 2
Rst PIN 3
AlarmLed PIN 7

alarms VAR Byte ' alarm bits
idx VAR Nib ' loop control

Setup:
 POLLIN FDoor, 0 ' define alarm inputs
 POLLIN BDoor, 0
 POLLIN Patio, 0
 POLLOUT AlarmLed, 1 ' alarm indicator
 POLLMODE 10 ' activate latched polling
 DEBUG CLS,
 "Alarms Activated", CR

Main:
 DO
 DEBUG "." ' foreground activity
 PAUSE 50
 LOOP UNTIL (AlarmLed = 1) ' loop until LED is on
 GET 128, alarms ' get alarm bits
 POLLMODE 0 ' deactivate polling

Report:
 DEBUG CLS, ' alarms report

NOTE: This example program can be
used with the BS2p, BS2pe, and BS2px
by changing the $STAMP directive
accordingly.

POLLOUT – BASIC Stamp Command Reference

Page 330 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 "Front Door : ", CR,
 "Back Door : ", CR,
 "Patio : ", CR

 FOR idx = 0 TO 2 ' scan alarm bits
 DEBUG CRSRXY, 13, idx ' move cursor
 IF (alarms.LOWBIT(idx)) THEN ' report each bit status
 DEBUG "Alarm", CR
 ELSE
 DEBUG "-", CR
 ENDIF
 NEXT
 DEBUG CR, "Press RESET to clear..."
 DO : LOOP UNTIL (Rst = 0) ' wait until Rst pressed
 GOTO Setup
 END

5: BASIC Stamp Command Reference – POLLRUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 331

POLLRUN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLRUN ProgramSlot

Function
Specify a program to run upon a polled-input event.

• ProgramSlot is a variable/constant/expression (0 – 7) that specifies
the program slot to run when a polled-input event occurs.

Quick Facts
Table 5.80: POLLRUN Quick
Facts.

 BS2p, BS2pe, and BS2px

Default
ProgramSlot

The default polled-run slot is 0. If no POLLRUN command is given and a
poll mode of 3 or 4 is set, the program in slot 0 will run in response to a
polled-input event.

Special Notes • If both polled-outputs and polled-run are active, the polled-output event
will occur before the polled-run event.

Useful SPRAM
locations

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the
POLLMODE command section for more information.

Related
commands

POLLMODE, POLLIN, POLLOUT, POLLWAIT and RUN

Explanation
The POLLRUN command is used to specify a program slot to run in
response to a polled event. This activity can occur in between any two
instructions within the rest of the PBASIC program.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated
polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

POLLRUN – BASIC Stamp Command Reference

Page 332 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The following is a simple example of the POLLRUN command.

POLLIN 0, 0
POLLRUN 1
POLLMODE 3

Main:
 DEBUG "Waiting in Program Slot 0...", CR
 GOTO Main

The first line of the above code will set up I/O pin 0 as a polled-input pin
looking for a low (0) state. The second line, POLLRUN, tells the BASIC
Stamp that when I/O pin 0 goes low, it should switch execution over to
the program residing in program slot 1. The third line, POLLMODE,
activates the polled-run configuration.

Once the BASIC Stamp reaches the Main routine, it will continuously print
"Waiting in Program Slot 0…" on the PC screen. In between reading the
DEBUG and GOTO commands, however, the BASIC Stamp will poll I/O
pin 0 and check for a high or low state. If the state of pin 0 is high, it will
do nothing and continue as normal. If the state of pin 0 is low, it will
switch execution over to the program in slot 1 (the second program is not
shown in this example). The switch to another program slot works exactly
like with the RUN command; the designated program is run and the
BASIC Stamp does not "return" to the previous program (similar to a
GOTO command).

Note that in order for the polled-run activity to occur, the poll mode must
be set to either 3 or 4 (the two modes that activate polled-run). Also note,
that the polled-run modes, 3 and 4, are unique. As soon as the polled-run
action occurs, the mode switches to 1 (deactivated, saved) or 2 (activated,
outputs), respectively. This is so that the BASIC Stamp doesn't
continuously go to the start of the designated program slot while the
polled-inputs are in the desired poll state. Without this "one shot" feature,
your program would appear to lock-up as long as the polled-inputs are in
the designated state.

After the program switch takes place, the ProgramSlot value is maintained.
Any future change to poll mode 3 or 4, without another POLLRUN
command, will result in the previously defined program slot being used.

A SIMPLE POLLRUN EXAMPLE.

5: BASIC Stamp Command Reference – POLLRUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 333

Demo Program (POLLRUN0.bsp)

' POLLRUN0.bsp
' This program demonstrates the POLLRUN command. It is intended to be
' downloaded to program slot 0, and the program called POLLRUN1.bsp
' should be downloaded to program slot 1. I/O pin 0 is set to watch for
' a low signal. Once the Main routine starts running, the program
' continuously prints it's program slot number to the screen. If I/O
' pin 0 goes low, the program in program slot 1 (which should be
' POLLRUN1.bsp) is run.

' {$STAMP BS2p, POLLRUN1.BSP}
' {$PBASIC 2.5}

pgmSlot VAR Byte

Setup:
 POLLIN 0, 0 ' polled-input, look for 0
 POLLRUN 1 ' run slot 1 on polled activation
 POLLMODE 3 ' enable polling

Main:
 GET 127, pgmSlot
 DEBUG "Running Program #", DEC pgmSlot.LOWNIB, CR
 GOTO Main
 END

Demo Program (POLLRUN1.bsp)

' POLLRUN1.bsp
' This program demonstrates the POLLRUN command. It is intended to be
' downloaded to program slot 1, and the program called POLLRUN0.bsp
' should be downloaded to program slot 0. This program is run when
' program 0 detects a low on I/O pin 0 via the polled commands.

' {$STAMP BS2p}
' {$PBASIC 2.5}

pgmSlot VAR Byte

Main:
 GET 127, pgmSlot
 DEBUG "Running Program #", DEC pgmSlot.LOWNIB, CR
 GOTO Main
 END

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

POLLRUN – BASIC Stamp Command Reference

Page 334 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – POLLWAIT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 335

POLLWAIT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLWAIT Duration

Function
Pause program execution, in a low-power mode, in units of Duration until
any polled-input pin reaches the desired poll state.

• Duration is a variable/constant/expression (0 – 8) that specifies the
duration of the low-power state. The duration is (2^Duration) * 18
ms. Table 5.82 on page 336 indicates the low-power length for any
given Duration. Using 8 as the Duration is a special case; the BS2p,
BS2pe, and BS2px will not go into low-power mode and will
respond quicker to polled-inputs.

Quick Facts

Table 5.81: POLLWAIT Quick
Facts.

 BS2p BS2pe BS2px
Current draw

during
POLLWAIT

350 µA 36 µA 450 µA

Response Time
with Duration

set to 8
Less than 160 µs Less than 250 µs Less than 100 µs

Accuracy of
NAP –50 to 100% (±10% @ 75°F with stable power supply)

Special Notes

• Poll mode must be 2 or 4 and at least one polled-input must be set to
activate POLLWAIT (POLLWAIT will be ignored otherwise).

• If both polled-wait and polled-run are active, the polled-run event will
occur immediately after the polled-wait detects an event.

Useful SPRAM
Locations

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the
POLLMODE command section for more information.

Related
Commands

POLLMODE, POLLIN, POLLOUT, POLLRUN, END, NAP and SLEEP

Explanation
The POLLWAIT command is used to pause program execution and go
into a low-power state until any polled-input pin reaches the desired poll
state.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp's interpreter periodically checks the state of the designated

POLLWAIT – BASIC Stamp Command Reference

Page 336 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

polled-input pins. It "polls" these pins after the end of each PBASIC
command and before it reads the next PBASIC command from the user
program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The POLLWAIT command is unique among the polling commands in that
it actually causes execution to halt, until a polled-input pin event occurs.
The Duration argument is similar to that of the NAP command; using the
values 0 to 7 specifies the duration of the low-power period. After the
low-power period is over, the BASIC Stamp polls the polled-input pins
and determines if any meet the desired poll state. If no polled-input is in
the desired state (as set by POLLIN command) the BASIC Stamp goes
back into low-power mode, again, for the same duration as before. If any
polled-input is in the desired state, however, the BASIC Stamp will
continue execution with the next line of code.

A Duration of 8 makes the BASIC Stamp pause execution in normal
running mode (not low-power mode) until a polled-input event occurs.
The response time is indicated in Table 5.81 on page 335. Since the
response time is so fast, this feature can be used to synchronize a portion
of PBASIC code to an incoming pulse.

Duration Length of Low-Power Mode
0 18 ms
1 36 ms
2 72 ms
3 144 ms
4 288 ms
5 576 ms
6 1152 ms (1.152 seconds)
7 2304 ms (2.304 seconds)
8 No power-down

Table 5.82: Duration values and
associated low-power modes.

The following is a simple example of the POLLWAIT command.

POLLIN 0, 0
POLLMODE 2

Main:
 POLLWAIT 2
 TOGGLE 1
 GOTO Main

A SIMPLE POLLWAIT EXAMPLE.

5: BASIC Stamp Command Reference – POLLWAIT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 337

In this example, the POLLIN command sets I/O pin 0 to be a polled-input
pin looking for a low (0) state. The Main routine immediately runs a
POLLWAIT command and specifies a Duration of 2 (which results in a
low-power state of 72 ms). This means that every 72 ms, the BASIC Stamp
wakes-up and checks I/O pin 0 for a low. If I/O pin 0 is high, it goes back
to sleep for another 72 ms. If I/O pin 0 is low, it runs the next line of code,
which toggles the state of I/O pin 1. Then the loop starts all over again.
Note: Due to the nature of low-power mode, I/O pin 1 may toggle
between high and low (at 72 ms intervals in this case) even if I/O pin 0
stays high. This is an artifact of the "reset" condition in the interpreter chip
that occurs when the chip wakes up from a low-power state. Upon this
"reset" condition, all the I/O pins are switched to inputs for approximately
18 ms. It is the switching to inputs that will cause I/O pin 1 to appear to
toggle. See the NAP or SLEEP commands for more information.

If low-power mode is not required, change the POLLWAIT command in
the example above to "POLLWAIT 8" instead. This will have the effect of
keeping the BASIC Stamp in normal running mode (i.e.: no low-power
glitches) and will also cause the TOGGLE command to execute in a much
shorter amount of time after a polled-input event occurs.

Demo Program (POLLWAIT.bsp)

' POLLWAIT.bsp
' This program demonstrates the POLLWAIT command. I/O pin 0 is set to
' watch for a low signal. Once the Main routine starts running, the
' POLLWAIT command causes the program to halt until the polled event
' happens (I/O pin is low) then it prints a message on the PC screen.
' It will do nothing until I/O pin is low.

' {$STAMP BS2p}
' {$PBASIC 2.5}

Setup:
 POLLIN 0, 0 ' polled-input, look for 0
 POLLMODE 2 ' enable polling

Main:
 POLLWAIT 8 ' Wait for polled event
 DEBUG "I/O pin 0 is LOW!", CR ' Print message
 GOTO Main
 END

NOTE: This example program can be
used with the BS2p, BS2pe, and BS2px
by changing the $STAMP directive
accordingly.

POLLWAIT – BASIC Stamp Command Reference

Page 338 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – POT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 339

POT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POT Pin, Scale, Variable
(See RCTIME)

Function
Read a 5 kΩ to 50 kΩ potentiometer, thermistor, photocell, or other
variable resistance.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode initially, then to input mode.

• Scale is a variable/constant (0 – 255) used to scale the command's
internal 16-bit result. See explanation below for steps to finding the
scale value to use for your circuit.

• Variable is a variable (usually a byte) where the final result of the
reading will be stored. Internally, the POT command calculates a
16-bit value, which is scaled down to an 8-bit value.

Explanation
POT reads a variable resistance and returns a value (0 – 255) representing
the amount of time it took to discharge the capacitor through the
resistance. Pin must be connected to one side of the variable resistance,
whose other side is connected through a capacitor to ground, as shown in
Figure 5.27.

Figure 5.27: Example Variable
Resistance Circuit.

P0

5 kΩ to 50 kΩ
variable resistance

Vss

0.1 uF

POT works by first setting the specified I/O pin to an output and setting
its state high. This step places +5 volts on one side of the capacitor (see
Figure 5.27) and ground (0 volts) on the other side, which charges the
capacitor. POT waits for 10 ms and then sets the I/O pin to an input mode
and starts its timer. Initially the I/O pin will see a high (1) that will
eventually drop to a low (0) when the capacitor discharges past the 1.4-
volt threshold. The timer stops once the low is seen. The value of the

HOW POT REALLY WORKS.

1

All 2

POT – BASIC Stamp Command Reference

Page 340 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

variable resistor affects the time it takes to discharge the capacitor from 5
volts to approximately 1.4 volts.

The 16-bit reading is multiplied by (Scale/256), so a scale value of 128
would reduce the range by approximately 50%, a scale of 64 would reduce
to 25%, and so on. The amount by which the internal value must be scaled
varies with the size of the resistor being used.

Finding the best Scale value:
1. Build the circuit shown in Figure 5.27 and plug the BS1 into the PC.
2. In the BASIC Stamp editor select Pot Scaling from the Run menu. A

special calibration window appears, allowing you to find the best
value.

3. The window asks for the number of the I/O pin to which the variable
resistor is connected. Select the appropriate pin (0-7) from the drop-
down.

4. The editor downloads a short program to the BS1 (this overwrites any
program already stored in the BS1).

5. The window will now show the Scale Factor. Adjust the resistor until
the smallest number is shown for scale (assuming you can adjust the
resistor, as with a potentiometer).

6. Once you’ve found the smallest number for scale, you’re done. This
number should be used for the Scale in the POT command.

7. Optionally, you can verify the scale number found above by selecting
the POT Value checkbox (so it's checked). This locks the scale and
causes the BS1 to read the resistor continuously. The window displays
the value. If the scale is good, you should be able to adjust the
resistor, achieving a 0–255 reading for the value (or as close as
possible). To change the scale value and repeat this step, deselect the
POT Value checkbox. Continue this process until you find the best
scale.

Demo Program (POT.bs1)

' POT.bs1
' This program demonstrates the use of the POT command. Connect one side
' of a 5-50K potentiometer to P0. To the other side of the potentiometer
' connect a 0.1 uF capacitor, and then connect the other side of the
' capacitor to Vss (ground). Before running demo program,
' use the Run | POT Scaling dialog to determine the best Scale factor.

1

5: BASIC Stamp Command Reference – POT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 341

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL PotPin = 0 ' pot connected to P0
SYMBOL Scale = 111 ' scale value for test circuit

SYMBOL level = B2 ' storage of pot "level"

Main:
 POT PotPin, Scale, level ' read pot level
 DEBUG CLS, "Level = ", #level ' display
 PAUSE 50 ' short delay
 GOTO Main ' repeat forever
 END

POT – BASIC Stamp Command Reference

Page 342 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – PULSIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 343

PULSIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PULSIN Pin, State, Variable

Function
Measure the width of a pulse on Pin described by State and store the result
in Variable.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to input mode.

• State is a variable/constant/expression (0 – 1) that specifies whether
the pulse to be measured is low (0) or high (1). A low pulse begins
with a 1-to-0 transition and a high pulse begins with a 0-to-1
transition.

• Variable is a variable (usually a word) in which the measured pulse
duration will be stored. The unit of time for Variable is described in
Table 5.83.

Quick Facts
Table 5.83: PULSIN Quick Facts.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Units in
Variable

10 µs 2 µs 2 µs 0.8 µs 0.8 µs 2 µs 0.81 µs

Maximum
Pulse Width

655.35 ms 131.07 ms 131.07 ms 52.428 ms 52.428 ms 123.6 ms 53.08 ms

Related
Commands

PULSOUT and COUNT

Explanation
PULSIN is like a fast stopwatch that is triggered by a change in state (0 or
1) on the specified pin. The entire width of the specified pulse (high or
low) is measured, in units shown in Table 5.83, and stored in Variable.

Many analog properties (voltage, resistance, capacitance, frequency, duty
cycle) can be measured in terms of pulse durations. This makes PULSIN a
valuable form of analog-to-digital conversion.

PULSIN will wait, for the desired pulse, for up to the maximum pulse
width it can measure, shown in Table 5.83. If it sees the desired pulse, it
measures the time until the end of the pulse and stores the result in
Variable. If it never sees the start of the pulse, or the pulse is too long

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

SPECIFICS OF PULSIN'S OPERATION.

1 All 2

1

PULSIN – BASIC Stamp Command Reference

Page 344 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

(greater than the Maximum Pulse Width shown in Table 5.83) PULSIN
"times out" and store 0 in Variable. This operation keeps your program
from locking-up should the desired pulse never occur.

Regardless of the size of Variable, PULSIN internally uses a 16-bit timer.
Unless the pulse widths are known to be short enough to fit in an 8-bit
result, it is recommended to use a word-sized variable. Not doing so may
result in strange and misleading results as the BASIC Stamp will only
store the lower 8-bits into a byte variable.

Figure 5.28: R/C Pulse Generator.

Demo Program (PULSIN.bs1)

' PULSIN.bs1
' This program uses PULSIN to measure a pulse generated by discharging a
' 0.1 uF capacitor through a 1k resistor. Pressing the switch generates
' the pulse, which should ideally be approximately 120 us (12 PULSIN units
' of 10 us) long. Variations in component values may produce results that
' are up to 10 units off from this value. For more information on
' calculating resistor-capacitor timing, see the RCTIME command.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL Pulse = 7 ' pulse input pin

SYMBOL time = W1 ' pulse width (10 uS units)

HOW THE RESULT IS REPORTED.

1

5: BASIC Stamp Command Reference – PULSIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 345

Main:
 PULSIN Pulse, 1, time ' measure positive pulse
 IF time = 0 THEN Main ' if 0, try again
 DEBUG CLS, time ' else display result
 GOTO Main
 END

Demo Program (PULSIN.bs2)

' PULSIN.bs2
' This program uses PULSIN to measure a pulse generated by discharging a
' 0.1 uF capacitor through a 1K resistor. Pressing the switch generates
' the pulse, which should ideally be approximately 120 us (60 PULSIN units
' of 2 us) long (for BS2 and BS2e). Variations in component values may
' produce results that are up to 10 units off from this value. For more
' information on calculating resistor-capacitor timing, see the RCTIME
' command.

' {$STAMP BS2}
' {$PBASIC 2.5}

Pulse PIN 7 ' pulse input pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 Scale CON $200 ' 2.0 us per unit
 #CASE BS2SX, BS2P
 Scale CON $0CC ' 0.8 us per unit
 #CASE BS2PX
 Scale CON $0CF ' 0.81 us per unit

#ENDSELECT

time VAR Word

Main:
 PULSIN Pulse, 1, time ' measure positive pulse
 IF (time > 0) THEN ' if not 0
 DEBUG HOME,
 DEC time, " units ", CLREOL ' display raw input
 time = time */ Scale ' adjust for Stamp
 DEBUG CR,
 DEC time, " us " ' display microseconds
 ELSE
 DEBUG CLS, "Out of Range" ' else error message
 ENDIF
 PAUSE 200
 GOTO Main
 END

All 2

NOTE: This example program can be
used with all BS2 models. This
program uses conditional compilation
techniques; see Chapter 3 for more
information.

PULSIN – BASIC Stamp Command Reference

Page 346 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – PULSOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 347

PULSOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PULSOUT Pin, Duration

Function
Generate a pulse on Pin with a width of Duration.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode.

• Duration is a variable/constant/expression (0 – 65535) that specifies
the duration of the pulse. The unit of time for Duration is described
in Table 5.84.

Quick Facts
Table 5.84: PULSOUT Quick
Facts.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Duration units 10 µs 2 µs 2 µs 0.8 µs 0.8 µs 2 µs 0.8 µs

Maximum
Pulse Width

655.35 ms 131.07 ms 131.07 ms 52.428 ms 52.428 ms 131.07 ms 52.428 ms

Related
Command

PULSIN

Explanation
PULSOUT sets Pin to output mode, inverts the state of that pin; waits for
the specified Duration; then inverts the state of the pin again; returning the
bit to its original state. The unit of Duration is described in Table 5.84. The
following example will generate a 100 µs pulse on I/O pin 7 (of the BS2):

PULSOUT 7, 50 ' generate 100 us pulse on P7

The polarity of the pulse depends on the state of the pin before the
command executes. In the example above, if pin 7 was low, PULSOUT
would produce a positive (high) pulse. If the pin was high, PULSOUT
would produce a negative (low) pulse.

If the pin is an input, the output state bit, OUT7 (PIN7 on the BS1) won’t
necessarily match the state of the pin. What happens then? For example:
pin 7 is an input (DIR7 = 0) and pulled high by a resistor as shown in
Figure 5.29a. Suppose that pin 7 is low when we execute the instruction:

PULSOUT 7, 5 ' generate pulse on P7

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

CONTROLLING THE POLARITY OF THE

PULSE.

WATCH OUT FOR UNDESIRABLE PULSE

GLITCHES.

1 All 2

1

PULSOUT – BASIC Stamp Command Reference

Page 348 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 5.29b shows the sequence of events on that pin. Initially, pin 7 is
high. Its output driver is turned off (because it is in input mode), so the 10
kΩ resistor sets the state on the pin. When PULSOUT executes, it turns on
the output driver, allowing OUT7 (PIN7 on the BS1) to control the pin.

Vdd

10 kΩ

P7 O-scope

pin 7 can be connected to an
oscilloscope as shown to
view the results shown on

the right

(instruction
executes)

PULSOUT 7,5 positive pulse

pin 7 in input mode
(DIR7 = 0,
OUT7 = 0)

but held high by
resistor to Vdd pin changes to

output
pin left as

output - low
(DIR7 = 1,
OUT7 = 0)

 a. b.

Figure 5.29: Example Pulse
Diagram.

Since OUT7 (PIN7 on the BS1) is low, the pin goes low. After a few
microseconds of preparation, PULSOUT inverts the state of the pin; from
low to high. It leaves the pin in that state for the specified time (10µs if
using a BS2) and then inverts it again, leaving the pin in its original state.

Figure 5.30: LED Circuit for
PULSOUT Demo Programs.

Demo Program (PULSOUT.bs1)

' PULSOUT.bs1
' This program blinks an LED on for 25 ms at 1-second intervals. Connect an
' LED (active-low) to I/O pin 0.

' {$STAMP BS1}
' {$PBASIC 1.0}

1

5: BASIC Stamp Command Reference – PULSOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 349

Setup:
 HIGH 0 ' make P0 high (LED off)

Main:
 PULSOUT 0, 2500 ' flash LED for 25 mS
 PAUSE 1000 ' one second delay
 GOTO Main
 END

Demo Program (PULSOUT.bs2)

' PULSOUT.bs2
' This program blinks an LED on for 25 ms at 1-second intervals. Connect an
' LED (active-low) to I/O pin 0.

' {$STAMP BS2}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 Scale CON 500 ' to ms for 2 us per unit
 #CASE BS2SX, BS2P, BS2PX
 Scale CON 1250 ' to ms for 0.8 us per unit
#ENDSELECT

Flash CON 25 * Scale ' 25 milliseconds

Setup:
 HIGH 0 ' make P0 high (LED off)

Main:
 PULSOUT 0, Flash ' flash LED
 PAUSE 1000 ' one second delay
 GOTO Main
 END

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

All 2

PULSOUT – BASIC Stamp Command Reference

Page 350 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – PUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 351

PUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PUT Location, { WORD } Value { , { WORD } Value... }

Function
Write one or more values to the Scratch Pad RAM (SPRAM), starting at
Location.

• Location is a variable/constant/expression (0 – 62 for BS2e and
BS2sx, and 0 – 126 for BS2p, BS2pe, and BS2px) that specifies the
SPRAM location to write to.

• Value is a variable/constant/expression (0 – 255, or 0 – 65535 if
using the optional WORD modifier) to store in the SPRAM.

Quick Facts
Table 5.85: PUT Quick Facts.

NOTE: When the WORD modifier
is used, the low byte of the value
is written to Location, the high
byte to Location + 1.

 BS2e and BS2sx BS2p, BS2pe, and BS2px
Scratch Pad RAM

Size and
Organization

64 bytes (0 – 63). Organized as
bytes only.

136 bytes (0 – 135). Organized as
bytes only.

General Purpose
Locations

0 - 62 0 – 126

Special Use
Location

Location 63: Active program slot
number (read only).

Location 127: READ/WRITE slot and
Active Program slot (read only).

Locations 128-135: Polled Interrupt
status (read only).

Related
Commands

GET
GET and STORE,

and SPSTR formatter.
PBASIC 2.5

Syntax Options
Multiple sequential variables may be written to the Scratch Pad RAM.
The optional WORD modifier may be specified to store 16-bit values.

Explanation
The PUT command writes value into the specified Scratch Pad RAM
(SPRAM) location. All values in the general-purpose locations can be
written to from within any of the 8 program slots.

SPRAM is useful for passing data to programs in other program slots and
for additional workspace. It is different than regular RAM in that symbol
names cannot be assigned directly to locations and each location is always
configured as a byte only. The following code will write the value 100 to
location 25, read it back out with GET, and display it:

USES FOR SCRATCH PAD RAM.

NOTE: The optional arguments require
PBASIC 2.5.

PUT – BASIC Stamp Command Reference

Page 352 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

temp VAR byte

PUT 25, 100 ' put low byte
GET 25, temp ' read byte value
DEBUG DEC temp ' display byte value

When using the $PBASIC 2.5 directive, multiple sequential values may be
stored to SPRAM, starting at Location, and the WORD modifier may be
specified to store 16-bit values.

' {$PBASIC 2.5}

temp VAR Word

PUT 25, Word 2125 ' write word value
GET 25, Word temp ' read word value
DEBUG DEC temp ' display 2125

Most Scratch Pad RAM locations are available for general use. The highest
locations have a special, read-only purpose; see the GET command for
more information.

Demo Program (GET_PUT1.bsx)

' GET_PUT1.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' slot location is read using GET to display the currently running program
' number. Then a set of values are written (PUT) into locations 0 TO 9.
' Afterwards, program number 1 is RUN. This program is a BS2SX project
' consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run on the BS2e,
' BS2p, BS2pe, and BS2px without modification.

' {$STAMP BS2sx, GET_PUT2.BSX}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

Setup:
 GET Slot, value

SCRATCH PAD RAM LOCATIONS AND

THEIR PURPOSE.

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

5: BASIC Stamp Command Reference – PUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 353

 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 value = (idx + 3) * 8
 PUT idx, value
 DEBUG " Writing: ", DEC2 value, " to location: ", DEC2 idx, CR
 NEXT
 DEBUG CR
 RUN 1
 END

 Demo Program (GET_PUT2.bsx)

' GET_PUT2.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' the Slot location is read using GET to display the currently running
' program number. Then a set of values are read (GET) from locations
' 0 to 9 and displayed on the screen for verification. This program is a
' BS2SX project consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run
' on the BS2e, BS2p, BS2pe, and BS2px without modification.

' {$STAMP BS2sx}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

Setup:
 GET Slot, value
 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 GET idx, value
 DEBUG " Reading: ", DEC2 value, " from location: ", DEC2 idx, CR
 NEXT
 END

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe, and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

PUT – BASIC Stamp Command Reference

Page 354 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – PWM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 355

PWM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PWM Pin, Duty, Cycles

Function
Convert a digital value to analog output via pulse-width modulation.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to output mode initially then set to
input mode when the command finishes.

• Duty is a variable/constant/expression (0 - 255) that specifies the
analog output level (0 to 5V).

• Cycles is a variable/constant/expression (0 - 255) that specifies the
duration of the PWM signal.

Quick Facts
Table 5.86: PWM Quick Facts

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Units in Cycles 5 ms 1 ms 1 ms 0.4 ms 0.65 ms 1.62 ms 0.4 ms

Average Voltage
Equation

Average Voltage = (Duty / 255) * 5 volts

Required ChargeTime
(Cycles) Equation

Charge time = 5 * R * C

Special Notes Pin is set to output initially, and set to input at end
Related Commands none FREQOUT and DTMFOUT

Explanation
Pulse-width modulation (PWM) allows the BASIC Stamp (a purely digital
device) to generate an analog voltage. The basic idea is this: If you make a
pin output high, the voltage at that pin will be close to 5 V. Output low is
close to 0 V. What if you switched the pin rapidly between high and low
so that it was high half the time and low half the time? The average
voltage over time would be halfway between 0 and 5 V (2.5 V). PWM
emits a burst of 1s and 0s whose ratio is proportional to the duty value
you specify, making the average voltage over time somewhere between 0
and 5 V.

The proportion of 1s to 0s in PWM is called the duty cycle. The duty cycle
controls the analog voltage in a very direct way; the higher the duty cycle
the higher the voltage. In the case of the BASIC Stamp, the duty cycle can
range from 0 to 255. Duty is literally the proportion of 1s to 0s output by
the PWM command. To determine the proportional PWM output voltage,

DETERMINING AVERAGE VOLTAGE FOR A

PARTICULAR DUTY CYCLE.

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1 All 2

1

PWM – BASIC Stamp Command Reference

Page 356 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

use this formula: (Duty/255) * 5V. For example, if Duty is 100, (100/255) *
5V = 1.96V; PWM outputs a train of pulses whose average voltage is 1.96V.

In order to convert PWM into an analog voltage we have to filter out the
pulses and store the average voltage. The resistor/capacitor combination
in Figure 5.31 will do the job. The capacitor will hold the voltage set by
PWM even after the instruction has finished. How long it will hold the
voltage depends on how much current is drawn from it by external
circuitry, and the internal leakage of the capacitor. In order to hold the
voltage relatively steady, a program must periodically repeat the PWM
instruction to give the capacitor a fresh charge.

Figure 5.31: Example PWM Filter
Circuit.

Just as it takes time to discharge a capacitor, it also takes time to charge it
in the first place. The PWM command lets you specify the charging time
in terms of PWM cycles. The period of each cycle is shown in Table 5.86.
So, on the BS2, to charge a capacitor for 5ms, you would specify 5 cycles in
the PWM instruction.

How do you determine how long to charge a capacitor? Use this rule-of-
thumb formula: Charge time = 5 * R * C. For instance, Figure 5.31 uses a 10
kΩ (10 x 103 ohm) resistor and a 1 µF (1 x 10-6 F) capacitor:

Charge time = 5 * 10 x 103 * 1 x 10-6 = 50 x 10-3 seconds, or 50 ms.

Since, on the BS2, each cycle is approximately a millisecond, it would take
at least 50 cycles to charge the capacitor. Assuming the circuit is
connected to pin 0, here’s the complete PWM instruction:

PWM 0, 100, 50 ' charge to 1.96 V

After outputting the PWM pulses, the BASIC Stamp leaves the pin in
input mode (0 in the corresponding bit of DIRS). In input mode, the pin’s
output driver is effectively disconnected. If it were not, the steady output

DETERMINING THE APPROPRIATE CYCLE

TIME FOR YOUR CIRCUIT.

FILTERING THE PWM SIGNAL.

5: BASIC Stamp Command Reference – PWM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 357

state of the pin would change the voltage on the capacitor and undo the
voltage setting established by PWM. Keep in mind that leakage currents
of up to 1 µA can flow into or out of this “disconnected” pin. Over time,
these small currents will cause the voltage on the capacitor to drift. The
same applies for leakage current from an op-amp’s input, as well as the
capacitor’s own internal leakage. Executing PWM occasionally will reset
the capacitor voltage to the intended value.

PWM charges the capacitor; the load presented by your circuit discharges
it. How long the charge lasts (and therefore how often your program
should repeat the PWM command to refresh the charge) depends on how
much current the circuit draws, and how stable the voltage must be. You
may need to buffer PWM output with a simple op-amp follower if your
load or stability requirements are more than the passive circuit of Figure
5.31 can handle.

The term “PWM” applies only loosely to the action of the BASIC Stamp's
PWM command. Most systems that output PWM do so by splitting a
fixed period of time into an on time (1) and an off time (0). Suppose the
interval is 1 ms and the duty cycle is 100 / 255. Conventional PWM would
turn the output on for 0.39 ms and off for 0.61 ms, repeating this process
each millisecond. The main advantage of this kind of PWM is its
predictability; you know the exact frequency of the pulses (in this case,
1 kHz), and their widths are controlled by the duty cycle.

BASIC Stamp's PWM does not work this way. It outputs a rapid sequence
of on/off pulses, as short as 1.6 µs in duration, whose overall proportion
over the course of a full PWM cycle of approximately a millisecond is
equal to the duty cycle. This has the advantage of very quickly zeroing in
on the desired output voltage, but it does not produce the neat, orderly
pulses that you might expect. All BS2 models also use this high-speed
PWM to generate pseudo-sine wave tones with the DTMFOUT and
FREQOUT instructions.

 Demo Program (PWM.bs1)

' PWM.BS1
' Connect a voltmeter (such as a digital multimeter set to its voltage
' range) to the output of the circuit shown in the figure for the PWM
' command (in the manual). Run the program and observe the readings on
' the meter. They should come very close to 1.96V, then decrease slightly

HOW PULSE-WIDTH-MODULATION IS

GENERATED.

1

PWM – BASIC Stamp Command Reference

Page 358 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' as the capacitor discharges. Try varying the interval between PWM bursts
' (by changing the PAUSE value) and the number of PWM cycles to see their
' effect.

' {$STAMP BS1}
' {$PBASIC 1.0}

Main:
 PWM 0, 100, 10 ' PWM at 100/255 duty (~50 ms)
 PAUSE 1000 ' wait one second
 GOTO Main
 END

 Demo Program (PWM.bs2)

' PWM.bs2
' Connect a voltmeter (such as a digital multimeter set to its voltage
' range) to the output of the circuit shown in the figure for the PWM
' command (in the manual). Run the program and observe the readings on
' the meter. They should come very close to 1.96V, then decrease slightly
' as the capacitor discharges. Try varying the interval between PWM bursts
' (by changing the PAUSE value) and the number of PWM cycles to see their
' effect.

' {$STAMP BS2}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E
 CycAdj CON $100 ' x 1.0, cycle adjustment (for ms)
 #CASE BS2SX
 CycAdj CON $280 ' x 2.5
 #CASE BS2P
 CycAdj CON $187 ' x 1.53
 #CASE BS2PE
 CycAdj CON $09E ' x 0.62
 #CASE BS2PX
 CycAdj CON $280 ' x 2.5
#ENDSELECT

Cycles CON 50

Main:
 PWM 0, 100, (Cycles */ CycAdj) ' PWM at 100/255 duty (~50 ms)
 PAUSE 1000 ' wait one second
 GOTO Main
 END

All 2

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 359

RANDOM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

RANDOM Variable

Function
Generate a pseudo-random number.

• Variable is a variable (usually a word) whose bits will be scrambled
to produce a random number. Variable acts as RANDOM's input
and its result output. Each pass through RANDOM stores the next
number, in the pseudorandom sequence, in Variable.

Explanation
RANDOM generates pseudo-random numbers ranging from 0 to 65535.
They’re called “pseudo-random” because they appear random, but are
generated by a logic operation that uses the initial value in Variable to "tap"
into a sequence of 65535 essentially random numbers. If the same initial
value, called the "seed", is always used, then the same sequence of
numbers is generated. The following example demonstrates this:

SYMBOL result = W1

Main:
 result = 11000
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Main:
 result = 11000
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

In this example, the same number would appear on the screen over and
over again. This is because the same seed value was used each time;
specifically, the first line of the loop sets result to 11,000. The RANDOM
command really needs a different seed value each time. Moving the
"result =" line out of the loop will solve this problem, as in:

1 All 2

1

All 2

RANDOM – BASIC Stamp Command Reference

Page 360 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SYMBOL result = W1

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

Here, result is only initialized once, before the loop. Each time through the
loop, the previous value of result, generated by RANDOM, is used as the
next seed value. This generates a more desirable set of pseudorandom
numbers.

In applications requiring more apparent randomness, it's necessary to
"seed" RANDOM with a more random value every time. For instance, in
the demo program below, RANDOM is executed continuously (using the
previous resulting number as the next seed value) while the program
waits for the user to press a button. Since the user can’t control the timing
of button presses very accurately, the results approach true randomness.

Figure 5.32: RANDOM Button
Circuit.

1

All 2

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 361

Demo Program (RANDOM.bs1)

' RANDOM.bs1
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM
' command description and run this program. This program uses RANDOM to
' simulate a coin toss. After 100 trials, it reports the total number of
' heads and tails thrown.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL Btn = 7 ' button input

SYMBOL flip = W0 ' a random number
SYMBOL coin = BIT0 ' a bit from random number
SYMBOL trials = B2 ' number of flips
SYMBOL heads = B3 ' throws that come up heads
SYMBOL tails = B4 ' throws that come up tails
SYMBOL btnWrk = B5 ' workspace for BUTTON

Start:
 DEBUG CLS, "Press the button to toss coin.", CR

Main:
 FOR trials = 1 TO 100 ' flip coin 100 times

Hold:
 RANDOM flip ' randomize while waiting
 BUTTON Btn, 0, 250, 100, btnWrk, 0, Hold ' wait for button press
 BRANCH coin, (Head, Tail) ' 0 = heads, 1 = tails

Head:
 DEBUG CR, "Heads!"
 heads = heads + 1 ' increment heads counter
 GOTO Next_Toss

Tail:
 DEBUG CR, "Tails..."
 tails = tails + 1 ' increment heads counter

Next_Toss:
 NEXT

 DEBUG CR, CR, "Heads: ", #heads, CR, "Tails: ", #tails
 END

Demo Program (RANDOM.bs2)

' RANDOM.BS2
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM
' command description and run this program. This program uses RANDOM to
' simulate a coin toss. After 100 trials, it reports the total number of

All 2

1

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

RANDOM – BASIC Stamp Command Reference

Page 362 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' heads and tails thrown.

' {$STAMP BS2}
' {$PBASIC 2.5}

Btn PIN 7 ' button input

flip VAR Word ' a random number
coin VAR flip.BIT0 ' Bit0 of the random number
trials VAR Byte ' number of flips
heads VAR Byte ' throws that come up heads
tails VAR Byte ' throws that come up tails
btnWrk VAR Byte ' workspace for BUTTON

Start:
 DEBUG CLS, "Press button to start"

Main:
 FOR trials = 1 TO 100 ' flip coin 100 times

Hold:
 RANDOM flip ' randomize while waiting
 BUTTON Btin, 0, 250, 100, btnWrk, 0, Hold ' wait for button press
 IF (coin = 0) THEN ' 0 = heads, 1 = tails
 DEBUG CR, "Heads!"
 heads = heads + 1 ' increment heads counter
 ELSE
 DEBUG CR, "Tails..."
 tails = tails + 1 ' increment tails counter
 ENDIF
 NEXT

Done:
 DEBUG CR, CR, "Heads: ", DEC heads, " Tails: ", DEC tails
 END

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 363

RCTIME BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See POT)

RCTIME Pin, State, Variable

Function
Measure time while Pin remains in State; usually to measure the
charge/discharge time of resistor/capacitor (RC) circuit.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into input mode.

• State is a variable/constant/expression (0 - 1) that specifies the
desired state to measure. Once Pin is not in State, the command
ends and stores the result in Variable.

• Variable is a variable (usually a word) in which the time
measurement will be stored. The unit of time for Variable is
described in Table 5.87.

Quick Facts
Table 5.87: RCTIME Quick Facts.

 BS2 BS2e BS2sx BS2p BS2pe BS2px
Units in
Variable

2 µs 2 µs 0.8 µs 0.75 µs 2 µs 0.75 µs

Maximum
Pulse Width

131.07 ms 131.07 ms 52.428 ms 49.151 ms 131.07 ms 49.151 ms

Explanation
RCTIME can be used to measure the charge or discharge time of a
resistor/capacitor circuit. This allows you to measure resistance or
capacitance; use R or C sensors such as thermistors or capacitive humidity
sensors or respond to user input through a potentiometer. In a broader
sense, RCTIME can also serve as a fast, precise stopwatch for events of
very short duration.

When RCTIME executes, it makes Pin an input, then starts a counter
(who's unit of time is shown in Table 5.87). It stops this counter as soon as
the specified pin is no longer in State (0 or 1). If pin is not in State when
the instruction executes, RCTIME will return 1 in Variable, since the
instruction requires one timing cycle to discover this fact. If pin remains in
State longer than 65535 timing cycles RCTIME returns 0.

HOW RCTIME'S TIMER WORKS.

1

All 2

RCTIME – BASIC Stamp Command Reference

Page 364 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 5.33 shows suitable RC circuits for use with RCTIME. The circuit in
Figure 5.33a is preferred, because the BASIC Stamp's logic threshold is
approximately 1.4 volts. This means that the voltage seen by the pin will
start at 5V then fall to 1.4V (a span of 3.6V) before RCTIME stops. With
the circuit of Figure 5.33b, the voltage will start at 0V and rise to 1.4V
(spanning only 1.4V) before RCTIME stops. For the same combination of
R and C, the circuit shown in Figure 5.33a will yield a higher count, and
therefore more resolution than Figure 5.33b.

 a. b.

Figure 5.33: Example RC Circuits.
Use a (left) with State = 1. Use b
(right) with State = 0.

Before RCTIME executes, the capacitor must be put into the state specified
in the RCTIME instruction. For example, with Figure 5.33a, the capacitor
must be charged until the top plate is at 5V, then a State value of 1 will be
used to monitor the discharge of the capacitor through the variable
resistance.

Here’s a typical sequence of instructions for Figure 5.33a (assuming I/O
pin 7 is used):

result VAR Word

HIGH 7 ' charge the cap
PAUSE 1 ' for 1 ms
RCTIME 7, 1, result ' measure RC discharge time
DEBUG DEC ? result ' display result

Using RCTIME is very straightforward, except for one detail: For a given R
and C, what value will RCTIME return? It’s easy to figure, based on a
value called the RC time constant, or tau (τ) for short. Tau represents the
time required for a given RC combination to charge or discharge by 63

SUITABLE RCTIME CIRCUITS.

DON'T FORGET TO DISCHARGE THE

CAPACITOR BEFORE EXECUTING RCTIME.

PREDICTING THE RETURNED VALUE.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 365

percent of the total change in voltage that they will undergo. More
importantly, the value τ is used in the generalized RC timing calculation.
Tau’s formula is just R multiplied by C:

τ = R x C

The general RC timing formula uses τ to tell us the time required for an
RC circuit to change from one voltage to another:

time = -τ * (ln (Vfinal / Vinitial))

In this formula ln is the natural logarithm; it’s a key on most scientific
calculators. Let’s do some math. Assume we’re interested in a 10 k
resistor and 0.1 µF cap. Calculate τ:

τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time
required for this RC circuit to go from 5V to 1.4V (as in Figure 5.33a):

time = -1 x 10-3 x (ln(1.4v / 5.0v)) = 1.273 x 10-3

On the BS2, the unit of time is 2µs (See Table 5.87), that time (1.273 x 10-3)
works out to 636 units. With a 10 kΩ resistor and 0.1 µF cap, RCTIME
would return a value of approximately 635. Since Vinitial and Vfinal doesn't
change, we can use a simplified rule of thumb to estimate RCTIME results
for circuits like Figure 5.33a:

RCTIME units = 635 x R (in kΩ) x C (in µF)

Another handy rule of thumb can help you calculate how long to
charge/discharge the capacitor before RCTIME. In the example above
that’s the purpose of the HIGH and PAUSE commands. A given RC
charges or discharges 98 percent of the way in 5 time constants (5 x R x C).
In Figure 5.33, the charge/discharge current passes through the 220 Ω
series resistor and the capacitor. So if the capacitor were 0.1 µF, the
minimum charge/discharge time should be:

Charge time = 5 x 220 x (0.1 x 10-6) = 110 x 10-6

CALCULATING CHARGE AND DISCHARGE

TIME.

THE RC TIME EQUATION.

DETERMINING HOW LONG TO CHARGE OR
DISCHARGE THE CAPACITOR BEFORE

EXECUTING RCTIME.

RCTIME – BASIC Stamp Command Reference

Page 366 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

So it takes only 110 µs for the cap to charge/discharge, meaning that the 1
ms charge/discharge time of the example is plenty.

A final note about Figure 5.33: You may be wondering why the 220 Ω
resistor is necessary at all. Consider what would happen if resistor R in
Figure 5.33a were a pot, and were adjusted to 0 Ω. When the I/O pin went
high to charge the cap, it would see a short direct to ground. The 220 Ω
series resistor would limit the short circuit current to 5V/220 Ω = 23 mA
and protect the BASIC Stamp from damage. (Actual current would be
quite a bit less due to internal resistance of the pin’s output driver, but you
get the idea.)

Demo Program (RCTIME1.bs2)

' RCTIME1.BS2
' This program shows the standard use of the RCTIME instruction measuring
' an RC charge/discharge time. Use the circuit in the RCTIME description
' (in the manual) with R = 10K pot and C = 0.1 uF. Connect the circuit to
' pin 7 and run the program. Adjust the pot and watch the value shown on
' the Debug screen change.

' {$STAMP BS2}
' {$PBASIC 2.5}

RC PIN 7

result VAR Word

Main:
 DO
 HIGH RC ' charge the cap
 PAUSE 1 ' for 1 ms
 RCTIME RC, 1, result ' measure RC discharge time
 DEBUG HOME, DEC result ' display value
 PAUSE 50
 LOOP
 END

NOTES ABOUT 220 Ω RESISTOR IN THE RC

CIRCUITS.

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 367

Figure 5.34: Relay Circuit for
Demo Program RCTIME2.bs2.

Demo Program (RCTIME2.bs2)

' RCTIME2.BS2
' This program illustrates the use of RCTIME as a fast stopwatch. The
' program energizes a relay coil, then measures how long it takes for the
' relay contacts to close. The circuit for this program can be found in
' the manual. Note that RCTIME doesn't start timing instantly -- as with
' all PBASIC instructions, it must be fetched from program EEPROM before
' it can execute.

' {$STAMP BS2}
' {$PBASIC 2.5}

Coil PIN 6
RC PIN 7

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 Adjust CON $200 ' x 2 us per unit
 #CASE BS2SX
 Adjust CON $0CC ' x 0.8 us per unit
 #CASE BS2P, BS2PX
 Adjust CON $0C0 ' x 0.75 us per unit
#ENDSELECT

result VAR Word

Main:
 DO
 LOW Coil ' energize relay coil
 RCTIME RC, 1, result ' measure time to contact closure
 result = result */ Adjust ' adjust for device
 DEBUG "Time to close: ",

relay contact

relay coil

10 kΩ

P6

P7

Vss

Vdd

Vdd

Relay: 5 VDC reed
relay with 20 mA
coil, eg., Radio
Shack #275-232

All 2

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

RCTIME – BASIC Stamp Command Reference

Page 368 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 DEC Result, CR
 HIGH Coil ' release relay
 PAUSE 1000 ' wait one second
 LOOP
 END

5: BASIC Stamp Command Reference – READ

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 369

READ BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

READ Location, Variable
READ Location, { WORD } Variable {, { WORD } Variable... }

Function
Read the value at Location in EEPROM and store the result in Variable.

• Location is a variable/constant/expression (0 – 255 on BS1, 0 – 2047
on all BS2 models) that specifies the EEPROM address to read from.

• Variable is a variable (usually a byte, or word when the optional
WORD modifier is used) in which to store the value.

Quick Facts
Table 5.88: READ Quick Facts.

 BS1 BS2, BS2e, BS2sx BS2p, BS2pe, BS2px
Range of
EEPROM
Locations

0 to 255 0 to 2047
0 to 2047

(see notes below)

Special
Notes

n/a
READ only works with
current program slot on

BS2e and BS2sx.

READ works with any
program slot as set by
the STORE command.

Related
Commands

WRITE and EEPROM WRITE and DATA WRITE, DATA and STORE

PBASIC 2.5
Syntax
Options

n/a
 Multiple sequential variables may be read from the
Scratch Pad RAM, and the optional WORD modifier
may be specified to retrieve 16-bit values.

Explanation
The EEPROM is used for both program storage (which builds downward
from address 255 on BS1, 2047 on all BS2 models) and data storage (which
builds upward from address 0). The READ instruction retrieves a value
from any EEPROM address and stores that value in Variable. When the
optional WORD modifier is used, the low byte of Variable is read from
Location, the high byte of Variable from Location + 1. Any location within
the EEPROM can be read (including your PBASIC program's tokens) at
run-time. This feature is mainly used to retrieve long-term data from
EEPROM; data stored in EEPROM is not lost when the power is removed.

NOTE: Expressions are not allowed as
arguments on the BS1.

1

1

All 2NOTE: Optional arguments
require PBASIC 2.5.

READ – BASIC Stamp Command Reference

Page 370 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The following READ command retrieves the value at location 100 and
stores it into the variable called result:

SYMBOL result = B2

READ 100, result

--or--

result VAR Byte

READ 100, result

The EEPROM is organized as a sequential set of byte-sized memory
locations. The READ command normally only retrieves byte-sized values
from EEPROM. This does not mean that you can't read word-sized
values, however. A word consists of two bytes, called a low-byte and a
high-byte. With PBASIC 1.0 or 2.0, if you want to read a word-sized value,
you'll need to use two READ commands and a word-sized variable.

SYMBOL result = W0
SYMBOL resltLo = B0
SYMBOL resltHi = B1

EEPROM (101, 4)

READ 0, resltLo 'read low byte
READ 1, resltHi 'read high byte
DEBUG #result

--or--

result VAR Word

DATA Word 1125

READ 0, result.LOWBYTE 'read low byte
READ 1, result.HIGHBYTE 'read high byte

On all BS2 models, by using the $PBASIC 2.5 directive, you can use a
single READ command with the WORD modifier. For example,

READING WORD VALUES VS. BYTE VALUES.

A SIMPLE READ COMMAND.

1

All 2

1

All 2
NOTE: this method is required only if
using PBASIC 2.0. See section below
for PBASIC 2.5 method.

5: BASIC Stamp Command Reference – READ

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 371

' {$PBASIC 2.5}

result VAR Word

DATA Word 1125

READ 0, Word result
DEBUG DEC ? result

This code uses the EEPROM or DATA directive to write the low-byte and
high-byte of the number 1125 into locations 0 and 1 during download.
The BS1 code the uses two READ commands to read each of the bytes out
of EEPROM and reconstructs them into a single word-sized variable.

PBASIC 2.5 uses READ’s optional WORD modifier to read both bytes
from EEPROM and into a word-sized variable. Both programs then
display the value on the screen.

When using PBASIC 2.5, a single READ command can retrieve multiple
bytes and words from sequential EEPROM locations. For example:

' {$PBASIC 2.5}

temp VAR Byte
temp2 VAR Word

READ 25, temp, Word temp2 ' retrieve byte from location 25
 ' and word from locations 26 and 27
DEBUG DEC temp, CR ' display value of temp, carriage return
DEBUG DEC temp2 ' display value of temp2

Note that the EEPROM and DATA directives store data in the EEPROM
before the program runs, however, the WRITE command can be used to
store data while the program is running. Additionally, the EEPROM
locations can be read an unlimited number of times, but EEPROM
locations can be worn out by excessive writes. See the WRITE command
for more information.

When using the READ and WRITE commands, take care to ensure that
your program doesn’t overwrite itself. On the BS1, location 255 holds the
address of the last instruction in your program. Therefore, your program
can use any space below the address given in location 255. For example, if
location 255 holds the value 100, then your program can use locations 0–99
for data. You can read location 255 at run-time or simply view the

SPECIAL NOTES FOR EEPROM USAGE.

All 2

All 2

READ – BASIC Stamp Command Reference

Page 372 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Memory Map of the program before you download it. On all BS2 models
you will need to view the Memory Map of the program before you
download it, to determine the last EEPROM location used. See the
"Memory Map Function" section in Chapter 3.

On the BS2p, BS2pe, and BS2px, the READ and WRITE commands can
affect locations in any program slot as set by the STORE command. See
the STORE command for more information.

Demo Program (READ.bs1)

' READ.bs1
' This program reads a string of data stored in EEPROM. The EEPROM data is
' downloaded to the BS1 at compile-time and remains there (even with the
' power off) until overwritten. Put ASCII characters into EEPROM, followed
' by 0, which will serve as the end-of-message marker. For programs with
' multiple strings, use the Memory Map window to find the starting
character
' address.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL strAddr = B2
SYMBOL char = B3

Msg1:
 EEPROM ("BS1", 13, "EEPROM Storage!", 0)

Main:
 strAddr = 0 ' set to start of message
 GOSUB String_Out
 END

String_Out:
 READ strAddr, char ' read byte from EEPROM
 strAddr = strAddr + 1 ' point to next character
 IF char = 0 THEN StrOut_Exit ' if 0, exit routine
 DEBUG #@char ' otherwise print char
 GOTO String_Out ' get next character

StrOut_Exit:
 RETURN

1

5: BASIC Stamp Command Reference – READ

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 373

Demo Program (READ.bs2)

' READ.bs2
' This program reads a string of data stored in EEPROM. The EEPROM data is
' downloaded to the BS2 at compile-time and remains there (even with the
' power off) until overwritten. Put ASCII characters into EEPROM, followed
' by 0, which will serve as the end-of-message marker.

' {$STAMP BS2}
' {$PBASIC 2.5}

strAddr VAR Word
char VAR Byte

Msg1 DATA "BS2", CR, "EEPROM Storage!", 0

Main:
 strAddr = Msg1 ' set to start of message
 GOSUB String_Out
 END

String_Out:
 DO
 READ strAddr, char ' read byte from EEPROM
 strAddr = strAddr + 1 ' point to next character
 IF (char = 0) THEN EXIT ' if 0, exit routine
 DEBUG char ' otherwise print char
 LOOP
 RETURN

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

READ – BASIC Stamp Command Reference

Page 374 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – RETURN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 375

RETURN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

RETURN

Function
Return from a subroutine, assuming there was a previous GOSUB
executed.

Quick Facts

Table 5.89: RETURN Quick Facts.

 BS1 BS2 Models
Related

Commands
GOSUB GOSUB and ON

Maximum Number
of RETURNS
per Program

Unlimited. However, the number of GOSUBs are limited.
See GOSUB for more information.

Explanation
RETURN sends the program back to the address (instruction) immediately
following the most recent GOSUB. If RETURN is executed without a prior
GOSUB, the BASIC Stamp will return to the first executable line of the
program; usually resulting in a logical bug in the code. See the GOSUB
command for more information.

The example below will start out by GOSUB'ing to the section of code
beginning with the label Hello. It will print "Hello, my friend!" on the
screen then RETURN to the line after the GOSUB… which prints "How are
you?" and ENDs.

Main:
 GOSUB Hello
 DEBUG "How are you?"
 END

Hello:
 DEBUG "Hello, my friend!", CR
 RETURN

There's another interesting lesson here; what would happen if we removed
the END command from this example? Since the BASIC Stamp reads the
code from left to right / top to bottom (like the English language) once it
had returned to and run the "How are you?" line, it would naturally "fall
into" the Hello routine again. Additionally, at the end of the Hello routine,

WATCH OUT FOR SUBROUTINES THAT

YOUR PROGRAM CAN "FALL INTO."

1 All 2

NOTE: On the BS1, a RETURN
without a GOSUB will return the
program to the last GOSUB (or will end
the program if no GOSUB was
executed).

1

RETURN – BASIC Stamp Command Reference

Page 376 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

it would see the RETURN again (although it didn't GOSUB to that routine
this time) and because there wasn't a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn't allow itself to "fall into" a subroutine.

Demo Program (RETURN.bs2)

' RETURN.BS2
' This program demonstrates a potential bug caused by allowing a program to
' "fall into" a subroutine. The program was intended to indicate that it
' is "Starting...", then "Executing Subroutine,", then "Returned..." from
' the subroutine and stop. Since we left out the END command (indicated in
' the comments), the program then falls into the subroutine, displays
' "Executing..." again and then RETURNs to the start of the program and
' runs continuously in an endless loop.

' {$STAMP BS2}

Reset:
 DEBUG "Starting Program", CR ' show start-up

Main:
 PAUSE 1000
 GOSUB Demo_Sub ' call the subroutine
 PAUSE 1000
 DEBUG "Returned from Subroutine", CR ' show that we're back
 PAUSE 1000
 ' <-- Forgot to put END here

Demo_Sub:
 DEBUG " Executing Subroutine", CR ' show subroutine activity
 RETURN

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

5: BASIC Stamp Command Reference – REVERSE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 377

REVERSE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

REVERSE Pin

Function
Reverse the data direction of the specified pin.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into the mode opposite its current
input/output mode.

Quick Facts
Table 5.90: REVERSE Quick
Facts.

 BS1 and all BS2 models
Related

Commands
INPUT and OUTPUT

Explanation
REVERSE is a convenient way to switch the I/O direction of a pin. If the
pin is an input, REVERSE makes it an output; if it’s an output, REVERSE
makes it an input.

Remember that “input” really has two meanings: (1) Setting a pin to input
makes it possible to check the state (1 or 0) of external circuitry connected
to that pin. The current state is in the corresponding bit of the INS register
(PINS on the BS1). (2) Setting a pin to input also disconnects the output
driver, the corresponding bit of OUTS (PINS on the BS1).

The demo program below illustrates this second fact with a two-tone LED
blinker.

Figure 5.35: LED Circuit for Demo
Programs.

R1

R2

220

LED

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1 All 2

1

REVERSE – BASIC Stamp Command Reference

Page 378 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (REVERSE.bs1)

' REVERSE.bs1
' Connect the circuit shown in the REVERSE command description to I/O pin
' 0 and run this program. The LED will alternate between two states, dim
' and bright. The BASIC Stamp is using the REVERSE command to toggling I/O
' pin 0 between input and output states. When pin 0 is an input, current
' flows through R1, through the LED, through R2 to ground. Pin 0 is
' effectively disconnected and doesn't play a part in the circuit. The
' total resistance encountered by current flowing through the LED is R1 +
' R2 = 1220 ohms. When pin 0 is reversed to an output, current flows
' through R1, through the LED, and into pin 0 to ground (because of the 0
' written to PIN0). The total resistance encountered by current flowing
' through the LED is R1,220 ohms. With only 20% of the resistance, the LED
' glows brighter.

' {$STAMP BS1}
' {$PBASIC 1.0}

Setup:
 PIN0 = 0 ' Put a low in the pin 0
 ' output driver
Main:
 PAUSE 250 ' 1/4th second pause
 REVERSE 0 ' reverse pin 0 I/O direction
 GOTO Main ' do forever

Demo Program (REVERSE.bs2)

' REVERSE.bs2
' Connect the circuit shown in the REVERSE command description to I/O pin
' 0 and run this program. The LED will alternate between two states, dim
' and bright. The BASIC Stamp is using the REVERSE command to toggling I/O
' pin 0 between input and output states. When pin 0 is an input, current
' flows through R1, through the LED, through R2 to ground. Pin 0 is
' effectively disconnected and doesn't play a part in the circuit. The
' total resistance encountered by current flowing through the LED is R1 +
' R2 = 1220 ohms. When pin 0 is reversed to an output, current flows
' through R1, through the LED, and into pin 0 to ground (because of the 0
' written to OUT0). The total resistance encountered by current flowing
' through the LED is R1,220 ohms. With only 20% of the resistance, the LED
' glows brighter.

' {$STAMP BS2}
' {$PBASIC 2.5}

Setup:
 OUT0 = 0 ' Put a low in the pin 0
 ' output driver

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – REVERSE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 379

Main:
 PAUSE 250 ' 1/4th second pause
 REVERSE 0 ' reverse pin 0 I/O direction
 GOTO Main ' do forever

REVERSE – BASIC Stamp Command Reference

Page 380 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 381

RUN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

RUN ProgramSlot

Function
Switches execution to another BASIC Stamp program (in a different
program slot).

• ProgramSlot is a variable/constant/expression (0 – 7) that specifies
the program slot to run.

Quick Facts
Table 5.91: RUN Quick Facts.

 BS2e BS2sx BS2p BS2pe BS2px
Time Delay to

Switch Between
Program Slots

770 µs 300 µs 250 µs 736 µs 195 µs

Related
Commands

n/a POLLRUN

Special Notes RUN is similar to a GOTO… you can not "return" from a RUN

Explanation
The BS2e, BS2sx, BS2p, BS2pe and BS2px have a total of 16 k bytes of code
space. This code space is organized into eight slots of 2 k bytes each. The
BS2pe has 32 k of EEPROM but only the first 16 k (eight slots) can be sued
for programs. Up to eight different programs can be downloaded to the
BASIC Stamp (one program per code slot). When the BASIC Stamp
powers up, or is reset, the program in slot 0 is executed.

The RUN command allows you to activate another program and causes
the BASIC Stamp to stay in the newly activated program until it receives
another RUN command, or until a power-down or reset condition occurs.
The RUN command is similar to a GOTO command in that it allows you
to "goto" another program. Normally a master-type program will be used
in program slot 0 (since slot 0 runs first) and will control initial execution
of the other programs.

Look at the following example (there are two programs here, make sure to
download them into program slots 0 and 1, respectively. See the Compiler
Directives section of Chapter 3 for more information):

A SIMPLE EXAMPLE OF RUN.

RUN – BASIC Stamp Command Reference

Page 382 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' Download this program to Slot 0

DEBUG "Hello "
RUN 1

' Download this program to Slot 1

DEBUG "World!"
PAUSE 1000
RUN 0

The above two programs (assuming they have been downloaded into
program slots 0 and 1, respectively) will display "Hello World!" on the
screen. Program 0 is the first to run and it displays "Hello ", then issues a
RUN 1 command. The BASIC Stamp then starts execution of program 1,
from its first line of code, which causes "World!" to be displayed. Program
1 then pauses for 1 second and the runs program 0 again.

The I/O pins retain their current state (directions and output latches) and
all RAM and SPRAM locations retain their current data during a transition
between programs with the RUN command. If sharing data between
programs within RAM, make sure to keep similar variable declarations
(defined in the same order) in all programs so that the variables align
themselves on the proper word, byte, nibble and bit boundaries across
programs. The following programs illustrate what happens with
mismatched variable declarations:

' Download this program to Slot 0
cats VAR Byte
dogs VAR Byte

Setup:
 cats = 3
 dogs = 1
 DEBUG ? cats
 DEBUG ? dogs
 RUN 1

' Download this program to Slot 1
cats VAR Byte
dogs VAR Byte
fleas VAR Word

Main:
 DEBUG ? cats
 DEBUG ? dogs
 DEBUG ? fleas
 END

WHAT HAPPENS TO I/O PINS AND RAM

WHEN USING RUN?

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 383

When the Slot 1 program runs you may be surprised to see that cats and
dogs are now zero and fleas are up to 259! – even though we didn't
explicitly define them. What happened? The key to remember is that
variable names are simply pointers to RAM addresses, and the PBASIC
compiler assigns variable names to RAM in descending order by size.
This means that in the Slot 1 program, fleas was assigned to RAM
locations 0 and 1 which are holding the values 3 and 1 respectively. Since
words are stored low-byte first, the value 259 for fleas makes sense
(3 + (1 * 256)).

There may be occasions when you need to preserve the RAM space in a
program slot before calling on another slot that has different variable
requirements. You can use the following subroutines to save your RAM
space to the SPRAM and restore it on returning from the other program
slot.

Save_RAM:
 PUT 0, B0 ' move RAM 0 value to SP
 FOR B0 = 1 TO 25 ' loop through other RAM bytes
 PUT B0, B0(B0) ' move RAM value to SP location
 NEXT
 RETURN

Restore_RAM:
 FOR B0 = 1 TO 25 ' loop through RAM
 GET B0, B0(B0) ' retrieve RAM value from SP
 NEXT
 GET 0, B0 ' retrieve RAM 0 value from SP
 RETURN

While the use of internal variable names is usually discouraged, these
subroutines demonstrate a valid opportunity for their use, as well as the
ability to take advantage of the BASIC Stamp's unique memory
architecture.
The Save_RAM routine starts by saving the first byte of RAM (internal
name: B0) to location 0 in the SPRAM. This is done so that B0 can be used
as a loop index for the other locations. The FOR...NEXT loop provides
control of that index. The following line is probably the most difficult to
comprehend, but works due to the nature of the BASIC Stamp module's
RAM organization

 PUT B0, B0(B0) ' move RAM value to SP location

RUN – BASIC Stamp Command Reference

Page 384 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

In the BASIC Stamp, the variable RAM is implicitly considered an array.
What this line is doing, then, is moving the value in each RAM address
(B0(1), B0(2), B0(3), ...) to the SPRAM address that corresponds with its
byte index. The process is simply reversed to retrieve the RAM variable
space.

Any ProgramSlot specified above 7 will wrap around and result in running
one of the 8 programs (RUN 8 will run program 0, RUN 9 will run
program 1, etc).

Review the Advanced Compilation Techniques section beginning on page
68 for more information on downloading multiple programs.

Demo Program (RUN1.bsx)

' RUN1.bsx
' This example demonstrates the use of the RUN command. First, the SPRAM
' location that holds the current slot is read using the GET command to
' display the currently running program number. Then a set of values
' (based on the program number) are displayed on the screen. Afterwards,
' program number 1 is run. This program is a BS2sx project consisting of
' RUN1.BSX and RUN2.BSX, but will run on all multi-slot BASIC Stamp models.

' {$STAMP BS2sx, RUN2.BSX}
' {$PBASIC 2.5}

#SELECT $STAMP ' set SPRAM of slot number
 #CASE BS2
 #ERROR "Multi-slot BASIC Stamp required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

slotNum VAR Nib ' current slot
idx VAR Nib ' loop counter
value VAR Byte ' value from EEPROM

EEtable DATA 100, 40, 80, 32, 90
 DATA 200, 65, 23, 77, 91

Setup:
 GET Slot, slotNum ' read current slot
 DEBUG "Program #", DEC slotNum, CR ' display

Main:

NOTE: This example program was
written for the BS2sx but can be used
with the BS2e, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 385

 FOR idx = 0 TO 4 ' read/display table values
 READ (slotNum * 5) + idx, value
 DEBUG DEC3 value, " "
 NEXT
 DEBUG CR
 PAUSE 1000

 RUN 1 ' run Slot 1 pgm

 Demo Program (RUN2.bsx)

' RUN2.bsx
' This example demonstrates the use of the RUN command. First, the SPRAM
' location that holds the current slot is read using the GET command to
' display the currently running program number. Then a set of values
' (based on the program number) are displayed on the screen. Afterwards,
' program number 0 is run. This program is a BS2sx project consisting of
' RUN1.BSX and RUN2.BSX, but will run on all multi-slot BASIC Stamp models.

' {$STAMP BS2sx}
' {$PBASIC 2.5}

#SELECT $STAMP ' set SPRAM of slot number
 #CASE BS2
 #ERROR "Multi-slot BASIC Stamp required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

slotNum VAR Nib ' current slot
idx VAR Nib ' loop counter
value VAR Byte ' value from EEPROM

EEtable DATA 100, 40, 80, 32, 90
 DATA 200, 65, 23, 77, 91

Setup:
 GET Slot, slotNum ' read current slot
 DEBUG "Program #", DEC slotNum, CR ' display

Main:
 FOR idx = 0 TO 4 ' read/display table values
 READ (slotNum * 5) + idx, value
 DEBUG DEC3 value, " "
 NEXT
 DEBUG CR
 PAUSE 1000

 RUN 0 ' back to Slot 0 pgm

NOTE: This example program was
written for the BS2sx but can be used
with the BS2e, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

RUN – BASIC Stamp Command Reference

Page 386 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SELECT...CASE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 387

SELECT…CASE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SELECT Expression

 CASE Condition(s)

 Statement(s)

 { CASE Condition(s)

 Statement(s)... }

 { CASE ELSE

 Statement(s) }

 ENDSELECT

Function
Evaluate Expression and conditionally execute a code block based on
comparison to Condition(s) then continue execution with line following
ENDSELECT.

• Expression is a variable, a constant, or an expression.

• Condition is a statement that, when comapred to Expression, can be
evaluated as True or False. The Condition can be a very simple or
very complex relationship, as described below. Multiple conditions
within the same CASE can be separated by commas (,).

• Statement is any valid PBASIC instruction.

Quick Facts
Table 5.92: SELECT...CASE
Quick Facts.

 All BS2 Models
Comparison Operators =, <>, >, <, >=, <=

Conditional
Logic Operators

Not allowed, however multiple conditions can be
separated by commas (,) which act like a logical OR
operator.

Format of Condition
Comparison Value
where Value can by any of variable, constant or
expression

Parentheses Allowed to specify order of execution within
expressions.

Maximum Nested
SELECT Statements

16

Maximum CASEs per SELECT 16
Related Commands IF...THEN, ON, and BRANCH

All 2
NOTE: SELECT...CASE requires
PBASIC 2.5.

SELECT...CASE – BASIC Stamp Command Reference

Page 388 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Explanation
SELECT…CASE is an advanced decision-making structure that is often
used to replace compound IF…THEN…ELSE structures. SELECT…CASE
statements are good for performing one of many possible actions
depending on the value of a single expression.

Upon reaching a SELECT…CASE statement, the BASIC Stamp will
evaluate Expression once and then compare it to the Condition(s) of each
CASE until it finds a “case” that evaluates to True, or it runs out of cases to
compare to. As soon as a True case is found, the BASIC Stamp executes
that CASE’s Statement(s) and then continues execution on the program line
following ENDSELECT.

To understand how SELECT…CASE statements work, it helps to review
how IF…THEN statements behave. The condition argument of IF…THEN
takes the form:

Value1 Comparison Value2

and Value1 is “compared” to Value2 using the Comparison operator.

In SELECT...CASE statements, the Value1 component is always Expression
and so the format of Condition(s) is simplified to:

 { Comparison } Value

Comparison is optional and can be any of the comparison operators shown
in Table 5.93. If Comparison is not specified, it is an implied Equal (=)
operator. Value can be a variable, constant or expression.

Comparison Operator Symbol Definition
= Equal

<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.93: Comparison Operators
for SELECT...CASE.

Condition(s) also has a special, additional format that can be used to
indicate a range of sequential values:

5: BASIC Stamp Command Reference – SELECT...CASE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 389

 Value1 TO Value2

This indicates a range of Value1 to Value2, inclusive. For example, 20 TO
23 means 20, 21, 22 and 23. Similarly, “A” TO “F” means all the characters
in the range “A” through “F”.

Finally, multiple conditions can be included in a single CASE by
separating them with commas (,). For example,

CASE 20, 25 TO 30, >100

will evaluate to True if the Expression (from the SELECT statement) is
equal to 20, or is in the range 25 through 30, or is greater than 100.

An example will help clarify this function.

'{$PBASIC 2.5}

guess VAR WORD

DEBUG "Guess my favorite number: " ' prompt user

DO
 DEBUGIN DEC Guess ' get answer

 SELECT guess
 CASE < 100 ' less than 100?
 DEBUG CR, "Not even close. Higher."
 CASE > 140 ' greater than 140?
 DEBUG CR, "Too high."
 CASE 100 TO 120, 126 TO 140 ' 100-120 or 126-140?
 DEBUG CR, "Getting closer..."
 CASE 123 ' 123? Got it!
 DEBUG CR, "That’s it! 123!"
 DEBUG CR, "Good Guessing!"
 STOP
 CASE 121 TO 125 ' close to 123?
 DEBUG CR, "You’re so close!"
 ENDSELECT

 DEBUG CR, "Try again: " ' encourage another try
LOOP

This program will ask the user to guess a number, store that value in guess
and check the results in the SELECT statement. If guess is less than 100,
the first CASE is true and BASIC Stamp will display “Not even close.

SELECT...CASE – BASIC Stamp Command Reference

Page 390 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Higher.” then continues after the ENDSELECT, displaying “Try again: “
on the screen and giving the user another guess. If guess is greater than
140, the second CASE is true, “Too high.” will be displayed followed by
“Try again: “, etc. If the user guesses 123, they are congratulated and the
program stops.

You may have noticed a potential error in the code: both of the last two
CASEs are true if guess is 123. So why didn’t the second CASE execute?
The answer is because only the first “true” case is executed and any
further cases are ignored. If we had swapped the order of the last two
cases, we’d have a bug in the program and the user would never find out
that 123 was the correct number because “CASE 123” would never have
been evaluated. It’s not recommend to write code this way; “CASE 121
TO 122, 124 TO 125” or even “CASE 121, 122, 124, 125” would have been
more clear and would prevent potential bugs like this one.

Many situations call for special handling of a few cases and every other
case is handled another way. There is a special form of CASE to handle
this as well, called CASE ELSE. In our example above, we could have
replaced “CASE 121 TO 125” with “CASE ELSE” and it would behave
exactly the same. CASE ELSE is a way to ensure that every possible
Expression value is handled by a case; it’s like saying, “If none of the
previous cases were true, run this case.” For a SELECT…CASE statement
to work properly, it must have no more than one CASE ELSE statement,
and that CASE ELSE statement must be the very last CASE.

The Condition(s) have a format similar to that of the IF…THEN commands
except, in SELECT…CASE statements, Expression is always implied as the
first part of the condition.

 Demo Program (SELECT-CASE.bs2)

' SELECT-CASE.bs2
' This program generates a series of 16-bit random numbers and tests each
' to determine odd or even, and where it falls in the possible range:
' lower third, middle third, or upper third. The program is useful for
' testing various seed values for RANDOM.

' {$STAMP BS2}
' {$PBASIC 2.5}

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – SELECT...CASE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 391

test VAR Byte ' counter for tests
sample VAR Word ' random number to be tested
odd VAR Byte ' odd throws
even VAR Byte ' even throws
isLo VAR Byte ' sample in lower third
isMid VAR Byte ' in middle thrid
isHi VAR Byte ' in upper third

Main:
 sample = 11000 ' initialize seed
 FOR test = 1 TO 100 ' "throw" 100 times
 RANDOM sample ' randomize

 IF (sample.BIT0) THEN ' check odd/even bit
 odd = odd + 1 ' increment odd count
 ELSE
 even = even + 1 ' increment even count
 ENDIF

 SELECT sample
 CASE <= 21845 ' test lower third
 isLo = isLo + 1

 CASE 21846 TO 43691 ' test middle third
 isMid = isMid + 1

 CASE ELSE ' otherwise upper third
 isHi = isHi + 1
 ENDSELECT
 NEXT

Show_Results:
 DEBUG CLS,
 "Odd Throws.... ", DEC odd, "%", CR,
 "Even Throws... ", DEC even, "%", CR,
 "Low........... ", DEC isLo, "%", CR,
 "Mid........... ", DEC isMid, "%", CR,
 "High.......... ", DEC isHi, "%", CR
 END

SELECT...CASE – BASIC Stamp Command Reference

Page 392 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 393

SERIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SERIN Rpin, Baudmode, { (Qualifier), } { # } InputData
SERIN Rpin { \Fpin }, Baudmode, { Plabel, } { Timeout, Tlabel, } [InputData]

Function
Receive asynchronous serial data (e.g., RS-232 data).

• Rpin is a variable/constant/expression (0 – 16) that specifies the I/O
pin through which the serial data will be received. This pin will be
set to input mode. On all BS2 models, if Rpin is set to 16, the BASIC
Stamp uses the dedicated serial-input pin (SIN, physical pin 2),
which is normally used by the Stamp Editor during the download
process.

• Fpin is an optional variable/constant/expression (0 – 15) that
specifies the I/O pin to indicate flow control status on. This pin will
be set to output mode.

• Baudmode is variable/constant/expression (0 – 7 on the BS1, 0 –
65535 on all BS2 models) that specifies serial timing and
configuration.

• Qualifier is an optional variable/constant (0 – 255) indicating data
that must be received before execution can continue. Multiple
qualifiers can be indicated with commas separating them.

• Plabel is an optional label indicating where the program should go
in the event of a parity error. This argument should only be
provided if Baudmode indicates 7 bits, and even parity.

• Timeout is an optional variable/constant/expression (0 – 65535) that
tells SERIN how long to wait for incoming data. If data does not
arrive in time, the program will jump to the address specified by
Tlabel.

• Tlabel is an optional label that must be provided along with Timeout,
indicating where the program should go in the event that data does
not arrive within the period specified by Timeout.

• InputData is list of variables and formatters that tells SERIN what to
do with incoming data. SERIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Rpin argument on the BS1 is 0 – 7.

NOTE: The BS1's InputData argument
can only be a list of variables and the
optional decimal modifier (#).

1

All 2

1

1

SERIN - BASIC Stamp Command Reference

Page 394 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

Units in
Timeout

n/a 1 ms 1 ms 0.4 ms 0.4 ms 1 ms 0.4 ms

Baud range
300, 600,
1200, and
2400 only

243 to
50K

243 to
50K

608 to
115.2K

608 to
115.2K

243 to
50K

972 to
115.2K

Baud limit with
flow control

n/a 19.2K 19.2K 19.2K 19.2K 19.2K 19.2K

Limit to
qualifiers

Unlimited 6 (in WAIT formatter)

I/O pins
available

0 - 7 0 – 15 0 - 15 0 – 15
0 – 15 (in

current I/O
block)

0 – 15 (in
current I/O

block)

0 – 15 (in
current I/O

block)
Other serial

port pins
n/a SIN pin (physical pin 2) when Rpin = 16

Related
Command

SEROUT SEROUT and DEBUGIN

Table 5.94: SERIN Quick Facts.

Explanation
One of the most popular forms of communication between electronic
devices is serial communication. There are two major types of serial
communication; asynchronous and synchronous. The SERIN and
SEROUT commands are used to receive and send asynchronous serial
data. See the SHIFTIN and SHIFTOUT command for information on the
synchronous method.

SERIN can wait for, filter and convert incoming data in powerful ways.
SERIN deserves some lengthy discussion, below, since all this power
brings some complexity.

The term asynchronous means “no clock.” More specifically,
"asynchronous serial communication" means data is transmitted and
received without the use of a separate "clock" wire. Data can be sent using
as little as two wires; one for data and one for ground. The PC's serial
ports (also called COM ports or RS-232 ports) use asynchronous serial
communication. Note: the other kind of serial communication,
synchronous, uses at least three wires; one for clock, one for data and one
for ground.

SERIAL COMMUNICATION BACKGROUND.

PHYSICAL AND ELECTRICAL DETAILS.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 395

RS-232 is the electrical specification for the signals that PC serial ports use.
Unlike normal logic, where 5 volts is a logic 1 and 0 volts is logic 0, RS-232
uses -12 volts for logic 1 and +12 volts for logic 0. This specification allows
communication over longer wire lengths without amplification.

Most circuits that work with RS-232 use a line driver/receiver. This
component does two things: (1) it converts the ±12 volts of RS-232 to
TTL-compatible 0 to 5-volt levels and (2) it inverts the relationship of the
voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

All BS2 models have a line receiver on its SIN pin (Rpin = 16). See the
"Introduction to the BASIC Stamp" chapter. The SIN pin goes to a PC’s
serial data-out pin on the DB9 connector built into BASIC Stamp
development boards. The connector is wired to allow both programming
and run-time serial communication (unless you are using the BASIC
Stamp 2 Carrier Board (#27120) which is designed for programming only).
For the built-in serial port set the Rpin argument to 16 in the SERIN
command.

All BASIC Stamp models (including the BS1) can also receive RS-232 data
through any of their I/O pins (Rpin = 0 – 7 for BS1, Rpin = 0 – 15 on all BS2
models). The I/O pins don’t need a line receiver, just a 22 kΩ resistor. The
resistor limits current into the I/O pins’ built-in clamping diodes, which
keep input voltages within a safe range. See Figure 5.36.

Figure 5.36: Serial Port Diagram
Showing Correct Connections to a
BASIC Stamp's I/O pin. NOTE:
The 22 kΩ resistor is not required if
connecting to the SIN pin.

DB-9 Male
(Connector Side)

to I/O pin
22 kΩ

2
3

4

Transmit Data (TD)
Receive Data (RD)

Request to Send (RTS)

6
7

20

Data Set Ready (DSR)
Signal Ground (SG)
Data Terminal Ready (DTR)

3
2

7

6
5
4

DB25Function DB9

NOTE: The connections shown with double-lines are
normally not necessary. They indicate optional connections
to disable hardware handshaking (DTR-DSR-DCD and
RTS-CTS). This is only necessary if you are using software
or hardware that expects hardware handshaking.

DB-25 Male
(Connector Side)

252423222120191817161514

13121110987654321

9876

54321

Vss

to I/O pin
22 kΩ

Vss

8Data Carrier Detect (DCD) 1

5Clear to Send (CTS) 8

USING THE BUILT-IN SERIAL PORT ON ALL

BS2 MODELS.

All 2

1 All 2

SERIN - BASIC Stamp Command Reference

Page 396 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 5.36 shows the pinouts of the two styles of PC serial ports and how
to connect them to the BASIC Stamp's I/O pin (the 22 kΩ resistor is not
needed if connecting to the SIN pin). Though not normally needed, the
figure also shows loop back connections that defeat hardware
handshaking used by some PC software. Note that PC serial ports are
always male connectors. The 25-pin style of serial port (called a DB25)
looks similar to a printer (parallel) port except that it is male, whereas a
parallel port is female.

Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed in
bits per second (bps) called baud.

On all BASIC Stamp models, SERIN requires a value called Baudmode that
tells it the important characteristics of the incoming serial data; the bit
period, number of data and parity bits, and polarity.

On the BS1, serial communication is limited to: no-parity, 8-data bits and
1-stop bit at one of four different speeds: 300, 600, 1200 or 2400 baud.
Table 5.95 indicates the Baudmode value or symbols to use when selecting
the desired mode.

Baudmode
Value

Symbol Baud Rate Polarity

0 T2400 2400 TRUE
1 T1200 1200 TRUE
2 T600 600 TRUE
3 T300 300 TRUE
4 N2400 2400 INVERTED
5 N1200 1200 INVERTED
6 N600 600 INVERTED
7 N300 300 INVERTED

Table 5.95: BS1 Baudmode Values.

On all BS2 models, serial communication is very flexible. The Baudmode
argument for SERIN accepts a 16-bit value that determines its
characteristics: 1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity
and virtually any speed from as low as 300 baud to greater than 100K
baud (depending on the BASIC Stamp). Table 5.96 shows how Baudmode is
calculated, while Table 5.97, Table 5.98, and Table 5.99 show common
baud modes for standard serial baud rates.

SERIAL TIMING AND MODE (BAUDMODE).

1 All 2

1

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 397

Table 5.96: Baudmode calculation
for all BS2 models. Add the
results of steps 1, 2 and 3 to
determine the proper value for the
Baudmode argument.

Step 1: Determine the
bit period

(bits 0 – 11).

BS2, BS2e and BS2pe: = INT(1,000,000 / baud rate) – 20
BS2sx and BS2p: = INT(2,500,000 / baud rate) – 20
BS2px: = INT(4,000,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the decimal
point.

Step 2: Set data bits
and parity (bit 13).

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14).

True (noninverted) = 0
Inverted = 16384

Table 5.97: BS2, BS2e, and
BS2pe common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800* 16572 188 24764 8380
9600* 16468 84 24660 8276

*The BS2, BS2e and BS2pe may have trouble synchronizing with the incoming serial stream
at this rate and higher due to the lack of a hardware input buffer. Use only simple variables
and no formatters to try to solve this problem.

Table 5.98: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800* 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BS2sx and BS2p may have trouble synchronizing with the incoming serial stream at this
rate and higher due to the lack of a hardware input buffer. Use only simple variables and no
formatters to try to solve this problem.

Table 5.99: BS2px common baud
rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. In
general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is
8-bit/no-parity, even when the data transmitted is just text. Most devices

CHOOSING THE PROPER BAUD MODE.

SERIN - BASIC Stamp Command Reference

Page 398 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

that use a 7-bit data mode do so in order to take advantage of the parity
feature. Parity can detect some communication errors, but to use it you
lose one data bit. This means that incoming data bytes transferred in 7E
(even-parity) mode can only represent values from 0 to 127, rather than
the 0 to 255 of 8N (no-parity) mode.

Usually a device requires only 1 stop bit per byte. Occasionally, however,
you may find a device that requires 2 or more stop bits. Since a stop bit is
really just a delay between transmitted bytes (leaving the line in a resting
state) the BASIC Stamp can receive transmissions with multiple stop bits
per byte without any trouble. In fact, sometimes it is desirable to have
multiple stop bits (see the “SERIN Troubleshooting” section, below, for
more information).

The example below will receive a single byte through I/O pin 1 at 2400
baud, 8N1, inverted:

SYMBOL serData = B2

SERIN 1, N2400, serData

--or--

serData VAR Byte

SERIN 1, 16780, [serData]

Here, SERIN will wait for and receive a single byte of data through pin 1
and store it in the variable serData. If the BASIC Stamp were connected to
a PC running a terminal program (set to the same baud rate) and the user
pressed the "A" key on the keyboard, after the SERIN command executed,
the variable serData would contain 65, the ASCII code for the letter "A"
(see the ASCII character chart in Appendix A).

What would happen if, using the example above, the user pressed the "1"
key? The result would be that serData would contain the value 49 (the
ASCII code for the character "1"). This is a critical point to remember:
every time you press a character on the keyboard, the computer receives
the ASCII value of that character. It is up to the receiving side (in serial
communication) to interpret the values as necessary. In this case, perhaps
we actually wanted serData to end up with the value 1, rather than the
ASCII code 49.

A SIMPLE FORM OF SERIN.

A SIMPLE NUMERIC CONVERSION; ASCII
TEXT TO DECIMAL.

Note: This is written with the BS2's
Baudmode value. Be sure to adjust the
value for your BASIC Stamp model.

All 2

1

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 399

The SERIN command provides a formatter, called the decimal formatter,
which will interpret this for us. Look at the following code:

SYMBOL serData = B2

SERIN 1, N2400, #serData

-- or --

serData VAR Byte

SERIN 1, 16780, [DEC serData]

Notice the decimal formatter in the SERIN command. It is the “#” (for the
BS1) or “DEC” (for all BS2 models) that appears just to the left of the
serData variable. This tells SERIN to convert incoming text representing
decimal numbers into true-decimal form and store the result in serData. If
the user running the terminal software pressed the "1", "2" and then "3"
keys followed by a space or other non-numeric text, the value 123 will be
stored in serData. Afterwards, the program can perform any numeric
operation on the number just like with any other number. Without the
decimal formatter, however, you would have been forced to receive each
character (“1”, “2” and “3”) separately, and then would still have to do
some manual conversion to arrive at the number 123 (one hundred twenty
three) before you can do the desired calculations on it.

The decimal formatter is designed to seek out text that represents decimal
numbers. The characters that represent decimal numbers are the
characters “0” through “9”. Once the SERIN command is asked to use the
decimal formatter for a particular variable, it monitors the incoming serial
data, looking for the first decimal character. Once it finds the first decimal
character, it will continue looking for more (accumulating the entire multi-
digit number) until is finds a non-decimal numeric character. Keep in
mind that it will not finish until it finds at least one decimal character
followed by at least one non-decimal character.

To further illustrate this, consider the following examples (assuming we’re
using the same code example as above):

1) Serial input: ABC
Result: The BASIC Stamp halts at the SERIN command,
continuously waiting for decimal text.

DECIMAL FORMATTER SPECIFICS.

Note: This is written with the BS2's
Baudmode value. Be sure to adjust the
value for your BASIC Stamp.

1

All 2

SERIN - BASIC Stamp Command Reference

Page 400 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

2) Serial input: 123 (with no characters following it)
Result: The BASIC Stamp halts at the SERIN command. It
recognizes the characters “1”, “2” and “3” as the number one
hundred twenty three, but since no characters follow the “3”, it
waits continuously, since there’s no way to tell whether 123 is the
entire number or not.

3) Serial input: 123 (followed by a space character)
Result: Similar to example 2, above, except once the space
character is received, the BASIC Stamp knows the entire number
is 123, and stores this value in serData. The SERIN command then
ends, allowing the next line of code, if any, to run.

4) Serial input: 123A
Result: Same as example 3, above. The “A” character, just like the
space character, is the first non-decimal text after the number 123,
indicating to the BASIC Stamp that it has received the entire
number.

5) Serial input: ABCD123EFGH
Result: Similar to examples 3 and 4 above. The characters
“ABCD” are ignored (since they’re not decimal text), the
characters “123” are evaluated to be the number 123 and the
following character, “E”, indicates to the BASIC Stamp that it has
received the entire number.

For examples of all formatters and how they process incoming data, see
Appendix C.

Of course, as with all numbers in the BASIC Stamp, the final result is
limited to 16 bits (up to the number 65535). If a number larger than this is
received by the decimal formatter, the end result will look strange because
the result rolled-over the maximum 16-bit value.

The BS1 is limited to the decimal formatter shown above, however all the
BS2 models have many more conversion formatters available for the
SERIN command. If not using a BS1, see the “Additional Conversion
Formatters” section below for more information.

WATCH OUT FOR ROLLOVER ERRORS.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 401

The SERIN command can also be configured to wait for specified data
before it retrieves any additional input. For example, suppose a device
that is attached to the BASIC Stamp is known to send many different
sequences of data, but the only data you desire happens to appear right
after the unique characters, “XYZ”. The BS1 has optional Qualifier
arguments for this purpose. On all BS2 models, a special formatter called
WAIT can be used for this.

SYMBOL serData = B2

SERIN 1, N2400, ("XYZ"), #serData

-- or --

serData VAR Byte

SERIN 1, 16780, [WAIT("XYZ"), DEC serData]

The above code waits for the characters “X”, “Y” and “Z” to be received,
in that order, and then it looks for a decimal number to follow. If the
device in this example were to send the characters “XYZ100” followed by
a carriage return or some other non-decimal numeric character, the serData
variable would end up with the number 100 after the SERIN line finishes.
If the device sent some data other than “XYZ” followed by a number, the
BASIC Stamp would continue to wait at the SERIN command.

The BS1 will accept an unlimited number of Qualifiers. All BS2 models will
only accept up to six bytes (characters) in the WAIT formatter.

Keep in mind that when we type “XYZ” into the SERIN command, the
BASIC Stamp actually uses the ASCII codes for each of those characters for
its tasks. We could also have typed: 88, 89, 90 in place of “XYZ” and the
code would run the same way since 88 is the ASCII code for the “X”
character, 89 is the ASCII code for the “Y” character, and so on. Also note,
serial communication with the BASIC Stamp is case sensitive. If the device
mentioned above sent, “xYZ” or “xyZ”, or some other combination of
lower and upper-case characters, the BASIC Stamp would have ignored it
because we told it to look for “XYZ” (all capital letters).

The BS1’s SERIN command is limited to above-mentioned features. If you
are not using a BS1, please continue reading about the additional features
below.

USING SERIN TO WAIT FOR SPECIFIC

DATA BEFORE PROCESSING.

USING ASCII CODES AND CASE

SENSITIVITY.

All 2
This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp.

1

1

SERIN - BASIC Stamp Command Reference

Page 402 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on all the BS2 models. See Table 5.100 for
a list of available conversion formatters. All of the conversion formatters
work similar to the decimal formatter (as described in the “Decimal
Formatter Specifics” section, above). The formatters receive bytes of data,
waiting for the first byte that falls within the range of characters they
accept (e.g., “0” or “1” for binary, “0” to “9” for decimal, “0” to “9” and
“A” to “F” for hex, and “-” for signed variations of any type). Once they
receive a numeric character, they keep accepting input until a non-
numeric character arrives or (in the case of the fixed length formatters) the
maximum specified number of digits arrives.

ADDITIONAL CONVERSION FORMATTERS.

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 403

Table 5.100: Conversion
Formatters for all BS2 models.

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to 1 – 4
digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number must
be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

1 All numeric conversions will continue to accept new data until receiving either the specified

number of digits (ex: three digits for DEC3) or a non-numeric character.
2 To be recognized as part of a number, the minus sign (-) must immediately precede a

numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

SERIN - BASIC Stamp Command Reference

Page 404 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

While very effective at filtering and converting input text, the formatters
aren’t completely foolproof. As mentioned before, many conversion
formatters will keep accepting text until the first non-numeric text arrives,
even if the resulting value exceeds the size of the variable. After SERIN, a
byte variable will contain the lowest 8 bits of the value entered and a word
would contain the lowest 16 bits. You can control this to some degree by
using a formatter that specifies the number of digits, such as DEC2, which
would accept values only in the range of 0 to 99.

All BS2 models also have special formatters for handling a string of
characters, a sequence of characters and undesirable characters. See Table
5.101 for a list of these special formatters. Also, see Appendix C for
example serial inputs and the result of using these formatters.

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified,
an end character E causes the string input to end before
reaching length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67
or “ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an
array variable, optionally limited to L characters. If the
optional L argument is left off, the end of the array-string must
be marked by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

Table 5.101: SERIN Special
Formatters for all BS2 Models.

There is an additional special formatter for the BS2p, BS2pe, and BS2px,
shown below.

Special Formatter Action

SPSTR L
Input a character string of L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the
characters.

Table 5.102: Additional SERIN
Special Formatter for the BS2p,
BS2pe, and BS2px.

The string formatter is useful for receiving a string of characters into a byte
array variable. A string of characters is a set of characters that are
arranged or accessed in a certain order. The characters "ABC" could be
stored in a string with the "A" first, followed by the "B" and then followed
by the "C." A byte array is a similar concept to a string; it contains data
that is arranged in a certain order. Each of the elements in an array is the
same size. The string "ABC" could be stored in a byte array containing

ONCE AGAIN, PAY ATTENTION TO

POTENTIAL ROLLOVER ERRORS.

THE STR (STRING) FORMATTER.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 405

three bytes (elements). See the "Defining Arrays" section in Chapter 4 for
more information on arrays.
Here is an example that receives nine bytes through I/O pin 1 at 9600 bps,
N81/inverted and stores them in a 10-byte array:

serStr VAR Byte(10) ' make 10-byte array

serStr(9) = 0 ' put 0 in last byte of array
SERIN 1, 16468, [STR serStr\9] ' get nine bytes
DEBUG STR serStr ' display

Why store only 9 bytes in a 10-byte array? We want to reserve space for
the 0 byte that many BASIC Stamp string-handling routines regard as an
end-of-string marker. This becomes important when dealing with
variable-length arrays. For example, the STR formatter (see Table 5.101)
can accept an additional parameter telling it to end the string when a
particular byte is received, or when the specified length is reached,
whichever comes first. An example:

serStr VAR Byte(10) ' make 10-byte array

serStr(9) = 0 ' put 0 in last byte of array
SERIN 1, 16468, [STR serStr\9\"*"] ' stop at "*" or nine bytes
DEBUG STR serStr ' display

If the serial input were "hello*" DEBUG would display "hello" since it
collects bytes up to (but not including) the end character. It fills the unused
bytes up to the specified length with 0s. DEBUG’s normal STR formatter
understands a 0 to mean end-of-string. However, if you use DEBUG’s
fixed-length string modifier, STR ByteArray\L, you will inadvertently clear
the DEBUG screen. The fixed-length specification forces DEBUG to read
and process the 0s at the end of the string, and 0 is equivalent to DEBUG’s
CLS (clear-screen) control character! Be alert for the consequences of
mixing fixed- and variable-length string operations.

As shown before, SERIN can compare incoming data with a predefined
sequence of bytes using the WAIT formatter. The simplest form waits for a
sequence of up to six bytes specified as part of the InputData list, like so:

SERIN 1, 16468, [WAIT("SESAME")]
DEBUG "Password accepted."

SERIN will wait for that word, and the program will not continue until it
is received. Since WAIT is looking for an exact match for a sequence of

MATCHING A SEQUENCE OF CHARACTERS

WITH WAIT.

NOTE: The rest of the code examples
for this section are written for the BS2,
using the BS2's BaudMode and
Timeout values. Be sure to adjust the
value for your BASIC Stamp.

All 2

All 2

All 2

SERIN - BASIC Stamp Command Reference

Page 406 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

bytes, it is case-sensitive—“sesame” or “SESAmE” or any other variation
from “SESAME” would be ignored.
SERIN can also wait for a sequence that matches a string stored in an array
variable with the WAITSTR formatter. In the example below, we’ll capture
a string with STR then have WAITSTR look for an exact match:

serStr VAR Byte(10) ' make 10-byte array

serStr(9) = 0 ' put 0 in last byte of array
SERIN 1, 16468, [STR serStr\9\"!"] ' get the string
DEBUG "Waiting for:", STR serStr, CR
SERIN 1, 16468, [WAITSTR serStr] ' wait for match
DEBUG "Password accepted."

You can also use WAITSTR with fixed-length strings as in the following
example:

serStr VAR Byte(4) ' make 4-byte array

DEBUG "Enter 4-character password"
SERIN 1, 16468, [STR serStr\4] ' get the string
DEBUG "Waiting for:", STR serStr\4, CR
SERIN 1, 16468, [WAITSTR serStr\4] ' wait for match
DEBUG "Password accepted."

SERIN’s InputData can be structured as a sophisticated list of actions to
perform on the incoming data. This allows you to process incoming data
in powerful ways. For example, suppose you have a serial stream that
contains “pos: xxxx yyyy” (where xxxx and yyyy are 4-digit numbers) and
you want to capture just the decimal y value. The following code would
do the trick:

yOffset VAR Word

SERIN 1, 16468, [WAIT("pos: "), SKIP 4, DEC4 yOffset]
DEBUG ? yOffset

The items of the InputData list work together to locate the label “pos: ”,
skip over the four-byte x data, then convert and capture the decimal y
data. This sequence assumes that the x data is always four digits long; if its
length varies, the following code would be more appropriate:

yOffset VAR Word

SERIN 1, 16468, [WAIT("pos: "), DEC yOffset, DEC4 yOffset]
DEBUG ? yOffset

MATCHING A SEQUENCE OF CHARACTERS

WITH WAITSTR.

BUILDING COMPOUND INPUTDATA

STATEMENTS.

All 2

All 2

All 2

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 407

The unwanted x data is stored in yOffset then replaced by the desired y
data. This is a sneaky way to filter out a number of any size without using
an extra variable. With a little creativity, you can combine the InputData
modifiers to filter and extract almost any data.

Parity is a simple error-checking feature. When a serial sender is set for
even parity (the mode the BASIC Stamp supports) it counts the number of
1s in an outgoing byte and uses the parity bit to make that number even.
For instance, if it is sending the 7-bit value: %0011010, it sets the parity bit
to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit
should be. If it matches the parity bit received, the serial receiver assumes
that the data was received correctly. Of course, this is not necessarily true,
since two incorrectly received bits could make parity seem correct when
the data was wrong, or the parity bit itself could be bad when the rest of
the data was OK.

Many systems that work exclusively with text use (or can be set for) 7-
bit/even-parity mode. Table 5.97 and Table 5.98 show appropriate
Baudmode settings for different BASIC Stamp models. For example, with
the BS2, to receive one data byte through pin 1 at 9600 baud, 7E, inverted:

serData VAR Byte

SERIN 1, 24660, [serData]

That instruction will work, but it doesn’t tell the BS2 what to do in the
event of a parity error. Here’s an improved version that uses the optional
Plabel argument:

serData VAR Byte

Main:
 SERIN 1, 24660, Bad_Data, [serData]
 DEBUG ? serData
 STOP

Bad_Data:
 DEBUG "Parity error."
 STOP

If the parity matches, the program continues at the DEBUG instruction
after SERIN. If the parity doesn’t match, the program goes to the label

USING PARITY AND HANDLING PARITY

ERRORS.

All 2

All 2

SERIN - BASIC Stamp Command Reference

Page 408 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Bad_Data. Note that a parity error takes precedence over other InputData
specifications (as soon as an error is detected, SERIN aborts and goes to
the Plabel routine).

In all the examples above, the only way to end the SERIN instruction
(other than RESET or power-off) is to give SERIN the serial data it wants.
If no serial data arrives, the program is stuck. However, you can tell the
BASIC Stamp to abort SERIN if it doesn’t receive a byte within a specified
number of milliseconds. For instance, to receive a decimal number
through pin 1 at 9600 baud, 8N, inverted and abort SERIN after 2 seconds
(2000 ms) of inactivity on the serial input:

result VAR Word

Main:
 SERIN 1, 16468, 2000, No_Data, [DEC result]
 DEBUG CLS, ? result
 STOP

No_Data:
 DEBUG CLS, "Timeout error"
 STOP

If no data arrives within 2 seconds, the program aborts SERIN and
continues at the label No_Data. Note that on multi-byte input, the timeout
timer is reset after the receipt of any valid data byte; with long timeout
values this factor could have an adverse affect on program operation if
data packets are transmitted with gaps between individual data bytes.
Finally, be cautious when using very short timeout values. Without
external flow control, very short timeout values may cause the program to
branch to the Tlabel address unnecessarily.

Here's a very important concept: this timeout feature is not picky about
the kind of data SERIN receives; if any serial data is received, it prevents
the timeout. In the example above, SERIN wants a decimal number. But
even if SERIN received letters “ABCD...” at intervals of less than two
seconds, it would never abort.

You can combine parity and serial timeouts. Here is an example for the
BS2 designed to receive a decimal number through pin 1 at 9600 baud, 7E,
inverted with a 10-second timeout:

USING THE SERIAL TIME-OUT FEATURE.

REMEMBER: TIMEOUT DOES NOT CARE
WHAT KIND OF DATA IS RECEIVED, ONLY

THAT DATA IS RECEIVED OR NOT!

COMBINING PARITY AND TIME-OUT.

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 409

' {$PBASIC 2.5}

result VAR Word

Main:
 DO
 SERIN 1, 24660, Bad_Data, 10000, No_Data, [DEC result]
 DEBUG CLS, ? result
 LOOP

Bad_Data:
 DEBUG CLS, "Parity error"
 GOTO Main

No_Data:
 DEBUG CLS, "Timeout error"
 GOTO Main

When you design an application that requires serial communication
between BASIC Stamp modules, you have to work within these
limitations:

• When the BASIC Stamp is sending or receiving data, it can’t
execute other instructions.

• When the BASIC Stamp is executing other instructions, it can’t
send or receive data. The BASIC Stamp does not have a serial buffer as
there is in PCs. At most serial rates, the BASIC Stamp cannot
receive data via SERIN, process it, and execute another SERIN in
time to catch the next chunk of data, unless there are significant
pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation
shown in Table 5.94). Through Fpin, SERIN can tell a BASIC Stamp sender
when it is ready to receive data. (For that matter, Fpin flow control follows
the rules of other serial handshaking schemes, but most computers other
than the BASIC Stamp cannot start and stop serial transmission on a byte-
by-byte basis. That’s why this discussion is limited to communication
between BASIC Stamp modules.)

Here’s an example using flow control on the BS2 (data through I/O pin 1,
flow control through I/O pin 0, 9600 baud, N8, noninverted):

serData VAR Byte

SERIN 1\0, 84, [serData]

CONTROLLING DATA FLOW.

All 2

All 2

SERIN - BASIC Stamp Command Reference

Page 410 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

When SERIN executes, I/O pin 1 (Rpin) is made an input in preparation
for incoming data, and I/O pin 0 (Fpin) is made output low, to signal “go”
to the sender. After SERIN finishes receiving, I/O pin 0 goes high to tell
the sender to stop. If an inverted BaudMode had been specified, the Fpin’s
responses would have been reversed. Here’s the relationship of serial
polarity to Fpin states.

 Ready to Receive ("Go") Not Ready to Receive ("Stop")
Inverted Fpin is High (1) Fpin is Low (0)

Non-inverted Fpin is Low (0) Fpin is High (1)

Table 5.103: Flow control pin states
in relation to polarity (inverted or
non-inverted) for all BS2 models.

See the demo program, below, for a flow control example using two BS2s.
In the demo program example, without flow control, the sender would
transmit the whole word “Hello!” in about 6 ms. The receiver would catch
the first byte at most; by the time it got back from the first 1-second
PAUSE, the rest of the data would be long gone. With flow control,
communication is flawless since the sender waits for the receiver to catch
up.

In Figure 5.37, I/O pin 0, Fpin, is pulled to ground through a 10k resistor.
This is to ensure that the sender sees a stop signal (0 for inverted
communications) when the receiver is being programmed.

P0

P1

VSS

BS2
sender

P0

P1

BS2
receiver

Host PC (for Debug)

programming
cable

VSS
10k

Figure 5.37: Flow-Control Example
Circuit.

Serial communication, because of its complexity, can be very difficult to
work with at times. Please follow these guidelines when developing a
project using the SERIN and SEROUT commands:

1. Always build your project in steps.
a. Start with small, manageable pieces of code, that deals

with serial communication) and test them, one at a time.

SERIN TROUBLESHOOTING.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 411

b. Add more and more small pieces, testing them each time,
as you go.

c. Never write a large portion of code that works with serial
communication without testing its smallest workable
pieces first.

2. Pay attention to timing.
a. Be very careful to calculate and overestimate the amount

of time operations should take within the BASIC Stamp.
Misunderstanding the timing constraints is the source of
most problems with code that communicate serially.

b. If the serial communication in your project is bi-
directional, the above statement is even more critical.

3. Pay attention to wiring.
a. Take extra time to study and verify serial communication

wiring diagrams. A mistake in wiring can cause strange
problems in communication, or no communication at all.
Make sure to connect the ground pins (Vss) between the
devices that are communicating serially.

4. Verify port setting on the PC and in the SERIN/SEROUT
commands.

a. Unmatched settings on the sender and receiver side will
cause garbled data transfers or no data transfers. If the
data you receive is unreadable, it is most likely a baud
rate setting error.

5. If receiving data from another device that is not a BASIC Stamp,
try to use baud rates of 4800 and below.

a. Because of additional overhead in the BASIC Stamp, and
the fact that the BASIC Stamp has no hardware receive
buffer for serial communication, received data may
sometimes be missed or garbled. If this occurs, try
lowering the baud rate (if possible), adding extra stop bits,
and not using formatters in the SERIN command. Using
simple variables (not arrays) and no formatters will
increase the chance that the BASIC Stamp can receive the
data properly.

6. Be sure to study the effects of SERIN formatters.
a. Some formatters have specific requirements that may

cause problems in received data. For example, the DEC
formatter requires a non-decimal-numeric character to
follow the received number before it will allow the BASIC

SERIN - BASIC Stamp Command Reference

Page 412 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Stamp to continue. See Appendix C for example input
data and the effects on formatters.

Demo Program (SERIN.bs1)

' SERIN.bs1
' This program waits for the characters "A", "B", "C", and "D" to arrive
' at the serial input (inverted, 2400 baud, N81), followed by a number,
' then a carriage-return or some other non-number character. The number is
' then displayed in the Debug window.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL SIn = 0
SYMBOL Baud = N2400

SYMBOL result = W1

Main:
 SERIN SIn, Baud, ("ABCD"), #result
 DEBUG #result, CR
 GOTO Main
 END

Demo Program (SERIN_SEROUT1.bs2)

' SERIN_SEROUT1.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Sender. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data
' would be long gone. With flow control, communication is flawless since
' the sender waits for the receiver to catch up.

' {$STAMP BS2}
' {$PBASIC 2.5}

SO PIN 1 ' serial output
FC PIN 0 ' flow control pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32

1

NOTE: This example program was
written for the BS2 but it can be used
with the BS2e, BS2sx, BS2p, BS2pe,
and BS2px. This program uses
conditional compilation techniques; see
Chapter 3 for more information.

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 413

 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

Main:
 DO
 SEROUT SO\FC, Baud, ["Hello!", CR] ' send the greeting
 PAUSE 2500 ' wait 2.5 seconds
 LOOP ' repeat forever
 END

Demo Program (SERIN_SEROUT2.bs2)

' SERIN_SEROUT2.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Receiver. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data
' would be long gone. With flow control, communication is flawless since
' the sender waits for the receiver to catch up.

' {$STAMP BS2}
' {$PBASIC 2.5}

SI PIN 0 ' serial input
FC PIN 1 ' flow control pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6

NOTE: This example program was
written for the BS2 but it can be used
with the BS2e, BS2sx, BS2p, BS2pe,
and BS2px. This program uses
conditional compilation techniques; see
Chapter 3 for more information.

All 2

SERIN - BASIC Stamp Command Reference

Page 414 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

letter VAR Byte

Main:
 DO
 SERIN SI\FC, Baud, [letter] ' receive one byte
 DEBUG letter ' display on screen
 PAUSE 1000 ' wait one second
 LOOP ' repeat forever
 END

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 415

SEROUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SEROUT Tpin, Baudmode, ({#} OutputData)
SEROUT Tpin { \Fpin }, Baudmode, { Pace, } { Timeout, Tlabel, } [OutputData]

Function
Transmit asynchronous serial data (e.g., RS-232 data).

• Tpin is a variable/constant/expression (0 – 16) that specifies the I/O
pin through which the serial data will be transmitted. This pin will
be set to output mode. On all BS2 models, if Tpin is set to 16, the
BASIC Stamp uses the dedicated serial-output pin (SOUT, physical
pin 1), which is normally used by the Stamp Editor during the
download process.

• Fpin is an optional variable/constant/expression (0 – 15) that
specifies the I/O pin to monitor for flow control status. This pin will
be set to input mode. NOTE: Fpin must be specified to use the
optional Timeout and Tlabel arguments in the SEROUT command.

• Baudmode is variable/constant/expression (0 – 7 on the BS1, 0 –
65535 on all BS2 models) that specifies serial timing and
configuration.

 • Pace is an optional variable/constant/expression (0 – 65535) that
determines the length of the pause between transmitted bytes.
NOTE: Pace cannot be used simultaneously with Timeout and Fpin.

• Timeout is an optional variable/constant/expression (0 – 65535) that
tells SEROUT how long to wait for Fpin permission to send. If
permission does not arrive in time, the program will jump to the
address specified by Tlabel. NOTE: Fpin must be specified to use
the optional Timeout and Tlabel arguments in the SEROUT
command.

• Tlabel is an optional label that must be provided along with Timeout.
Tlabel indicates where the program should go in the event that
permission to send data is not granted within the period specified
by Timeout.

• OutputData is list of variables, constants, expressions and formatters
that tells SEROUT how to format outgoing data. SEROUT can
transmit individual or repeating bytes, convert values into decimal,

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Rpin argument on the BS1 is 0 – 7.

NOTE: The BS1's OutputData
argument can only be a list of variables
and the optional decimal modifier (#).

1

All 2

1

1

SEROUT – BASIC Stamp Command Reference

Page 416 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

hex or binary text representations, or transmit strings of bytes from
variable arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts
 BS1 BS2, BS2e BS2sx BS2p BS2pe BS2px

Units in Pace n/a 1 ms 1 ms 1 ms 1 ms 1 ms
Units in
Timeout

n/a 1 ms 0.4 ms 0.4 ms 1 ms 0.4 ms

Baud range
300, 600,
1200, and
2400 only

243 to
50K

608 to
115.2K

608 to
115.2K

243 to
50K

972 to
115.2K

Baud limit with
flow control

n/a 19.2K 19.2K 19.2K 19.2K 19.2K

I/O Pins
Available

0 - 7 0 – 15 0 - 15
0 – 15 (in

current I/O
block)

0 – 15 (in
current I/O

block)

0 – 15 (in
current I/O

block)
Other serial

port pins
n/a SOUT pin (physical pin 1) when Tpin = 16

Special cases n/a
Fpin must be specified to use Timeout and Tlabel.

Pace cannot be specified at the same time as Timeout.
Related

Commands
SERIN SERIN and DEBUG

Table 5.104: SEROUT Quick Facts.

Explanation
One of the most popular forms of communication between electronic
devices is serial communication. There are two major types of serial
communication; asynchronous and synchronous. The SERIN and
SEROUT commands are used to receive and send asynchronous serial
data. See the SHIFTIN and SHIFTOUT command for information on the
synchronous method.

The following information is supplemental to what is discussed in the
SERIN command section. Please read through the SERIN command
section for additional information.

All BS2 models have a line driver on its SOUT pin (Tpin = 16). The SOUT
pin goes to a PC’s serial data-in pin on the DB9 connector built into BASIC
Stamp development boards. The connector is wired to allow both
programming and run-time serial communication (unless you are using
the BASIC Stamp 2 Carrier Board (#27120) which is only designed for
programming). For the built-in serial port set the Tpin argument to 16 in
the SEROUT command.

SERIAL COMMUNICATION BACKGROUND.

USING THE BUILT-IN SERIAL PORT FOUND

ON ALL BS2 MODELS.

All 2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 417

All BASIC Stamp models (including the BS1) can also transmit RS-232 data
through any of their I/O pins (Tpin = 0 – 7 for BS1, Tpin = 0 – 15 on all
other BASIC Stamp models). The I/O pins only provide a 0 to +5 volt
swing (outside of RS-232 specs) and may need to be connected through a
line driver for proper operation with all serial ports. Most serial ports are
able to recognize a 0 to +5 volt swing, however. See Figure 5.38 for sample
wiring.

Figure 5.38: Serial port diagram
showing correct connections to a
BASIC Stamp's I/O pin.

NOTE: A line driver may have to be
used between the I/O pin and the
receiving serial port to ensure
proper communication. DB-9 Male

(Connector Side)

from I/O pin

2

3

4

Transmit Data (TD)

Receive Data (RD)

Request to Send (RTS)

6

7
20

Data Set Ready (DSR)

Signal Ground (SG)
Data Terminal Ready (DTR)

3

2

7

6

5
4

DB25Function DB9

NOTE: The connections shown with double-lines are
normally not necessary. They indicate optional connections
to disable hardware handshaking (DTR-DSR-DCD and
RTS-CTS). This is only necessary if you are using software
or hardware that expects hardware handshaking.

DB-25 Male
(Connector Side)

252423222120191817161514

13121110987654321

9876

54321

Vss

from I/O pin Vss

8Data Carrier Detect (DCD) 1

5Clear to Send (CTS) 8

Figure 5.38 shows the pinouts of the two styles of PC serial ports and how
to connect them to the BASIC Stamp's I/O pin. Though not normally
needed, the figure also shows loop back connections that defeat hardware
handshaking used by some PC software. Note that PC serial ports are
always male connectors. The 25-pin style of serial port (called a DB25)
looks similar to a printer (parallel) port except that it is male, whereas a
parallel port is female.

Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed in
bits per second (bps) called baud.

SEROUT requires a value called Baudmode that tells it the important
characteristics of the outgoing serial data; the bit period, number of data
and parity bits, and polarity.

SERIAL TIMING AND MODE (BAUDMODE).

1 All 2

SEROUT – BASIC Stamp Command Reference

Page 418 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

On the BS1, serial communication is limited to: no-parity, 8-data bits and
1-stop bit at one of four different speeds: 300, 600, 1200 or 2400 baud.
Table 5.105 indicates the Baudmode value or symbols to use when
selecting the desired mode.

Baudmode
Value

Symbol Baud Rate Polarity and
 Output Mode

0 T2400 2400 TRUE (always driven)
1 T1200 1200 TRUE (always driven)
2 T600 600 TRUE (always driven)
3 T300 300 TRUE (always driven)
4 N2400 2400 INVERTED (always driven)
5 N1200 1200 INVERTED (always driven)
6 N600 600 INVERTED (always driven)
7 N300 300 INVERTED (always driven)
8 OT2400 2400 TRUE (open drain, driven high)
9 OT1200 1200 TRUE (open drain, driven high)

10 OT600 600 TRUE (open drain, driven high)
11 OT300 300 TRUE (open drain, driven high)
12 ON2400 2400 INVERTED (open source, driven low)
13 ON1200 1200 INVERTED (open source, driven low)
14 ON600 600 INVERTED (open source, driven low)
15 ON300 300 INVERTED (open source, driven low)

Table 5.105: BS1 Baudmode
Values.

On all BS2 models, serial communication is very flexible. The Baudmode
argument for SEROUT accepts a 16-bit value that determines its
characteristics: 1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity
and virtually any speed from as low as 300 baud to greater than 100K
baud (depending on the BASIC Stamp model). Table 5.106 shows how
Baudmode is calculated, while Table 5.107, Table 5.108, and Table 5.109
show common baud modes for standard serial baud rates.

Step 1: Determine the
bit period (bits 0 – 11)

BS2, BS2e and BS2pe: = INT(1,000,000 / baud rate) – 20
BS2sx and BS2p: = INT(2,500,000 / baud rate) – 20
BS2px: = INT(4,000,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the
decimal point.

Step 2: Set data bits
and parity (bit 13)

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14)

True (noninverted) = 0
Inverted = 16384

Step 4: Select driven or
open output (bit 15)

Driven = 0
Open = 32768

Table 5.106: Baudmode calculation
for all BS2 models. Add the results
of steps 1, 2, 3 and 4 to determine
the proper value for the Baudmode
argument.

1

All 2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 419

Table 5.107: BS2, BS2e and BS2pe
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Table 5.108: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600 16624 240 24816 8432

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Table 5.109: BS2px common
baud rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. See the
SERIN command description for more information.

The example below will transmit a single byte through I/O pin 1 at 2400
baud, 8N1, inverted:

SEROUT 1, N2400, (65)

--or--

SEROUT 1, 16780, [65]

CHOOSING THE PROPER BAUD MODE.

A SIMPLE FORM OF SEROUT.

1

All 2

This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp model.

SEROUT – BASIC Stamp Command Reference

Page 420 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Here, SEROUT will transmit a byte equal to 65 (the ASCII value of the
character "A") through pin 1. If the BASIC Stamp were connected to a PC
running a terminal program (set to the same baud rate) the character "A"
would appear on the screen (see the ASCII character chart in Appendix A).

What if you really wanted the value 65 to appear on the screen? If you
remember from the discussion in the SERIN command, "It is up to the
receiving side (in serial communication) to interpret the values…" In this
case, the PC is interpreting the byte-sized value to be the ASCII code for
the character "A". Unless you're also writing the software for the PC, you
can't change how the PC interprets the incoming serial data, so to solve
this problem, the data needs to be translated before it is sent.

The SEROUT command provides a formatter, called the decimal
formatter, which will translate the value 65 to two ASCII codes for the
characters "6" and "5" and then transmit them. Look at the following code:

SEROUT 1, N2400, (#65)

--or--

SEROUT 1, 16780, [DEC 65]

Notice the decimal formatter in the SEROUT command. It is the “#” (for
the BS1) or “DEC” (for all BS2 models) that appears just to the left of the
number 65. This tells SEROUT to convert the number into separate ASCII
characters which represent the value in decimal form. If the value 65 in the
code were changed to 123, the SEROUT command would send three bytes
(49, 50 and 51) corresponding to the characters "1", "2" and "3".

All BS2 models have many more conversion formatters available for the
SEROUT command. See the “Additional Conversion Formatters” section
below for more information.

The SEROUT command sends quoted text exactly as it appears in the
OutputData list:

SEROUT 1, N2400, ("Hello" CR)
SEROUT 1, N2400, ("Num = ", #100)

--or--

A SIMPLE NUMERIC CONVERSION; DECIMAL

TO ASCII NUMERIC TEXT.

This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp model.

1

All 2

All 2

1

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 421

SEROUT 1, 16780, ["Hello", CR]
SEROUT 1, 16780, ["Num = ", DEC 100]

The above code will display "HELLO" on one line and "Num = 100" on the
next line. Notice that you can combine data to output in one SEROUT
command, separated by commas. In the example above, we could have
written it as one line of code, with "HELLO", CR, "Num = ", DEC 100 in the
OutputData list.
The BS1’s SEROUT command is limited to above-mentioned features. If
you are not using a BS1, please continue reading about the additional
features below.

The SEROUT command can also be configured to pause between
transmitted bytes. This is the purpose of the optional Pace argument. For
example (9600 baud N8, inverted):

SEROUT 1, 16780, 1000, ["Slowly..."]

Here, the BASIC Stamp transmits "Slowly..." with a 1 second delay
between each character. See Table 5.104 for units of the Pace argument.
One good reason to use the Pace feature is to support devices that require
more than one stop bit. Normally, the BASIC Stamp sends data as fast as
it can (with a minimum of 1 stop bit between bytes). Since a stop bit is
really just a resting state in the line (no data transmitted), using the Pace
option will effectively add multiple stop bits. Since the requirement for 2
or more stop bits (on some devices) is really just a "minimum"
requirement, the receiving side should receive this data correctly.

Keep in mind that when we type something like “XYZ” into the SEROUT
command, the BASIC Stamp actually uses the ASCII codes for each of
those characters for its tasks. We could also typed: 88, 89, 90 in place of
“XYZ” and the program would run the same way since 88 is the ASCII
code for the “X” character, 89 is the ASCII code for the “Y” character, and
so on.

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on all BS2 models. See Table 5.110 for a
list of available conversion formatters. All of the conversion formatters
work similar to the decimal formatter. The formatters translate the value
into separate bytes of data until the entire number is translated or until the

USING SEROUT'S PACE ARGUMENT TO
INSERT DELAYS BETWEEN TRANSMITTED

BYTES.

USING ASCII CODES.

ADDITIONAL CONVERSION FORMATTERS.

NOTE: The rest of the code examples
for this section are written for the BS2,
using the BS2's Baudmode and
Timeout values. Be sure to adjust the
value for your BASIC Stamp model.

This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp model.

All 2

1

All 2

SEROUT – BASIC Stamp Command Reference

Page 422 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

indicated number of digits (in the case of the fixed length formatters) is
translated.

All BS2 models also have special formatters for outputting a string of
characters, and repeated characters. See Table 5.111 for a list of these
special formatters.

Conversion
Formatter

Type of Number Notes

DEC{1..5} Decimal, optionally fixed to 1 – 5 digits 1
SDEC{1..5} Signed decimal, optionally fixed to 1 – 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 – 4 digits 1,3

SHEX{1..4} Signed hexadecimal, optionally fixed to 1 – 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 – 4 digits ($ prefix) 1

ISHEX{1..4}
Signed, indicated hexadecimal, optionally fixed to 1 – 4 digits
($ prefix)

1,2

BIN{1..16} Binary, optionally fixed to 1 – 16 digits 1
SBIN{1..16} Signed binary, optionally fixed to 1 – 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1

ISBIN{1..16} Signed, indicated binary, optionally fixed to 1 – 16 digits (% prefix) 1,2

Table 5.110: Conversion
Formatters for all BS2 models.

1 Fixed-digit formatters like DEC4 will pad the number with leading 0s if necessary; ex:
DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.
3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD

Conversion” on page 97.

Special Formatter Action

?
Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with conversion
formatters (ex: BIN ? x to display "x = binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

Table 5.111: Special Formatters
for all BS2 models.

The string formatter is useful for transmitting a string of characters from a
byte array variable. A string of characters is a set of characters that are
arranged or accessed in a certain order. The characters "ABC" could be
stored in a string with the "A" first, followed by the "B" and then followed
by the "C." A byte array is a similar concept to a string; it contains data
that is arranged in a certain order. Each of the elements in an array is the

THE STR (STRING) FORMATTER.

All 2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 423

same size. The string "ABC" could be stored in a byte array containing
three bytes (elements). See the “Defining Arrays” section in Chapter 4 for
more information on arrays.

Here is an example that transmits five bytes (from a byte array) through
I/O pin 1 at 9600 bps, N81/inverted:

serStr VAR Byte(5) ' create 5-byte array

Main:
 serStr(0) = "H" ' fill array
 serStr(1) = "E"
 serStr(2) = "L"
 serStr(3) = "L"
 serStr(4) = "O"
 SEROUT 1, 16468, [STR serStr\5] ' transmit

Note that we use the optional \L argument of STR. If we didn't specify
this, the BASIC Stamp would try to keep sending characters until it found
a byte equal to 0. Since we didn't specify a last byte of 0 in the array, we
chose to tell it explicitly to only send 5 characters.

Parity is a simple error-checking feature. When the SEROUT command's
Baudmode is set for even parity it counts the number of 1s in the outgoing
byte and uses the parity bit to make that number even. For instance, if it is
sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to
make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit
should be. If it matches the parity bit received, the serial receiver assumes
that the data was received correctly. Of course, this is not necessarily true,
since two incorrectly received bits could make parity seem correct when
the data was wrong, or the parity bit itself could be bad when the rest of
the data was OK. Parity errors are only detected on the receiver side.
Generally, the receiver determines how to handle the error. In a more
robust application, the receiver and transmitter might be set up such that
the receiver can request a re-send of data that was received with a parity
error.

When you design an application that requires serial communication
between BASIC Stamp modules, you have to work within these
limitations:

USING PARITY AND HANDLING PARITY

ERRORS.

CONTROLLING DATA FLOW.

All 2

SEROUT – BASIC Stamp Command Reference

Page 424 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

• When the BASIC Stamp is sending or receiving data, it can’t
execute other instructions.

• When the BASIC Stamp is executing other instructions, it can’t
send or receive data. The BASIC Stamp does not have a serial buffer as
there is in PCs. At most serial rates, the BASIC Stamp cannot
receive data via SERIN, process it, and execute another SERIN in
time to catch the next chunk of data, unless there are significant
pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation
shown in Table 5.94). Through Fpin, SERIN can tell a BASIC Stamp sender
when it is ready to receive data and SEROUT (on the sender) will wait for
permission to send. (For that matter, Fpin flow control follows the rules of
other serial handshaking schemes, but most computers other than the
BASIC Stamp cannot start and stop serial transmission on a byte-by-byte
basis. That’s why this discussion is limited to communication between
BASIC Stamp modules.)

Here’s an example using flow control on the BS2 (data through I/O pin 1,
flow control through I/O pin 0, 9600 baud, N8, noninverted):

SerData VAR BYTE
SEROUT 1\0, 84, [SerData]

When SEROUT executes, I/O pin 1 (Tpin) is made an output, and I/O pin
0 (Fpin) is made an input, to wait for the “go” signal from the receiver.
Here’s the relationship of serial polarity to Fpin states.

 Ready to Receive ("Go") Not Ready to Receive ("Stop")
Inverted Fpin is High (1) Fpin is Low (0)

Non-inverted Fpin is Low (0) Fpin is High (1)

Table 5.112: Flow control pin states
in relation to polarity (inverted or
non-inverted) for all BS2 models.

See the demo program, below, for a flow control example using two BS2s.
In the demo program example, without flow control, the sender would
transmit the whole word “Hello!” in about 6 ms. The receiver would catch
the first byte at most; by the time it got back from the first 1-second
PAUSE, the rest of the data would be long gone. With flow control,
communication is flawless since the sender waits for the receiver to catch
up.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 425

In Figure 5.39 below, I/O pin 0, Fpin, is pulled to ground through a 10k
resistor. This is to ensure that the sender sees a stop signal (0 for inverted
communications) when the receiver is being programmed.

In the flow control examples above, the only way the SEROUT instruction
will end (other than RESET or power-off) is if the receiver allows it to send
the entire OutputData list. If Fpin permission never occurs, the program is
stuck. However, you can tell the BASIC Stamp to abort SEROUT if it
doesn’t receive Fpin permission within a specified time period. For
instance, to transmit a decimal number through pin 1 at 9600 baud, 8N,
inverted and abort SEROUT after 2 seconds (2000 ms) if no Fpin
permission arrives on I/O pin 0:

SEROUT 1\0, 16468, 2000, No_Permission, [DEC 150]
STOP

No_Permission:
 DEBUG "Timeout error", CR

If no Fpin permission arrives within 2 seconds, the program aborts
SEROUT and continues at the label No_Permission.

Figure 5.39: Flow-Control Example
Circuit.

P0

P1

VSS

BS2
sender

P0

P1

BS2
receiver

Host PC (for Debug)

programming
cable

VSS
10k

The SEROUT command supports open-drain and open-source output,
which makes it possible to network multiple BASIC Stamp modules on a
single pair of wires. These "open baudmodes" only actively drive the Tpin
in one state (for the other state, they simply disconnect the pin; setting it to
an input mode). If two BASIC Stamp modules in a network had their
SEROUT lines connected together (while a third device listened on that
line) and the BASIC Stamp modules were using always-driven
baudmodes, they could simultaneously output two opposite states (i.e.: +5
volts and ground). This would create a short circuit. The heavy current
flow would likely damage the I/O pins or the BASIC Stamp modules

USING THE SERIAL TIME-OUT FEATURE.

USING OPEN BAUDMODES FOR

NETWORKING BASIC STAMPS.

All 2

SEROUT – BASIC Stamp Command Reference

Page 426 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

themselves. Since the open baudmodes only drive in one state and float in
the other, there's no chance of this kind of short.

The polarity selected for SEROUT determines which state is driven and
which is open as in Table 5.113.

 State (0) State (1) Resistor Pulled to
Inverted Open Driven Gnd (Vss)

Non-inverted Driven Open +5V (Vdd)

Table 5.113: Open Baudmode
States for all BS2 models.

Since open baudmodes only drive to one state, they need a resistor to pull
the networked line into the other state, as shown in Table 5.113 and in
Figure 5.40 and Figure 5.41.

Open baudmodes allow the BASIC Stamp to share a line, but it is up to
your program to resolve other networking issues such as who talks when
and how to detect, prevent and fix data errors.

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

To other
devices

To other
devices

1 kΩ

Vdd

Figure 5.40: SEROUT Open-Drain
Circuit. This circuit is for use with
the Open, Non-inverted baudmode.

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 427

Figure 5.41: SEROUT Open-
Source Circuit. This circuit is for
use with the Open, Inverted
baudmode.

BASIC
Stamp

Vss

I/O
Pin

Gnd
(Vss)

BASIC
Stamp

I/O
Pin

Gnd
(Vss)

To other
devices

To other
devices

1 kΩ

Serial communication, because of its complexity, can be very difficult to
work with at times. Please follow these guidelines (and those in the
"SERIN Troubleshooting" section of the SERIN command description)
when developing a project using the SERIN and SEROUT commands:

1. Always build your project in steps.

a. Start with small, manageable pieces of code, that deals with
serial communication) and test them, one at a time.

b. Add more and more small pieces, testing them each time, as
you go.

c. Never write a large portion of code that works with serial
communication without testing its smallest workable pieces
first.

2. Pay attention to timing.
a. Be very careful to calculate and overestimate the amount of

time operations should take within the BASIC Stamp.
Misunderstanding the timing constraints is the source of most
problems with code that communicate serially.

b. If the serial communication in your project is bi-directional,
the above statement is even more critical.

3. Pay attention to wiring.
a. Take extra time to study and verify serial communication

wiring diagrams. A mistake in wiring can cause strange
problems in communication, or no communication at all.
Make sure to connect the ground pins (Vss) between the
devices that are communicating serially.

4. Verify port setting on the PC and in the SERIN/SEROUT
commands.

SEROUT TROUBLESHOOTING.

SEROUT – BASIC Stamp Command Reference

Page 428 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

a. Unmatched settings on the sender and receiver side will cause
garbled data transfers or no data transfers. If the data you
receive is unreadable, it is most likely a baud rate setting
error.

5. If data transmitted to the Stamp Editor's Debug Terminal is
garbled, verify the output format.
a. A common mistake is to send data with SEROUT in ASCII

format. For example, SEROUT 16, 84, [0] instead of
SEROUT 16, 84, [DEC 0]. The first example will send a byte
equal to 0 to the PC, resulting in the Debug Terminal clearing
the screen (since 0 is the control character for a clear-screen
action).

Demo Program (SEROUT.bs1)

' SEROUT.bs1
' This program transmits the string "ABCD" followed by a number and a
' carriage-return at 2400 baud, inverted, N81 format.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL SOut = 1
SYMBOL Baud = N2400

SYMBOL value = W1

Setup:
 value = 1

Main:
 SEROUT SOut, Baud, ("ABCD", #value)
 value = value + 1
 PAUSE 250
 GOTO Main
 END

Demo Program (SERIN_SEROUT1.bs2)

' SERIN_SEROUT1.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Sender. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data

NOTE: This example program was
written for BS2’s but it can be used with
the BS2e, BS2sx, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

All 2

1

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 429

' would be long gone. With flow control, communication is flawless since
' the sender waits for the receiver to catch up.

' {$STAMP BS2}
' {$PBASIC 2.5}

SO PIN 1 ' serial output
FC PIN 0 ' flow control pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

Main:
 DO
 SEROUT SO\FC, Baud, ["Hello!", CR] ' send the greeting
 PAUSE 2500 ' wait 2.5 seconds
 LOOP ' repeat forever
 END

Demo Program (SERIN_SEROUT2.bs2)

' SERIN_SEROUT2.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Receiver. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data
' would be long gone. With flow control, communication is flawless since

NOTE: This example program was
written for BS2’s but it can be used with
the BS2e, BS2sx, BS2p, BS2pe, and
BS2px . This program uses conditional
compilation techniques; see Chapter 3
for more information.

All 2

SEROUT – BASIC Stamp Command Reference

Page 430 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' the sender waits for the receiver to catch up.

' {$STAMP BS2}
' {$PBASIC 2.5}

SI PIN 0 ' serial input
FC PIN 1 ' flow control pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

letter VAR Byte

Main:
 DO
 SERIN SI\FC, Baud, [letter] ' recieve one byte
 DEBUG letter ' display on screen
 PAUSE 1000 ' wait one second
 LOOP ' repeat forever
 END

5: BASIC Stamp Command Reference – SHIFTIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 431

SHIFTIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SHIFTIN Dpin, Cpin, Mode, [Variable { \Bits } {, Variable { \Bits }…}]

Function
Shift data in from a synchronous serial device.

• Dpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s data
output. This pin will be set to input mode.

• Cpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s clock
input. This pin will be set to output mode.

• Mode is a variable/constant/expression (0 – 3), or one of four
predefined symbols, that tells SHIFTIN the order in which data bits
are to be arranged and the relationship of clock pulses to valid data.
See Table 5.115 for value and symbol definitions.

• Variable is a variable in which incoming data bits will be stored.

• Bits is an optional variable/constant/expression (1 – 16) specifying
how many bits are to be input by SHIFTIN. If no Bits argument is
given, SHIFTIN defaults to 8 bits.

Quick Facts
Table 5.114: SHIFTIN Quick
Facts.

 BS2/BS2e BS2sx/BS2p BS2pe BS2px

Timing of Th and tl
14 µs / 46 µs 5.6 µs / 18 µs 14 µs / 46 µs 3.6 µs / 11.8 µs

Transmission Rate ~16 kbits/sec. ~42 kbits/sec. ~16 kbits/sec. ~ 65 kbits/sec.
Related Command SHIFTOUT

Explanation
SHIFTIN and SHIFTOUT provide an easy method of acquiring data from
synchronous serial devices. Synchronous serial differs from asynchronous
serial (like SERIN and SEROUT) in that the timing of data bits (on a data
line) is specified in relationship to clock pulses (on a clock line). Data bits
may be valid after the rising or falling edge of the clock line. This kind of
serial protocol is called Synchronous Peripheral Interface (SPI) and is
commonly used by controller peripherals like ADCs, DACs, clocks,
memory devices, etc.

All 2

SHIFTIN – BASIC Stamp Command Reference

Page 432 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that pass data bits along in a bucket brigade fashion to a
single data output pin. Another bit is output each time the appropriate
edge (rising or falling, depending on the device) appears on the clock line.

The SHIFTIN instruction first causes the clock pin to output low and the
data pin to switch to input mode. Then, SHIFTIN either reads the data pin
and generates a clock pulse (PRE mode) or generates a clock pulse then
reads the data pin (POST mode). SHIFTIN continues to generate clock
pulses and read the data pin for as many data bits as are required.

Making SHIFTIN work with a particular device is a matter of matching the
mode and number of bits to that device’s protocol. Most manufacturers
use a timing diagram to illustrate the relationship of clock and data. Items
to look for include: 1) which bit of the data arrives first; most significant bit
(MSB) or least significant bit (LSB) and 2) is the first data bit ready before
the first clock pulse (PRE) or after the first clock pulse (POST). Table 5.115
shows the values and symbols available for Mode, and Figure 5.42 shows
SHIFTIN’s timing.

Symbol Value Meaning
MSBPRE 0 Data is msb-first; sample bits before clock pulse
LSBPRE 1 Data is lsb-first; sample bits before clock pulse

MSBPOST 2 Data is msb-first; sample bits after clock pulse
LSBPOST 3 Data is lsb-first; sample bits after clock pulse

Table 5.115: SHIFTIN Mode Values
and Symbols.

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

Figure 5.42: SHIFTIN Timing
Diagram. Refer to the SHIFTIN
Quick Facts table for timing
information on th (t high) and
tl (t low).

th

Cloc k
(Cpin)

Data
(Dpin)

- tl -

-pre modes
sample data
before
clock pulse

1st

-post modes
sample data
before
clock pulse

2nd

SHIFTIN OPERATION.

5: BASIC Stamp Command Reference – SHIFTIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 433

Here is a simple example:

result VAR Byte

SHIFTIN 0, 1, MSBPRE, [result]

Here, the SHIFTIN command will read I/O pin 0 (Dpin) and will generate
a clock signal on I/O 1 (Cpin). The data that arrives on Dpin depends on
the device connected to it. Let's say, for example, that a shift register is
connected and has a value of $AF (10101111) waiting to be sent.
Additionally, let's assume that the shift register sends out the most
significant bit first, and the first bit is on Dpin before the first clock pulse
(MSBPRE). The SHIFTIN command above will generate eight clock pulses
and sample the data pin (Dpin) eight times. Afterward, the result variable
will contain the value $AF.

By default, SHIFTIN acquires eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

result VAR Byte

SHIFTIN 0, 1, MSBPRE, [result\4]

Will only input the first 4 bits. In the example discussed above, the result
variable will be left with %1010.

Some devices return more than 16 bits. For example, most 8-bit shift
registers can be daisy-chained together to form any multiple of 8 bits; 16,
24, 32, 40... To solve this, you can use a single SHIFTIN instruction with
multiple variables. Each variable can be assigned a particular number of
bits with the Bits argument. As in:

resultLo VAR Word
resultHi VAR Nib

SHIFTIN 0, 1, MSBPRE, [resultHi\4, resultLo\16]

The above code will first shift in four bits into resultHi and then 16 bits into
resultLo. The two variables together make up a 20 bit value.

A SIMPLE SHIFTIN EXAMPLE.

CONTROLLING THE NUMBER OF BITS

RECEIVED.

SHIFTIN – BASIC Stamp Command Reference

Page 434 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (SHIFTIN.bs2)

' SHIFTIN.bs2
' This program uses the SHIFTIN instruction to interface with the ADC0831
' 8-bit analog-to-digital converter from National Semiconductor.

' {$STAMP BS2}
' {$PBASIC 2.5}

CS PIN 0 ' chip select
AData PIN 1 ' data pin
Clk PIN 2 ' clock pin

adcRes VAR Byte ' ADC result

Setup:
 HIGH CS ' deselect ADC

' In the loop below, just three lines of code are required to read the
' ADC0831. The SHIFTIN command does most of the work. The mode argument in
' the SHIFTIN command specifies MSB or LSB-first and whether to sample data
' before or after the clock. In this case, we chose MSB-first, post-clock.
' The ADC0831 precedes its data output with a dummy bit, which we take care
' of by specifying 9 bits of data instead of 8.

Main:
 DO
 LOW CS ' activate the ADC0831
 SHIFTIN AData, Clk, MSBPOST, [adcRes\9] ' shift in the data
 HIGH CS ' deactivate ADC0831
 DEBUG ? adcRes ' show conversion result
 PAUSE 1000 ' wait one second
 LOOP ' repeat
 END

All 2
NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 435

SHIFTOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SHIFTOUT Dpin, Cpin, Mode, [OutputData { \Bits } { ,OutputData { \Bits }…}]

Function
Shift data out to a synchronous serial device.

• Dpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s data
input. This pin will be set to output mode.

• Cpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that will be connected to the synchronous serial device’s clock
input. This pin will be set to output mode.

• Mode is a variable/constant/expression (0 – 1), or one of two
predefined symbols, that tells SHIFTOUT the order in which data
bits are to be arranged. See Table 5.117 for value and symbol
definitions.

• OutputData is a variable/constant/expression containing the data to
be sent.

• Bits is an optional variable/constant/expression (1 – 16) specifying
how many bits are to be output by SHIFTOUT. When the Bits
argument is given, the BASIC Stamp transmits the rightmost
number of bits specifed, regardless of the Mode. If no Bits argument
is given, SHIFTOUT defaults to 8 bits.

Quick Facts
Table 5.116: SHIFTOUT Quick
Facts.

 BS2, BS2e BS2sx, BS2p BS2pe BS2px

Timing of th and tl,
14 µs / 46 µs 5.6 µs / 18 µs 14 µs / 46 µs 3.6 µs / 11.8 µs

Timing of ta and tb
15 µs / 30 µs 6.3 µs / 12.5 µs 15 µs / 30 µs 4 µs / 7.8 µs

Transmission Rate ~16 kbits/sec. ~42 kbits/sec. ~16 kbits/sec. ~65 kbits/sec.
Related Command SHIFTOUT

Explanation
SHIFTIN and SHIFTOUT provide an easy method of acquiring data from
synchronous serial devices. Synchronous serial differs from asynchronous
serial (like SERIN and SEROUT) in that the timing of data bits (on a data
line) is specified in relationship to clock pulses (on a clock line). Data bits
may be valid after the rising or falling edge of the clock line. This kind of

All 2

SHIFTOUT – BASIC Stamp Command Reference

Page 436 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

serial protocol is commonly called Synchronous Peripheral Interface (SPI)
and is used by controller peripherals like ADCs, DACs, clocks, memory
devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that receive data bits in a bucket brigade fashion from a
single data input pin. Another bit is input each time the appropriate edge
(rising or falling, depending on the device) appears on the clock line.

The SHIFTOUT instruction first causes the clock pin to output low and the
data pin to switch to output mode. Then, SHIFTOUT sets the data pin to
the next bit state to be output and generates a clock pulse. SHIFTOUT
continues to generate clock pulses and places the next data bit on the data
pin for as many data bits as are required for transmission.

Making SHIFTOUT work with a particular device is a matter of matching
the mode and number of bits to that device’s protocol. Most
manufacturers use a timing diagram to illustrate the relationship of clock
and data. One of the most important items to look for is which bit of the
data should be transmitted first; most significant bit (MSB) or least
significant bit (LSB). Table 5.117 shows the values and symbols available
for Mode and Figure 5.43 shows SHIFTOUT’s timing.

Symbol Value Meaning
LSBFIRST 0 Data is shifted out lsb-first
MSBFIRST 1 Data is shifted out msb-first

Table 5.117: SHIFTOUT Mode
Values and Symbols.

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

t h
Cloc k
(cpin)

Data
(dpin)

t l

SHIFTOUT begins,
makes Cpin output low =previous state of pin unknown

t a t a
tb

Figure 5.43: SHIFTOUT Timing
Diagram. Refer to the SHIFTOUT
Quick Facts table for timing
information on th, tl, ta and tb.

SHIFTOUT OPERATION.

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 437

Here is a simple example:

SHIFTOUT 0, 1, MSBFIRST, [250]

Here, the SHIFTOUT command will write to I/O pin 0 (Dpin) and will
generate a clock signal on I/O pin 1 (Cpin). The SHIFTOUT command will
generate eight clock pulses while writing each bit (of the 8-bit value 250)
onto the data pin (Dpin). In this case, it will start with the most significant
bit first as indicated by the Mode value of MSBFIRST.

By default, SHIFTOUT transmits eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

SHIFTOUT 0, 1, MSBFIRST, [250\4]

Will output only the lowest (rightmost) four bits (%1010 in this case). But
what if you want to output the leftmost bits of a given value? By adding
the right-shift operator (>>) to the code you can adjust the output as
required:

SHIFTOUT 0, 1, MSBFIRST, [(250 >> 2)\6]

will output the upper six bits (%111110 in this case).

Some devices require more than 16 bits. To solve this, you can use a single
SHIFTOUT command with multiple values. Each value can be assigned a
particular number of bits with the Bits argument. As in:

SHIFTOUT 0, 1, MSBFIRST, [250\4, 1045\16]

The above code will first shift out four bits of the number 250 (%1010) and
then 16 bits of the number 1045 (%0000010000010101). The two values
together make up a 20 bit value.

In the examples above, specific numbers were entered as the data to
transmit, but, of course, the SHIFTOUT command will accept variables
and expressions for the OutputData and even for the Bits argument.

A SIMPLE SHIFTOUT EXAMPLE.

CONTROLLING THE NUMBER OF BITS

TRANSMITTED.

SHIFTOUT ACCEPTS VARIABLES AND
EXPRESSIONS FOR OUTPUTDATA AND

BITS ARGUMENTS.

SHIFTOUT – BASIC Stamp Command Reference

Page 438 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

74HC595

To P0

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

Vss

LEDs 470 (all)Ω Vdd

Vdd

Vss

To P2

To P1

Figure 5.44: Circuit for Demo
Program SHIFTOUT.bs2.

Demo Program (SHIFTOUT.bs2)

' SHIFTOUT.bs2
' This program uses the SHIFTOUT command to interface to the 74HC595 shift
' register as an 8-bit output port. The '595 requires a minimum of three
' inputs: data, clock, and latch. See the figure in the SHIFTOUT command
' description in the manual for wiring information. SHIFTOUT automatically
' handles the data and clock, pulsing the clock to shift data bits into the
' '595. An extra step (pulsing the latch input) is required to move the
' shifted bits in parallel onto the '595's output pins. Note: this code
' does not control the output-enable or reset lines of the '595. This means
' that before the BASIC Stamp first sends, the '595's output latches are
' turned on and may contain random data. In critical applications, you
' should hold output-enable high (disabled) until the BASIC Stamp can take
' control.

' {$STAMP BS2}
' {$PBASIC 2.5}

Dpin PIN 0 ' data pin to 74HC595
Clk PIN 1 ' shift clock to 74HC595
Latch PIN 2 ' latch 74HC595 outputs

counter VAR Byte

Setup:
 LOW Latch ' initialize latch output

' This loop moves the 8-bit value 'counter' onto the output lines of the
' '595, pauses, then increments counter and repeats. The data is shifted

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 439

' msb first so that the msb appears on pin QH and the lsb on QA. Changing
' MSBFIRST to LSBFIRST causes the data to appear backwards on the outputs.

Main:
 DO
 SHIFTOUT Dpin, Clk, MSBFIRST, [counter] ' send the bits
 PULSOUT Latch, 1 ' transfer to outputs
 PAUSE 100 ' Wait 0.1 seconds
 counter = counter + 1 ' increment counter
 LOOP
 END

SHIFTOUT – BASIC Stamp Command Reference

Page 440 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SLEEP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 441

SLEEP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SLEEP Duration

Function
Put the BASIC Stamp into low-power mode for a specified time.

• Duration is a variable/constant/expression (1 – 65535) that specifies
the duration of sleep. The unit of time for Duration is 1 second,
though the BASIC Stamp rounds up to the nearest multiple of 2.3
seconds.

Quick Facts
Table 5.118: SLEEP Quick Facts.

NOTE: Current measurements
are based on 5-volt power, no
extra loads and 75° F ambient
temperature.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Current Draw
during Run

1 mA 3 mA 25 mA 60 mA 40 mA 15 mA 55 mA

Current Draw
during SLEEP

25 µA 50 µA 200 µA 500 µA 350 µA 36 µA 450 µA

Related
Commands

END and NAP END, NAP and POLLWAIT

Accuracy of
SLEEP ±1% @ 75°F with stable power supply

Explanation
SLEEP allows the BASIC Stamp to turn itself off, then turn back on after a
programmed period of time. The length of SLEEP can range from 2.3
seconds to slightly over 18 hours. Power consumption is reduced to the
amount described in Table 5.118, assuming no loads are being driven. The
resolution of the SLEEP instruction is 2.304 seconds. SLEEP rounds the
specified number of seconds up to the nearest multiple of 2.304. For
example, SLEEP 1 causes 2.304 seconds of sleep, while SLEEP 10 causes
11.52 seconds (5 x 2.304) of sleep.

Pins retain their previous I/O directions during SLEEP. However, outputs
are interrupted every 2.3 seconds during SLEEP due to the way the chip
keeps time. The alarm clock that wakes the BASIC Stamp up is called the
watchdog timer. The watchdog is a resistor/capacitor oscillator built into
the interpreter chip. During SLEEP, the chip periodically wakes up and
adjusts a counter to determine how long it has been asleep. If it isn’t time
to wake up, the chip “hits the snooze bar” and goes back to sleep.

NOTE: Expressions are not allowed as
arguments on the BS1.

1 All 2

1

SLEEP – BASIC Stamp Command Reference

Page 442 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

To ensure accuracy of SLEEP intervals, the BASIC Stamp periodically
compares the watchdog timer to the more-accurate resonator time base. It
calculates a correction factor that it uses during SLEEP. As a result, longer
SLEEP intervals are accurate to approximately ±1 percent.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during SLEEP, current will be interrupted
for about 18 ms (60 µs on the BS2pe) when the BASIC Stamp wakes up
every 2.3 seconds. The reason is that the watchdog-timer reset that
awakens the BASIC Stamp also causes all of the pins to switch to input
mode for approximately 18 ms. When the interpreter firmware regains
control of the processor, it restores the I/O directions dictated by your
program.

If you plan to use END, NAP, POLLWAIT or SLEEP in your programs,
make sure that your loads can tolerate these periodic power outages. The
simplest solution is often to connect resistors high or low (to +5V or
ground) as appropriate to ensure a continuing supply of current during
the reset glitch. The demo program demonstrates the effects of this glitch.

Figure 5.45: SLEEP Example LED
Circuit.

Demo Program (SLEEP.bs2)

' SLEEP.bs2
' This program lights an LED and then goes to sleep. Connect an LED to pin
' 0 as shown in the description of SLEEP in the manual and run the program.
' The LED will turn on, then the BASIC Stamp will go to sleep. During
' sleep,the LED will remain on, but will blink at intervals of
' approximately 2.3 seconds due to the watchdog timeout and reset.

' {$STAMP BS2}

Setup:
 LOW 0 ' turn LED on

NOTE: This example program is written
for the BS2, but it also can be used with
the BS1 and all other BS2 models by
changing the $STAMP directive
accordingly.

1 All 2

5: BASIC Stamp Command Reference – SLEEP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 443

Snooze:
 SLEEP 10 ' sleep for 10 seconds
 GOTO Snooze
 END

SLEEP – BASIC Stamp Command Reference

Page 444 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SOUND

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 445

SOUND BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SOUND Pin, (Note, Duration { , Note, Duration…})
(See FREQOUT)

Function
Generate square-wave tones for a specified period.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode.

• Note is a variable/constant (0 – 255) specifying the type and
frequency of the tone. 1 – 127 are ascending tones and 128 – 255 are
ascending white noises ranging from buzzing (128) to hissing (255).

• Duration is a variable/constant (1 - 255) specifying the amount of
time to generate the tone(s). The unit of time for Duration is 12 ms.

Quick Facts
Table 5.119: SOUND Quick
Facts.

 BS1
Units in Duration 12 ms
Available Sounds 256
Frequency Range 94.8 Hz to 10,550 Hz

Explanation
SOUND generates one of 256 square-wave frequencies on an I/O pin. The
output pin should be connected as shown in Figure 5.46.

The tones produced by SOUND can vary in frequency from 94.8 Hz (1) to
10,550 Hz (127). If you need to determine the frequency corresponding to a
given note value, or need to find the note value that will give you best
approximation for a given frequency, use the equations below.

Note = 127 – (((1/Frequency)-0.000095)/0.000083)

--and--

Frequency = (1/(0.000095 + ((127–Note)*0.000083))

In the above equations, Frequency is in Hertz (Hz).

All 2

1

SOUND – BASIC Stamp Command Reference

Page 446 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

from I/O pin
1k

0.1µF 0.01µF

1k

Driving an Audio Amplifier

Amplifier
(e.g., Radio Shack
277-1008C)

Vss Vss Vss

10µF (both)

++
≥40Ω Speaker
(or 8Ω in series
with 33Ω resistor)

from I/O pin

C1 C2

Notes:
C1 may be omitted for piezo speakers
C2 is optional, but reduces high-frequency noise

Driving a Speaker

Vss Vss

Figure 5.46: Example RC filter
circuits for driving an audio amplifier
(top) or a speaker(bottom).

Demo Program (SOUND.bs1)

' SOUND.bs1
' This program generates a constant tone 25 followed by an ascending tones.
' Both the tones have the same duration.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL tone = B2

Main:
 FOR tone = 0 TO 255
 SOUND 0, (25, 10, tone, 10)
 NEXT
 END

1

5: BASIC Stamp Command Reference – STOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 447

STOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

STOP

Function
Stop program execution.

Quick Facts

Table 5.120: STOP Quick Facts.

 All BS2 Models
Related

Command
END

Explanation
STOP prevents the BASIC Stamp from executing any further instructions
until it is reset. The following actions will reset the BASIC Stamp:

1. Pressing and releasing the RESET button on the development
board.

2. Driving the RES pin low then letting it float (high).
3. Downloading a new program
4. Disconnecting then reconnecting the power.

STOP differs from END in two respects:

1. Stop does not put the BASIC Stamp into low-power mode. The
BASIC Stamp draws just as much current as if it were actively
running program instructions.

2. The output glitch that occurs after a program has "ended" does not
occur after a program has "stopped."

Demo Program (STOP.bs2)

' STOP.bs2
' This program is similar to SLEEP.BS2 except that the LED will not blink
' since the BASIC Stamp does not go into low power mode. Use the circuit
' shown in the description of the SLEEP command for this example.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 LOW 0 ' turn LED on
 STOP ' stop program

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

STOP – BASIC Stamp Command Reference

Page 448 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 449

STORE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

STORE ProgramSlot

Function
Designate a program slot for the READ/WRITE instructions to operate
upon.

• ProgramSlot is a variable/constant/expression (0 – 7 on BS2p and
BS2px, 0-15 on BS2pe) that specifies the program slot to use for
READ and WRITE instructions.

Quick Facts

Table 5.121: STORE Quick
Facts.

 BS2p and BS2px BS2pe
Program Slot

Range
0 —7 0 —15

Related
Commands

READ and WRITE

Explanation
STORE tells the BS2p, BS2pe, and BS2px which program slot to use when a
READ or WRITE instruction is executed. The STORE command only
affects the READ and WRITE instructions.

The STORE command allows a program to access all EEPROM locations
that exist on the BS2p, BS2pe, and BS2px regardless of which program is
running. The READ and WRITE commands can only access locations 0 to
2047 within a single program slot. The STORE command switches the
program slot that the READ and WRITE commands operate on.

The default program slot that the READ and WRITE instructions operate
on is that of the currently running program. The STORE command can be
used to temporarily change this, to any program slot. The change will
remain in effect until another STORE command is issued, or until another
program slot is executed.

STORE – BASIC Stamp Command Reference

Page 450 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (STORE0.bsp)

' STORE0.bsp
' This program demonstrates the STORE command and how it affects the READ
' and WRITE commands. This program "STORE0.BSP" is intended to be down-
' loaded into program slot 0. It is meant to work with STORE1.BSP and
' STORE2.BSP. Each program is very similar (they display the current
' Program Slot and READ/WRITE Slot numbers and the values contained in the
' first five EEPROM locations. Each program slot will have different data
' due to different DATA commands in each of the programs downloaded.

' {$STAMP BS2p, STORE1.BSP, STORE2.BSP}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "This program requires BS2p, BS2pe, or BS2px."
#ENDIF

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 1, 2, 3, 4, 5

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 1 ' point READ/WRITE to Slot 1
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 1 ' run program in Slot 1
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 451

Demo Program (STORE1.bsp)

' STORE1.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 6, 7, 8, 9, 10

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 2 ' run program in Slot 2
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

Demo Program (STORE2.bsp)

' STORE2.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 11, 12, 13, 14, 15

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

STORE – BASIC Stamp Command Reference

Page 452 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 GOSUB Show_Slot_Info
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

The next Demo program, STOREALL.bsp, is not related to the previous
three programs. STOREALL.bsp demonstrates the use of the STORE
command to treat contiguous program slots as one block of memory (14
kBytes on the BS2p and BS2px, 30 kBytes on the BS2pe). This illustrates
one of the most powerful uses of the STORE command.

Demo Program (STOREALL.bsp)

' STOREALL.bsp
' This program demonstrates the STORE command and how it can be used to
' "flatten" the EEPROM space for applications requiring a lot of storage.
' This program writes to EEPROM locations within program slots 1 though 7
' on the BS2p and BS2px, and 1 through 15 on the BS2pe, thus, has access to
' 14- or 30-kBytes of space.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2SX
 #ERROR "This program requires BS2p, BS2pe, or BS2px."
 #CASE BS2P, BS2PX
 HiSlot CON 7
 #CASE BS2PE
 HiSlot CON 15
#ENDSELECT

LoSlot CON 1 ' first slot for "flat" EE
MemSize CON HiSlot - LoSlot + 1 * 2048

eeAddr VAR Word ' address pointer
value VAR Word ' cell value
slot VAR Byte ' current R/W slot

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 453

Main:
 DEBUG "Flat Memory", CR,
 "---------------------", CR,
 "First Slot..... ", DEC LoSlot, CR,
 "Last Slot...... ", DEC HiSlot, CR,
 "Flat EE Size... ", DEC MemSize, CR, CR

 PAUSE 2000
 DEBUG "Writing to flat Memory...", CR
 PAUSE 1000
 FOR eeAddr = 0 TO (MemSize - 1) STEP 128 ' step through "flat" EE
 value = eeAddr * 2 ' generate value
 GOSUB Write_Word ' write it
 GET 127, slot ' get R/W slot
 DEBUG "--> Location: ", DEC5 eeAddr, " ", ' show "flat" address
 "Value: ", DEC5 value, " ", ' show value
 "(", DEC slot.NIB1, ")", CR ' show slot
 NEXT
 DEBUG CR

 DEBUG "Reading from flat Memory...", CR
 PAUSE 1000
 FOR eeAddr = 0 TO (MemSize - 1) STEP 128
 GOSUB Read_Word ' read value from EE
 GET 127, slot ' get W/R slot
 DEBUG "<-- Location: ", DEC5 eeAddr, " ",
 "Value: ", DEC5 value, " ",
 "(", DEC slot.NIB1, ") "
 IF (value <> (2 * eeAddr)) THEN ' verify location
 DEBUG "- Error"
 ENDIF
 DEBUG CR
 NEXT
 END

Write_Word:
' NOTE: only use even-byte eeAddr with this routine
 STORE (eeAddr >> 11) + LoSlot ' set slot
 WRITE eeAddr, Word value ' write value
 RETURN

Read_Word:
' NOTE: only use even-byte eeAddr with this routine
 STORE (eeAddr >> 11) + LoSlot ' set slot
 READ eeAddr, Word value ' read value
 RETURN

STORE – BASIC Stamp Command Reference

Page 454 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 455

TOGGLE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

TOGGLE Pin

Function
Invert the state of an output pin.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to switch logic state. This pin will be placed into output
mode.

Quick Facts
Table 5.122: TOGGLE Quick
Facts.

 BS1 All BS2 Models
Affected
Register

PINS OUTS

Related
Commands

HIGH and LOW

Explanation
TOGGLE sets a pin to output mode and inverts the output state of the pin,
changing 0 to 1 and 1 to 0.

In some situations TOGGLE may appear to have no effect on a pin’s state.
For example, suppose pin 2 is in input mode and pulled to +5V by a 10k
resistor. Then the following code executes:

DIR2 = 0 ' make P2 an input
PIN2 = 0 ' make P2 output driver low
DEBUG PIN2 ' show P2 state (1 due to pull-up)
TOGGLE 2 ' toggle P2
DEBUG PIN2 ' show P2 state (1 again)

- or -

DIR2 = 0 ' make P2 an input
OUT2 = 0 ' make P2 output driver low
DEBUG ? IN2 ' show P2 state (1 due to pull-up)
TOGGLE 2 ' toggle P2
DEBUG ? IN2 ' show P2 state (1 again)

The state of pin 2 doesn’t change; it's high (due to the resistor) before
TOGGLE, and it’s high (due to the pin being output high) afterward. The
point is that TOGGLE works on the OUTS register (PINS on the BS1),
which may not match the pin’s state when the pin is initially an input. To

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1 All 2

1

1

All 2

TOGGLE – BASIC Stamp Command Reference

Page 456 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

guarantee that the state actually changes, regardless of the initial input or
output mode, do this:

PIN2 = PIN2 ' make output driver match input
TOGGLE 2 ' then toggle

- or -

OUT2 = IN2 ' make output driver match input
TOGGLE 2 ' then toggle

Figure 5.47: Example LED Circuit
for TOGGLE Demo Programs.

Demo Program (TOGGLE.bs1)

' TOGGLE.bs1
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL thePin = B0 ' pin 0 - 3

Setup:
 DIRS = %1111 ' make LEDs output, low

Main:
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG CLS, %PINS ' show on Debug
 PAUSE 100 ' short delay
 NEXT
 GOTO Main ' repeat forever
 END

All 2

1

1

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 457

Demo Program (TOGGLE.bs2)

' TOGGLE.bs2
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS2}
' {$PBASIC 2.5}

thePin VAR Nib ' pin 0 - 3

Setup:
 DIRA = %1111 ' make LEDs output, low

Main:
 DO
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG HOME, BIN4 OUTA ' show on Debug
 PAUSE 250 ' short delay
 NEXT
 LOOP ' repeat forever
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

TOGGLE – BASIC Stamp Command Reference

Page 458 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – WRITE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 459

WRITE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

WRITE Location, Value
WRITE Location, { WORD } Value {, { WORD } Value... }

Function
Write Value into Location in EEPROM.

• Location is a variable/constant/expression (0 – 255 on BS1, 0 – 2047
on all BS2 models) that specifies the EEPROM address to write to.

• Value is a variable/constant/expression (0 – 255, or 0 – 65535 if
using the optional WORD modifier) to store in the EEPROM.

Quick Facts
Table 5.123: WRITE Quick Facts.

 BS1 BS2 BS2e and BS2sx BS2p, BS2pe, BS2px
Range of
EEPROM
Locations

0 to 255 0 to 2047 0 to 2047
0 to 2047

(see notes below)

Maximum
Number of
Writes per
Location

10 million 10 million 100,000 100,000

Special
Notes

n/a n/a

WRITE only works
with current program

slot on
BS2e and BS2sx.

WRITE works with any
program slot as set by
the STORE command.

Related
Commands

READ and
EEPROM

READ and
DATA

READ and DATA
READ, DATA, and

STORE
PBASIC 2.5

Syntax
Options

n/a
 Multiple sequential variables may be written to the Scratch
Pad RAM, and the optional WORD modifier may be
specified to store 16-bit values.

Explanation
The EEPROM is used for both program storage (which builds downward
from address 255 on BS1, 2047 on all BS2 models) and data storage (which
builds upward from address 0). The WRITE instruction stores a value to
any EEPROM address. Any location within the EEPROM can be written
to (including your PBASIC program's locations) at run-time. This feature is
mainly used to store long-term data to EEPROM; data stored in EEPROM
is not lost when the power is removed.

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

NOTE: Optional arguments
require PBASIC 2.5.

WRITE – BASIC Stamp Command Reference

Page 460 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The following WRITE command stores the value 245 at location 100:

WRITE 100, 245

--or--

WRITE 100, 245

The EEPROM is organized as a sequential set of byte-sized memory
locations. The WRITE command normally only stores byte-sized values
into EEPROM. This does not mean that you can't write word-sized values,
however. A word consists of two bytes, called a low-byte and a high-byte.
If you wanted to write a word-sized value, you'll need to use two WRITE
commands and a word-sized value or variable. For example,

SYMBOL value = W0
SYMBOL valLo = B0
SYMBOL valHi = b1

value = 1125

WRITE 0, valLo ' write low byte
WRITE 1, valHi ' write high byte

- or -

value VAR Word

value = 1125

WRITE 0, value.LOWBYTE ' write low byte
WRITE 1, value.HIGHBYTE ' write high byte

When this program runs, the two WRITE commands will store the low-
byte and high-byte of the number 1125 into EEPROM.

On all BS2 models, with PBASIC 2.5 you can use a single WRITE
command with the WORD modifier to write a 16-bit value. The low-byte
of the value will be written to Location, the high byte will be written to
Location + 1.

WRITING WORD VALUES VS. BYTE VALUES.

A SIMPLE WRITE COMMAND.

1

All 2

1

NOTE: this method is required only if
using PBASIC 2.0. See section below
for PBASIC 2.5 method.

All 2

5: BASIC Stamp Command Reference – WRITE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 461

' {$PBASIC 2.5}

value VAR Word

value = 1125

WRITE 0, Word value ' write two bytes

When using PBASIC 2.5, a single WRITE command can write multiple
bytes and words to sequential EEPROM locations. For example:

' {$PBASIC 2.5}

value VAR Byte
value2 VAR Word

value = 18
value2 = 1125

WRITE 25, value, Word value2 ' write byte to location 25
 ' and word to locations 26 and 27

EEPROM differs from RAM, the memory in which variables are stored, in
several respects:

1. Writing to EEPROM takes more time than storing a value in a
variable. Depending on many factors, it may take several
milliseconds for the EEPROM to complete a write. RAM storage is
nearly instantaneous.

2. The EEPROM can only accept a finite number of write cycles per
location before it wears out. Table 5.123 indicates the guaranteed
number of writes before failure. If a program frequently writes to
the same EEPROM location, it makes sense to estimate how long it
might take to exceed the guaranteed maximum. For example, on
the BS2, at one write per second (86,400 writes/day) it would take
nearly 116 days of continuous operation to exceed 10 million.

3. The primary function of the EEPROM is to store programs (data is
stored in leftover space). If data overwrites a portion of your
program, the program will most likely crash.

Check the program’s memory map to determine what portion of memory
your program occupies and make sure that EEPROM writes cannot stray
into this area. You may also use the DATA directive on all BS2 models to
set aside EEPROM space.

SPECIAL NOTES FOR EEPROM USAGE.

All 2

All 2

WRITE – BASIC Stamp Command Reference

Page 462 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

On the BS1, location 255 holds the address of the last instruction in your
program. Therefore, your program can use any space below the address
given in location 255. For example, if location 255 holds the value 100,
then your program can use locations 0–99 for data. You can read location
255 at run-time or simply view the Memory Map of the program before
you download it. On all BS2 models, you will need to view the Memory
Map of the program before you download it to determine the last
EEPROM location used. See the Memory Map section of Chapter 3.

On the BS2p, BS2pe, and BS2px, the READ and WRITE commands can
affect locations in any program slot as set by the STORE command. See
the STORE command for more information.

Demo Program (WRITE.bs1)

' WRITE.bs1
' This program writes a few bytes to EEPROM and then reads them back out
' and displays them in the Debug window.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL addr = B2 ' address
SYMBOL value = B3 ' value

Main:
 WRITE 0, 100 ' write some data to locations 0 - 3
 WRITE 1, 200
 WRITE 2, 45
 WRITE 3, 28

Read_EE:
 FOR addr = 0 TO 3
 READ addr, value ' read value from address
 DEBUG #addr, ": ", #value, CR ' display address and value
 NEXT
 END

1

5: BASIC Stamp Command Reference – WRITE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 463

Demo Program (WRITE.bs2)

' WRITE.bs2
' This program writes some data to EEPROM and then reads them back out
' and displays the data in the Debug window.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Byte ' loop control
value VAR Word(3) ' value(s)

Main:
 WRITE 0, 100 ' single byte
 WRITE 1, Word 1250 ' single word
 WRITE 3, 45, 90, Word 725 ' multi-value write

Read_EE:
 FOR idx = 0 TO 6 ' show raw bytes in EE
 READ idx, value
 DEBUG DEC1 idx, " : ", DEC value, CR
 NEXT
 DEBUG CR

 ' read values as stored

 READ 0, value
 DEBUG DEC value, CR
 READ 1, Word value
 DEBUG DEC value, CR
 READ 3, value(0), value(1), Word value(2)
 FOR idx = 0 TO 2
 DEBUG DEC value(idx), CR
 NEXT
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

WRITE – BASIC Stamp Command Reference

Page 464 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – XOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 465

XOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

XOUT Mpin, Zpin, [House \Command { \Cycles} {, House \Command { \Cycles }…}]

Function
Send an X-10 power-line control command (through the appropriate
power-line interface).

• Mpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to output X-10 signals (modulation) to the power-line interface
device. This pin will be set to output mode.

• Zpin is a variable/constant/expression (0 – 15) that specifies the I/O
pin that inputs the zero-crossing signal from the power-line
interface device. This pin will be set to input mode.

• House is a variable/constant/expression (0 – 15) that specifies the X-
10 house code (values 0 - 15 representing letters A through P).

• Command is a variable/constant/expression (0 – 31) that specifies the
command to send. Values 0 – 15 correspond to unit codes 1 – 16.
Other commands are shown in Table 5.125.

• Cycles is an optional variable/constant/expression (1 – 255)
specifying the number of times to transmit a given key or command.
If no Cycles argument is used, XOUT defaults to two. The Cycles
argument should be used only with the DIM and BRIGHT
command codes

Quick Facts
Table 5.124: XOUT Quick Facts.

 All BS2 Models
Compatible
Power-line
Interfaces

PL-513 and TW-523

Special Notes
The XOUT command will stop the BASIC Stamp program until it is able

to send the transmission. If there is no AC power to the power-line
interface, the BASIC Stamp program will halt forever.

Explanation
XOUT lets you control appliances via signals sent through household AC
wiring to X-10 modules. The appliances plugged into these modules can
be switched on or off; lights may also be dimmed. Each module is

All 2

XOUT – BASIC Stamp Command Reference

Page 466 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

assigned a house code and unit code by setting dials or switches on the
module. To talk to a particular module, XOUT sends the appropriate
house code and unit code. The module with the corresponding code
listens for its house code again followed by a command (on, off, dim, or
bright).

X-10 signals are digital codes imposed on a 120 kHz carrier that is
transmitted during zero crossings of the AC line. To send X-10
commands, a controller must synchronize to the AC line frequency with
50 µs precision, and transmit an 11-bit code sequence representing the
command.

XOUT interfaces to the AC power-line through an approved interface
device such as a PL-513 or TW-523, available from X-10 dealers. The
hookup requires a length of four-conductor phone cable and a standard
modular phone-base connector (6P4C type). Connections are shown in
Figure 5.48.

P0

Vdd

10 kΩ

Bottom of power-line
interface (PL-513 or TW-523)

P1

Vss

1 2 3 4

Figure 5.48: XOUT Power-Line
Interface Circuit.

X-10 PROTOCOL DETAILS.

5: BASIC Stamp Command Reference – XOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 467

Table 5.125 lists the XOUT command codes and their functions:

Table 5.125: XOUT Commands
and Their Function.

Command Value Function
UNITON %10010 Turn on the currently selected unit.
UNITOFF %11010 Turn off the currently selected unit.
UNITSONf %11100 Turn off all modules in this house code.
LIGHTSON %10100 Turn on all lamp modules in this house code.

DIM %11110 Reduce brightness of currently selected lamp.
BRIGHT %10110 Increase brightness of currently selected lamp.

Note: In most applications, it’s not necessary to know the code for a given X-10 instruction.
Just use the command constant (UnitOn, Dim, etc.) instead. But knowing the codes leads to
some interesting possibilities. For example, XORing a UnitOn command with the value
%1000 turns it into a UnitOff command, and vice-versa. This makes it possible to write the
equivalent of an X-10 “toggle” instruction.

Here is an example of the XOUT instruction:

Mpin PIN 0 ' modulation pin
Zpin PIN 1 ' zero-cross input

HouseA CON 0 ' House code A = 0
Unit1 CON 0 ' Unit code 1 = 0

XOUT Mpin, Zpin, [HouseA\Unit1] ' get Unit1's attention
XOUT Mpin, Zpin, [HouseA\UNITON] ' turn it on

You can combine those two XOUT instructions into one like so:

XOUT Mpin, Zpin, [HouseA\Unit1\2, HouseA\UNITON] ' Unit 1 on.

Note that to complete the attention-getting code HouseA\Unit1 we tacked
on the normally optional cycles entry \2 to complete the command before
beginning the next one. Always specify two cycles in multiple commands
unless you’re adjusting the brightness of a lamp module.

Here is an example of a lamp-dimming instruction:

Mpin PIN 0 ' modulation pin
Zpin PIN 1 ' zero-cross input

HouseA CON 0 ' House code A = 0
Unit1 CON 0 ' Unit code 1 = 0

XOUT Mpin, Zpin, [HouseA\Unit1] ' get Unit1's attention
XOUT Mpin, Zpin, [HouseA\UNITOFF\2] ' turn it off
XOUT Mpin, Zpin, [HouseA\DIM\10] ' dim half way

COMBINING MULTIPLE COMMANDS.

DIMMING LIGHTS.

A SIMPLE XOUT EXAMPLE: TURNING AN

APPLIANCE ON.

XOUT – BASIC Stamp Command Reference

Page 468 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The dim/bright commands support 19 brightness levels. Lamp modules
may also be turned on and off using the standard UnitOn and UnitOff
commands. In the example instruction above, we dimmed the lamp by
first turning it completely off, then sending 10 cycles of the Dim
command. This may seem odd, but it follows the peculiar logic of the X-10
system.

Demo Program (X10.bs2)

' XOUT.BS2
' This program--really two program fragments--demonstrates the syntax and
' use of the XOUT command. XOUT works like pressing the buttons on an X-10
' control box; first you press one of 16 keys to identify the unit you want
' to control, then you press the key for the action you want that unit to
' take (turn ON, OFF, Bright, or Dim). There are also two group-action
' keys, Lights ON and All OFF. Lights ON turns all lamp modules on without
' affecting appliance modules. All OFF turns off all modules, both lamp and
' appliance types. Connect the BASIC Stamp to a power-line interface as
' shown in the XOUT command description in the manual.

' {$STAMP BS2}
' {$PBASIC 2.5}

Mpin PIN 0 ' modulation pin
Zpin PIN 1 ' zero-cross input

HouseA CON 0 ' House code A = 0
Unit1 CON 0 ' Unit code 1 = 0
Unit2 CON 1 ' Unit code 2 = 1

' This first example turns a standard (appliance or non-dimmer lamp) module
' ON, then OFF. Note that once the Unit code is sent, it need not be
' repeated
' --subsequent instructions are understood to be addressed to that unit.

Main:
 XOUT Mpin, Zpin, [HouseA\Unit1\2] ' select Unit1 (appliance module)
 XOUT Mpin, Zpin, [HouseA\UNITON] ' turn it on

 PAUSE 1000 ' wait one second

 XOUT Mpin, Zpin, [HouseA\UNITOFF] ' then turn it off

' The next example talks to a lamp module using the dimmer feature. Dimmers
' go from full ON to dimmed OFF in 19 steps. Because dimming is relative to
' the current state of the lamp, the only guaranteed way to set a
' predefined brightness level is to turn the dimmer fully OFF, then ON,
' then dim to the desired level.

 XOUT Mpin, Zpin, [HouseA\Unit2\2] ' select Unit2 (lamp module)

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – XOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 469

' This example shows the use of the optional Cycles argument. Here we DIM
' for 10 cycles.

 XOUT Mpin, Zpin, [HouseA\UNITOFF\2, HouseA\DIM\10]
 STOP

XOUT – BASIC Stamp Command Reference

Page 470 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Appendix A: ASCII Chart

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 471

ASCII Chart (first 128 characters)
Dec Hex Char Name / Function Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL Null 32 20 space 64 40 @ 96 60 `
1 01 SOH Start Of Heading 33 21 ! 65 41 A 97 61 a
2 02 STX Start Of Text 34 22 " 66 42 B 98 62 b
3 03 ETX End Of Text 35 23 # 67 43 C 99 63 c
4 04 EOT End Of Transmit 36 24 $ 68 44 D 100 64 d
5 05 ENQ Enquiry 37 25 % 69 45 E 101 65 e
6 06 ACK Acknowledge 38 26 & 70 46 F 102 66 f
7 07 BEL Bell 39 27 ' 71 47 G 103 67 g
8 08 BS Backspace 40 28 (72 48 H 104 68 h
9 09 HT Horizontal Tab 41 29) 73 49 I 105 69 i

10 0A LF Line Feed 42 2A * 74 4A J 106 6A j
11 0B VT Vertical Tab 43 2B + 75 4B K 107 6B k
12 0C FF Form Feed 44 2C , 76 4C L 108 6C l
13 0D CR Carriage Return 45 2D - 77 4D M 109 6D m
14 0E SO Shift Out 46 2E . 78 4E N 110 6E n
15 0F SI Shift In 47 2F / 79 4F O 111 6F o
16 10 DLE Data Line Escape 48 30 0 80 50 P 112 70 p
17 11 DC1 Device Control 1 49 31 1 81 51 Q 113 71 q
18 12 DC2 Device Control 2 50 32 2 82 52 R 114 72 r
19 13 DC3 Device Control 3 51 33 3 83 53 S 115 73 s
20 14 DC4 Device Control 4 52 34 4 84 54 T 116 74 t
21 15 NAK Non Acknowledge 53 35 5 85 55 U 117 75 u
22 16 SYN Synchronous Idle 54 36 6 86 56 V 118 76 v
23 17 ETB End Transmit Block 55 37 7 87 57 W 119 77 w
24 18 CAN Cancel 56 38 8 88 58 X 120 78 x
25 19 EM End Of Medium 57 39 9 89 59 Y 121 79 y
26 1A SUB Substitute 58 3A : 90 5A Z 122 7A z
27 1B ESC Escape 59 3B ; 91 5B [123 7B {
28 1C FS File Separator 60 3C < 92 5C \ 124 7C |
29 1D GS Group Separator 61 3D = 93 5D] 125 7D }
30 1E RS Record Separator 62 3E > 94 5E ^ 126 7E ~
31 1F US Unit Separator 63 3F ? 95 5F _ 127 7F delete

Note that the control codes (lowest 32 ASCII characters) have no standardized screen symbols. The characters listed for them are
just names used in referring to these codes. For example, to move the cursor to the beginning of the next line of a printer or
terminal often requires sending line feed and carriage return codes. This common pair is referred to as "LF/CR."

ASCII Chart

Page 472 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Appendix B: Reserved Words

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 473

Reserved Words

This appendix contains complete listings of the reserved words for
PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5, current with the BASIC Stamp
Editor v2.1.

The reserved word lists have been organized into 4 tables, because it
varies with each BASIC Stamp model and version of PBASIC. Table B.1
shows the reserved words for the BASIC Stamp 1, using the required
PBASIC 1.0.

Table B.1: BS1 Reserved Words.

BS1
AND GOSUB N2400 PIN0..PIN7 SOUND

B0..B13 GOTO NAP PINS STEP
BIT0..BIT15 HIGH NEXT PORT SYMBOL

BRANCH IF ON300 POT T300
BSAVE INPUT ON600 PULSIN T600

BUTTON LET ON1200 PULSOUT T1200
CLS LOOKDOWN ON2400 PWM T2400
CR LOOKUP OR RANDOM THEN

DEBUG LOW OT300 READ TO
DIR0..DIR7 MAX OT600 RETURN TOGGLE

DIRS MIN OT1200 REVERSE W0..W6
EEPROM N300 OT2400 SERIN WRITE

END N600 OUTPUT SEROUT
FOR N1200 PAUSE SLEEP

Table B.2 on the following page lists the reserved words common to all
BS2 models, including those for PBASIC 2.0 and PBASIC 2.5. Words listed
that are only reserved when using PBASIC 2.5 are marked with (2.5).

Reserved Words

Page 474 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 All BS2 Models
#CASE2.5 CRSRX2.5 INC PULSIN

#DEFINE2.5 CRSRXY2.5 IND PULSOUT
#ELSE2.5 CRSRY2.5 INH PWM
#ENDIF2.5 DATA INL RANDOM

#ENDSELECT2.5 DCD INPUT RCTIME
#ERROR2.5 DEBUG INS READ

#IF2.5 DEBUGIN2.5 ISBIN REP
#SELECT2.5 DEC ISBIN1...ISBIN16 RETURN

#THEN2.5 DEC1...DEC5 ISHEX REV
$PBASIC DIG ISHEX1...ISHEX4 REVERSE
$PORT DIM LF2.5 SBIN

$STAMP DIR0...DIR15 LIGHTSON SBIN1...SBIN16
ABS DIRA LOOKDOWN SDEC
AND DIRB LOOKUP SDEC1...SDEC5
ASC DIRC LOOP2.5 SELECT2.5
ATN DIRD LOW SERIN

B0...B25 DIRH LOWBIT SEROUT
BELL DIRL LOWBYTE SHEX
BIN DIRS LOWNIB SHEX1...SHEX4

BIN1...BIN16 DO2.5 LSBFIRST SHIFTIN
BIT DTMFOUT LSBPOST SHIFTOUT

BIT0...BIT15 ELSE2.5 LSBPRE SIN
BKSP ELSEIF2.5 MAX SKIP

BRANCH END MIN SLEEP
BRIGHT ENDIF2.5 MSBFIRST SNUM

BS1 ENDSELECT2.5 MSBPOST SQR
BS2 EXIT2.5 MSBPRE STEP

BS2E FOR NAP STOP
BS2P FREQOUT NCD STR

BS2PE GOSUB NEXT TAB
BS2SX GOTO NIB THEN

BUTTON HEX NIB0...NIB3 TO
BYTE HEX1...HEX4 NOT TOGGLE

BYTE0 HIGH NUM UNITOFF
BYTE1 HIGHBIT ON2.5 UNITON
CASE2.5 HIGHBYTE OR UNITSOFF

CLRDN2.5 HIGHNIB OUT0...OUT15 UNTIL2.5
CLREOL2.5 HOME OUTA VAR

CLS HYP OUTB W0...W12
CON IBIN OUTC WAIT
COS IBIN1...IBIN16 OUTD WAITSTR

COUNT IF OUTH WHILE2.5
CR IHEX OUTL WORD

CRSRDN2.5 IHEX1...IHEX4 OUPUT WRITE
CRSRLF2.5 IN0...IN15 OUTS XOR
CRSRRT2.5 INA PAUSE XOUT
CRSRUP2.5 INB PIN2.5

Table B.2 Reserved Words
common to all BS2 Models.

NOTE: This list includes reserved
words for both PBASIC 2.0 and
PBASIC 2.5. Words indicated with
the symbol (2.5) are only reserved if
used with PBASIC 2.5.

Appendix B: Reserved Words

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 475

There are some reserved words unique to specific BS2 models.

The BS2e and BS2sx have all the reserved words shown in Table B.2, plus
those shown in Table B.3. These additional words are reserved in both
PBASIC 2.0 and PBASIC 2.5.

Table B.3: Additional Reserved
Words for the BS2e and BS2sx.

BS2e and BS2sx
GET PUT RUN

The BS2p and BS2pe have all the reserved words shown in Table B.2, plus
those shown in Table B.4. These additional words are reserved in both
PBASIC 2.0 and PBASIC 2.5.

Table B.4: Additional Reserved
Words for the BS2p and BS2pe.

BS2p and BS2pe
AUXIO LCDCMD OWOUT POLLWAIT
GET LCDIN POLLIN PUT
I2CIN LCDOUT POLLMODE RUN

I2COUT MAINIO POLLOUT SPSTR
IOTERM OWIN POLLRUN STORE

The BS2px has all the reserved words shown in Table B.2, plus those
shown in Table B.5. These additional words are reserved in both PBASIC
2.0 and PBASIC 2.5.

Table B.5: Additional Reserved
Words for the BS2px.

BS2px
AUXIO IOTERM POLLIN RUN

COMPARE LCDCMD POLLMODE SCHMITT
CONFIGPIN LCDIN POLLOUT SPSTR
DIRECTION LCDOUT POLLRUN STORE

GET MAINIO POLLWAIT THRESHOLD
I2CIN OWIN PULLUP

I2COUT OWOUT PUT

Reserved Words

Page 476 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Appendix C: Conversion Formatters

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 477

Conversion Formatters
This appendix lists the Conversion Formatters available for the commands
DEBUGIN, I2CIN, LCDIN, OWIN and SERIN and demonstrates, through
various input/output data examples, exactly what will be received when
using these formatters.

The following tables show data examples (characters received) across the
top and formatters across the left side, with the results of that combination
shown in the target cell.

For example, with the following code:

Value VAR WORD

DEBUGIN SDEC Value

the Decimal Formatters table shows us that if the characters -123 (followed
by a carriage return) are received, the SDEC formatter will translate that to
the word-sized decimal number -123 and will store that value into the
Value variable.

NOTE: In all tables below, values in target cells represent the number base
of the formatter (decimal for DEC, hexadecimal for HEX, etc) except where
noted. Additionally, “--“ means no valid data (or not enough valid data)
was received so the command will halt forever unless additional data is
received or SERIN’s Timeout argument is used.

Table C.1: Decimal Formatters.

Characters Received Decimal
Formatters ⊗ 123 123⊗ -123⊗ ⊗123⊗ 12345⊗ 65536⊗ 255255⊗

DEC -- -- 123 123 123 12345 0 58647
DEC1 -- 1 1 1 1 1 6 2
DEC2 -- 12 12 12 12 12 65 25
DEC3 -- 123 123 123 123 123 655 255
DEC4 -- -- 123 123 123 1234 6553 2552
DEC5 -- -- 123 123 123 12345 0 25525
SDEC -- -- 123 -123 123 12345 0 -6889

SDEC1 -- 1 1 -1 1 1 6 2
SDEC2 -- 12 12 -12 12 12 65 25
SDEC3 -- 123 123 -123 123 123 655 255
SDEC4 -- -- 123 -123 123 1234 6553 2552

⊗ Means any non-decimal-numeric characters such as letters, spaces, minus signs, carriage
returns, control characters, etc. (Decimal numerics are: 0,1,2,3,4,5,6,7,8 and 9).

Conversion Formatters

Page 478 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Characters Received Hexadecimal
Formatters ⊗ 1F 1F⊗ -1F⊗ ⊗1F⊗ 15AF⊗ 10000⊗ 3E517⊗

HEX -- -- 1F 1F 1F 15AF 0 E517
HEX1 -- 1 1 1 1 1 1 3
HEX2 -- 1F 1F 1F 1F 15 10 3E
HEX3 -- -- 1F 1F 1F 15A 100 3E5
HEX4 -- -- 1F 1F 1F 15AF 1000 3E51
SHEX -- -- 1F -1F 1F 15AF 0 -1AE9

SHEX1 -- 1 1 -1 1 1 1 3
SHEX2 -- 1F 1F -1F 1F 15 10 3E
SHEX3 -- -- 1F -1F 1F 15A 100 3E5

Table C.2: Hexadecimal
Formatters.

NOTE: The HEX formatters are not case sensitive. For example, 1F is the same as 1f.
⊗ Means any non-hexadecimal-numeric characters such as letters (greater than F), spaces,

minus signs, carriage returns, control characters, etc. (Hexadecimal numerics are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Characters Received Additional

Hexadecimal
Formatters

⊗ 1F 1F⊗ $1F $1F⊗ -$1F⊗ ⊗$1F⊗ $15AF⊗

IHEX -- -- -- -- 1F 1F 1F 15AF
IHEX1 -- -- -- 1 1 1 1 1
IHEX2 -- -- -- 1F 1F 1F 1F 15
IHEX3 -- -- -- -- 1F 1F 1F 15A
IHEX4 -- -- -- -- 1F 1F 1F 15AF
ISHEX -- -- -- -- 1F -1F 1F 15AF

ISHEX1 -- -- -- 1 1 -1 1 1
ISHEX2 -- -- -- 1F 1F -1F 1F 15
ISHEX3 -- -- -- -- 1F -1F 1F 15A
ISHEX4 -- -- -- -- 1F -1F 1F 15AF

Table C.3: Additional Hexadecimal
Formatters.

NOTE: The HEX formatters are not case sensitive. For example, 1F is the same as 1f.
⊗ Means any non-hexadecimal-numeric characters such as letters (greater than F), spaces,

minus signs, carriage returns, control characters, etc. (Hexadecimal numerics are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Characters Received Binary

Formatters ⊗ 11 11⊗ -11⊗ ⊗11⊗ 101⊗ 3E517⊗
BIN -- -- 11 11 11 101 1

BIN1 -- 1 1 1 1 1 1
BIN2 -- 11 11 11 11 10 1

BIN3 – BIN16 -- -- 11 11 11 101 1
SBIN -- -- 11 -11 11 101 1

SBIN1 -- 1 1 -1 1 1 1
SBIN2 -- 11 11 -11 11 10 1

Table C.4: Binary Formatters.

⊗ Means any non-binary-numeric characters such as letters, spaces, minus signs, carriage
returns, control characters, etc. (Binary numerics are: 0 and 1).

Appendix C: Conversion Formatters

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 479

Table C.5: Additional Binary
Formatters.

Characters Received Additional
Binary

Formatters
⊗ 11 11⊗ %11 %11⊗ -%11⊗ ⊗%11⊗ %101⊗

IBIN -- -- -- -- 11 11 11 101
IBIN1 -- -- -- 1 1 1 1 1
IBIN2 -- -- -- 11 11 11 11 10

IBIN3 – IBIN16 -- -- -- -- 11 11 11 101
ISBIN -- -- -- -- 11 -11 11 101

ISBIN1 -- -- -- 1 1 -1 1 1
ISBIN2 -- -- -- 11 11 -11 11 10

ISBIN3 – ISBIN16 -- -- -- -- 11 -11 11 101
⊗ Means any non-binary-numeric characters such as letters, spaces, minus signs, carriage

returns, control characters, etc. (Binary numerics are: 0 and 1).

Table C.6: NUM and SNUM with
Decimal Data.

Characters Received General
(Dec. Data) ⊗ 123 123⊗ -123⊗ ⊗123⊗ 12345⊗ 65536⊗ 255255⊗

NUM -- -- 123 123 123 12345 0 58647

⊗ Means any non-decimal-numeric characters such as letters, spaces, minus signs, carriage
returns, control characters, etc. (Decimal numerics are: 0,1,2,3,4,5,6,7,8 and 9).

Table C.7: NUM and SNUM with
Hexadecimal Data.

Characters Received General
(Hex. Data) ⊗ 1F 1F⊗ $1F $1F⊗ -$1F⊗ ⊗$1F⊗ $15AF⊗

NUM -- 1* 1* -- 1F 1F 1F 15AF

NOTE: Hexadecimal data is not case sensitive. For example, 1F is the same as 1f.
⊗ Means any non-hexadecimal-numeric characters such as letters (greater than F), spaces,

minus signs, carriage returns, control characters, etc. (Hexadecimal numerics are:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

* Invalid data; treated as decimal number one because no $ preceded it and non-decimal
digit followed it.

Table C.8: NUM and SNUM with
Binary Data.

Characters Received General
(Bin. Data) ⊗ 11 11⊗ %11 %11⊗ -%11⊗ ⊗%11⊗ %101⊗

NUM -- -- 11* -- 11 11 11 101

⊗ Means any non-binary-numeric characters such as letters, spaces, minus signs, carriage
returns, control characters, etc. (Binary numerics are: 0 and 1).

* Invalid data; treated as decimal number eleven because no % preceded it.

Conversion Formatters

Page 480 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 481

BASIC Stamp 1 Schematic (Rev B)

BASIC Stamp Schematics

Page 482 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2 Schematic (Rev G)

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 483

BASIC Stamp 2e Schematic (Rev B)

BASIC Stamp Schematics

Page 484 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2sx Schematic (Rev E)

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 485

BASIC Stamp 2p24 Schematic (Rev C)

BASIC Stamp Schematics

Page 486 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2p40 Schematic (Rev B)

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 487

BASIC Stamp 2pe Schematic (Rev B)

BASIC Stamp Schematics

Page 488 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2px Schematic (Rev A)

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 489

— # —
#DEFINE, 71
#ERROR, 75
#IF...#THEN, 72
#SELECT...CASE, 74

— $ —
$PBASIC Directive, 32, 44–45

Defaults, 44
required with syntax enhancements,

124
Toolbar Icons, 43

$PORT Directive, 45–46, 50
$STAMP Directive, 32, 43–44

Format, 43
Toolbar Icons, 43
with Multi-File Projects, 68

— . —
.obj File, 76

— 1 —
1-Wire Protocol, 295–301, 303–10

— 2 —
24LC16B EEPROM, 218, 226

— A —
ABS, 105
Absolute Value (ABS), 105
Accessing I/O Pins, 81, 83, 84
Add (+), 109
Aliases, 89–91

Aliases and Variable Modifiers, 89–91
Amplifier, 180, 200, 446
ANALOG I/O, 179, 199, 339, 355, 363,

445, See PWM, POT, RCTIME
AND, 235
AND (&), 109, 118
AND NOT (&/), 109, 120
Architecture, 29, 81
Arctangent (ATN), 109, 114
Arrays, 87–89
ASC, 163
ASC ?, 165, 228, 305, 422
ASCII

Control Characters (Debug Terminal),
66

Display in Debug Terminal, 161, 163
Display in Memory Map, 51

ASCII Chart, 471
ASCII Notation, 96
ASYNCHRONOUS SERIAL, 394, 416,

See also SERIN, SEROUT, OWIN,
OWOUT

ATN, 109, 114
ATN (Pin), 14, 15, 18, 20, 21, 23
Auto Indent, 57
Auxiliary I/O Pins, 129, 247
AUXIO, 129–30, 247, 283

— B —
B0-B13, 82
Backup Copy, 61
BASIC Stamp

Architecture, 29, 81
Hardware, 7
Memory, 29, 81
Networking, 425
Pinouts, 8–20
Reserved Words, 473

BASIC Stamp 1 Rev. Dx, 11
BASIC Stamp Projects. See Multi-file

Projects

Index

Page 490 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp Schematics, 481
BASIC Stamp Windows Editor, 35
Baud Mode (table), 396, 418
Baud Mode, Choosing, 397, 419
BELL, 168
BIN, 162, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Binary Coded Decimal, 97
Binary Notation, 96
Binary Operators, 104, 109–21

Add (+), 109
AND (&), 109, 118
AND NOT (&/), 109, 120
Arctangent (ATN), 109, 114
Digit (DIG), 109, 117
Divide (/), 109, 113
Hypotenuse (HYP), 109, 115
Maximum (MAX), 109, 116
Minimum (MIN), 109, 115
Modulus (//), 109, 113
Multiply (*), 109, 110
Multiply High (**), 109, 111
Multiply Middle (*/), 109, 112
OR (|), 109, 118
OR NOT (|/), 109, 120
Reverse (REV), 109, 118
Shift Left (<<), 109, 117
Shift Right (>>), 109, 117
Subtract (-), 109, 110
XOR (^), 109, 119
XOR NOT (^/), 109, 121

Binary Radian, 106, 107, 114
BKSP, 168
Board of Education, 31
Bookmarks, 38, 57
Brad, 106, 107, 114
BRANCH, 133–35, 289, 387
BRANCHING, 133–35, 137–40, 209–12,

213–14, 231–40, 289–90, 331–34,
375–76, 381–85, 387–90, See also
BRANCH, IF...THEN, GOTO, GOSUB,
ON, RETURN, RUN, POLLRUN,
SELECT...CASE

BRIGHT, 467, See XOUT
BS1 Carrier Board, 30
BS1 Serial Adapter, 27, 30
BS1-IC, 11
BS2-IC, 13
BS2p24-IC, 19
BS2p40-IC, 19
BS2px pin configuration function, 143
BS2px voltage comparison function,

141
BS2px24, 23
BS2sx-IC, 17
BSAVE, 76
BUTTON, 137–40

— C —
Cable (Programming), 27
CASE. See SELECT...CASE
CGRAM, 252, 259, 266
Character Generator RAM. See CGRAM
CLRDN, 168
CLREOL, 168
CLS, 168
Colons (:), 213
Command Line Interface, 78–79
Command Line Switches

Syntax, 78
Comparator

on BS2px, 141
COMPARE, 141–42
Comparison Operators, 232, See

Operators, Comparison
Compiler Directives, 43–46

and Conditional Compilation, 70–75
See $STAMP, $PBASIC, $PORT, 43

Compile-time Expressions, 94–96, 98
CON Directive, 94, 99
Conditional Compilation, 70–75
Conditional Compile Directives

#DEFINE, 71
#ERROR, 75
#IF...#THEN, 72

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 491

#SELECT...CASE, 74
Conditional Logic Operators, 234, 235
CONFIGPIN, 143–46

Logic Threshold mode, 144
Output Direction mode, 143
Pull-up Resistors mode, 144
Schmitt Trigger mode, 145

Connecting & Downloading, 29
Connecting/Disconnecting, 25, 27
Constants, 94–96

Defining and Using, 94
Operators in Constant Expressions, 96

Control Characters, 167
Conversion Formatters, 477–79

DEBUGIN, 173
I2CIN, 220
I2COUT, 227
LCDIN, 260
OWIN, 298
OWOUT, 306
SERIN, 403
SEROUT, 422

COS, 105, 106
Cosine (COS), 105, 106
COUNT, 149–50
Counter, 191
Counting Pulses, 149–50
CR, 168
CRSRDN, 168
CRSRLF, 168
CRSRRT, 168
CRSRUP, 168
CRSRX, 168
CRSRXY, 168
CRSRY, 168
Current Limit, 12, 14, 15, 18, 20, 21,

23
Cycle Counting, 149

— D —
DATA, 153–58, 459

Writing Block, 155

Writing Text Strings, 156, 184
Writing Word Values, 156, 185

Data and Program Downloading, 155,
184

Data Input through Debug Terminal.
See DEBUGIN

DCD, 105, 106
DDRAM, 252, 258, 259
Debounce Buttons, 137
DEBUG, 166
DEBUG Formatting

(all BS2 models), 162
BS1, 160

Debug Port, 67
Debug Port Preferences, 67
Debug Terminal, 51–53

Appearance Preferences, 65
Buffer Size, 64
Choose…Buttons, 63
Control Characters, 167
Debug Function Preferences, 66
Displaying Strings, 166
Echo Off, 53
Font Size, 63
Input Data via Transmit pane. See

DEBUGIN
Port Preferences, 67
Receive Pane, 52
Repeating Characters, 167
Resizing, 63
Tabs, 65
Text Wrapping, 64
Transmit Pane, 52

DEBUGIN, 159, 171–73
Special Formatters, 172

DEC, 162, 163, 165, 173, 220, 227,
260, 265, 298, 306, 398, 403, 420,
422

Decimal Notation, 96
Decoder (DCD), 105, 106
Default Com Port, 60
Default State, I/O Pins, 83
Default State, I/O Pins (BS1), 82

Index

Page 492 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Defining Constants, 94–96
Defining Symbols, 85–91
Delaying Execution, 311
Developer Features, 75
DIG, 109, 117
Digit (DIG), 109, 117
Digital I/O, 129, 137, 143, 149, 215,

217, 225, 243, 247, 249, 257, 263,
281, 283, 293, 295, 303, 313, 325,
377, 393, 415, 431, 435, 455, 465

DIM, 467, See XOUT
Direction (setting of I/O pins), 81, 83,

243, 293, 377
Directives. See also Conditional

Compile Directives, See also
$PBASIC, $PORT, $STAMP, See
CON, PIN, VAR, DATA

Directory List, 40, 41
DIRS, 83
DIRS (BS1), 81
Display Data RAM. See DDRAM
Displaying Information, 159
Displaying Unsigned Numbers, 164
Divide (/), 109, 113
Division Remainder, 109, 113
DO...LOOP, 175–77, 189
Download Function, 48–50
Download Time, Saving, 60
DS1820 Temperature Sensor, 301, 308
DTMFOUT, 179–82

— E —
Echo, 47
Echo Off, 53
Edit Preferences

Debug Function, 66
Debug Port, 67
Debug Terminal Appearances, 63–65
Editor Appearance, 55–57
Editor Operation, 57–60
Files and Directories, 60–63

Editing your Code, 39

Editor
Bookmarks, 38
Described, 35
Editor Screen (diagram), 35
Editor Tabs, 35
Find/Replace Function, 39
Font Size, 56
Line Numbers, 38
Split Window View, 36
Status, 36
Syntax Highlighting, 37
Windows, 35

Editor Appearance
Font Size, 56
Syntax Highlighting, 56

Editor Functions
Command Line Interface, 78–79
Debug Terminal, 51–53
Download Function, 48–50
Help Files, 54
Identification, 46–48
Keyboard Shortcuts, 53
Memory Map, 50–51
Tip of the Day, 55

EEPROM, 183–86, 459
EEPROM ACCESS. See EEPROM, DATA,

READ, WRITE, STORE
EEPROM Map, 51
EEPROM Usage, 153, 369–73, 447

Maximizing, 209
EEPROM Usage (BS1), 183
ELSE. See SELECT...CASE, See

IF...THEN
ELSEIF, 231, See IF...THEN
Encoder (NCD), 105, 107
END, 187, 335, 447
ENDIF. See IF...THEN
ENDSELECT. See SELECT...CASE
EXIT, 189
Expressions, 94–96
Expressions in Constants, 96

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 493

— F —
Favorite Directories, 63
Features for Developers, 75
File Associations, 42, 61
File List, 40, 41
File Management

.obj file, 76
Backup Copy, 61
Directory List, 41
Favorite Directories, 63
File Associations, 42, 61
File List, 41
Files and Directories Preferences, 63
Filter List, 40, 41
Initial Directory, 62
Keyboard Shortcuts, 42
Module Directories, 62
Open From, 41
Recent List, 40
Save To, 41
Single Executable File, 76
Templates, 62

Filter List, 40, 41
Find/Replace Function, 39
Firmware, 3
Fixed plus Smart Tabs, 59
Fixed Tabs, 58
Flow Control, 409, 423
Font Size

Debug Terminal, 63
Editor Pane, 56

FOR...NEXT, 189
Increment/Decrement, 193
Variables as Arguments, 194

FOR…NEXT, 191–97
Formatters, Conversion. See

Conversion Formatters
Formatters, DEBUG. See DEBUG

Formatters
Formatters, Special. See Special

Formatters
FPin, 409, 423

FREQOUT, 199–201

— G —
Generating Pulses, 347–49
Generating Random Numbers, 359–61
Generating Sound (BS1), 445–46
Generating Sound (Non-BS1), 199–201
GET, 203–6
GOSUB, 209–12, 289, 375
GOTO, 209, 213–14, 213, 289
GUI Interface Development, 78
Guidelines and Precautions, 25

— H —
Hardware

BASIC Stamp, 7
BS1, 10
BS2, 13
BS2e, 15
BS2p, 19
BS2pe, 21
BS2px, 23
BS2sx, 17

Help Files, 53–54
HEX, 162, 163, 173, 220, 227, 260,

265, 298, 306, 403, 422
Hex to BCD Conversion, 97
Hexadecimal Notation, 96
HIGH, 215–16, 281, 455
Hitachi 44780 Controller, 249, 258, 263
HOME, 168
HYP, 109, 115
Hypotenuse (HYP), 109, 115

— I —
I/O pin

Voltage comparator (BS2px), 141
I/O pin properties (BS2px), 143
I/O Pins

Index

Page 494 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Accessing, 81, 83, 84
Auxiliary, 129, 247
Default State, 83
Default State (BS1), 82
Defining with PIN, 99
Directions, 81, 83, 243, 293, 377
Main, 247, 283
PIN Directive, 99–102
Pinouts

BS1, 12
BS2, 14
BS2e, 15
BS2p, 20
BS2pe, 21
BS2px, 23
BS2sx, 18

Reading, 84
Reading (BS1), 81
Source/Sink

BS1, 12
BS2, 14
BS2e, 15
BS2p, 20
BS2pe, 21
BS2px, 23
BS2sx, 18

Writing (BS1), 81
I2C Protocol, 217–23, 225–30
I2CIN, 217–23
I2COUT, 225–30
IBIN, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Identification Function, 46–48
IF...THEN, 231–40, 387

Nested, 238
Single vs Multi-Line Syntax, 238

IF…THEN, 133
Ignore BS1 Modules, 60
IHEX, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Indent

Preferences, 57
Initial Directory on Startup, 62

INPUT, 243–44, 293, 377
INS, 83
Integer Math Rules, 103, 104
Integrated Explorer Panel, 40–42

Resizing, 42
Interface to Telephone Line, 181
Interrupts

Not suppported by BASIC Stamp, 331
Inverse (~), 105, 106
IOTERM, 129, 247–48, 283
ISBIN, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
ISHEX, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422

— K —
Keyboard Shortcuts

Coding Functions, 53
Editing and Navigation, 39
Editor Functions, 53
File Functions, 42

— L —
Labels, 213
Language

PBASIC, 7
LCD Commands, 251
LCD Customer Characters, 266
LCD Displays, 249, 257, 263
LCD Initialization, 251, 258, 264
LCDCMD, 249–56
LCDIN, 257–61
LCDOUT, 263–70
LET, 269
LF, 168
LIGHTSON, 467, See XOUT
Line Numbering, 57
Line Numbers, 38
Logic

Run-time, 96

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 495

Logic Level, TTL and CMOS
(diagram), 144

Logic Operators
AND, 235
NOT, 235
OR, 235
XOR, 235

Logic Threshold
and BS2px, 143
CMOS, 144
TTL, 144

Logic Truth Tables, 235
LOOKDOWN, 133, 271–76
LOOKUP, 271, 277–80
LOOP. See DO...LOOP
Loopback, 47
Loops, 175–77, 191–97, 213

Conditional, 175–77
Terminating, 189

LOW, 281–82, 455
Low-Power Mode, 187, 285, 441–42
LSBFIRST, 436
LSBPOST, 432
LSBPRE, 432

— M —
Main I/O Pins, 247, 283
MAINIO, 129, 247, 283–84
Mapping Non-Contiguous Numbers,

275, 279
Math

Integer Math Rules, 103
Run-time, 96

MAX, 109, 116
Maximum (MAX), 109, 116
Measuring Pulses, 343–45
Measuring Variable Resistance, 339–

40, 363–68
Memory, 29, 81
Memory Map, 44, 50–51, 91

(Diagram), 50
ASCII Format, 51

EEPROM Map, 51
Fixed Variables, 51
Hexadecimal Format, 51
RAM Map, 50

Memory Organization, 81
MIN, 109, 115
Minimum (MIN), 109, 115
Modifiers, 89–91
Module Directories, 62
Modulus (//), 109, 113
MSBFIRST, 436
MSBPOST, 432
MSBPRE, 432
Multi-file Projects

Project Download Modes, 70
Multi-File Projects, 68–70

$STAMP Directive, 68
Creating, 69

Multiply (*), 109, 110
Multiply High (**), 109, 111
Multiply Middle (*/), 109, 112

— N —
NAP, 285–87, 335
NCD, 105, 107
Negative (-), 105, 106
Networking BASIC Stamps, 425
NEXT. See FOR...NEXT
Non-volatile Storage, 153
NOT, 235
NUM, 173, 220, 260, 298, 403
Numbering Systems, 94, 96
Numbers, 94, 96
Numbers, Random. See RANDOM
NUMERICS. See LET, LOOKUP,

LOOKDOWN, RANDOM

— O —
OEMBS1, 11
OEMBS2, 13

Index

Page 496 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

OEMBS2sx, 17
ON, 289–90, 375, 387
Open Baud Modes, 425
Open From, 41
Open With, 62
Operation, General Theory, 7
Operators

Binary, 104, 109–21
Comaprison (SELECT...CASE), 388
Comparison (IF...THEN), 232
Comparison (LOOKDOWN), 273
Conditional Logic, 234
in Constant Expressions, 96
Unary, 104, 105–9

OR, 235
OR (|), 109, 118
OR NOT (|/), 109, 120
Order of Operations, 102–3
Orientation, 25
OUTPUT, 243, 293–94, 377
Output Direction

and BS2px, 143
OUTS, 83
OWIN, 295–301
OWOUT, 295, 303–10

— P —
P0-P15, 14, 15, 18, 20, 21, 23
P0-P7, 12
Pace, 421
Pacing, 415
Package Types

BS1, 10
BS2, 13
BS2e, 15
BS2p, 19
BS2pe, 21
BS2px, 23
BS2sx, 17

PARALLEL I/O. See LCDCMD, LCDIN,
LCDOUT, See LCDCMD, LCDIN,
LCDOUT

Parentheses
and Order of Evaluation, 103, 235
Nested, 103
with expressions, 128

Parity and Parity Errors, 407, 423
Parity and Timeout, 408
PAUSE, 311
PBASIC Language, 7
PBASIC Language Versions, 124

of commands, 45
PBASIC 2.5 Enhancements., 124
Reserved Words, 473

PCI, 12
PCO, 12
PIN Directive, 99–102
Pin-1 Indicators, 25
PinMask, 143
Pinouts

BS1, 10
BS2, 13
BS2e, 15
BS2p, 19
BS2pe, 21
BS2px, 23
BS2sx, 17

PINS, 81
POLLIN, 313–17, 319, 331, 335
POLLMODE, 313, 319–23, 331, 335
POLLOUT, 313, 319, 325–28, 331, 335
POLLRUN, 313, 319, 331–34, 335, 381
POLLWAIT, 313, 319, 331, 335–37
PORT, 81
Port Communication

Debug Terminal Preferences, 67
Default Com Port, 60

Port Connection. See Identify Function
POT, 339–40
Potentiometer, 313–17, 363–68
POWER CONTROL, 187, 285–87, 335–

37, 441–42, See END, NAP, SLEEP
Power Supply

BS1, 12
BS2, 14

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 497

BS2e, 15
BS2p, 20
BS2pe, 21
BS2px, 23
BS2sx, 18

Powerline Interface, 466
Program Debugging. See DEBUG,

DEBUGIN
Program Slot, 68, 93, 203, 316, 320,

331, 351, 372, 381, 449, 459
Programming Connections, 27
Programming Environment, 35
Projects. See Multi-file Projects
Protocol

1-Wire, Dallas, 295–301, 303–10
Asynchronous RS-232, 393–412,

415–28
I2C, 217–23, 225–30
Synchronous (SPI), 431–34, 435–40
X10, 465–68

Pull-up Resistor
and BS2px, 143

Pull-up resistors (BS2px), 144
Pulse Width Modulation, 355–58
Pulses, Generating, 347–49
Pulses, Measuring, 343–45
PULSIN, 343–45
PULSOUT, 347–49
PUT, 351–52
PWM, 355–58

— Q —
Quick Start Guide, 29

— R —
Radian, Binary, 106, 107, 114
RAM ACCESS. See GET, PUT
RAM Map, 50
RAM Organization

BS1, 81

BS2, 82
BS2e, 82
BS2p, 82
BS2p40, 82
BS2pe, 82
BS2sx, 82

RANDOM, 359–61
Random Numbers, 359–61
RCTIME, 363–68
RCTime Equation, 365
READ, 153, 369–73, 449, 459
Reading Potentiometers, 339–40, 363–

68
Reading Pulses, 149–50, 343–45
Reading Word Values, 370
Receive Pane, 52
Recent List, 40
Reference Notch, 26
Registers

Memory Map, 50
Remainder of Division, 109, 113
REP, 163, 167, 228, 305, 422
RES, 12, 14, 15, 18, 20, 21, 23
Reserved Words

additional
BS2e and BS2sx, 475
BS2p and BS2pe, 475

all BASIC Stamp 2 models, 474
BASIC Stamp 1, 473

Reserving EEPROM Locations, 155
Reset, 12, 14, 15, 18, 20, 21, 23
RETURN, 375–76
REV, 109, 118
REVERSE, 243, 293, 377–78
Reverse (REV), 109, 118
Rules of Integer Math, 103, 104
Rules of Symbols, 86
RUN, 331, 381–85
Run-time, 98
Run-time Math and Logic, 96

Index

Page 498 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

— S —
Save To, 41
SBIN, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Schematic

BS1, 481
BS2, 482
BS2e, 483
BS2p24, 485
BS2p40, 486
BS2pe, 487
BS2px, 488
BS2sx, 484

Schmitt Trigger, 143, 145, 150
(diagram), 145

Scratch Pad Ram
Registers, 93

Scratch Pad RAM, 92, 203, 351–52
Registers, 205
Special Purpose Locations

(POLLMODE), 323
SDEC, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
SELECT...CASE, 387–90
SELECT…CASE, 387
Serial Port Diagram, 395
Serial Timeout, 408, 425
Serial Troubleshooting, 410, 427
SERIN, 171, 393–412
SEROUT, 415–28
SHEX, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Shift Left (<<), 109, 117
Shift Right (>>), 109, 117
SHIFTIN, 431–34
SHIFTOUT, 435–40
Shortcuts. See Keyboard Shortcuts
SIN, 105, 107
SIN (pin), 14, 15, 18, 20, 21, 23
Sine (SIN), 105, 107
Single Executable File, 76
SKIP, 172, 219, 259, 297, 404

SLEEP, 187, 335, 441–42
SNUM, 173, 220, 260, 298, 403
SOUND. See also SOUND, FREQOUT,

DTMFOUT
SOUND, 445–46
Sound, Generation (BS1), 445–46
Sound, Generation (Non-BS1), 199–201
SOUT, 14, 15, 18, 20, 21, 23
Speaker, 180, 200, 446
Special Formatters

DEBUGIN, 172
I2CIN, 219
I2COUT, 228
LCDIN, 259
OWIN, 297
OWOUT, 305
SERIN, 404
SEROUT, 422

Split Window View, 36
SPRAM. See Scratch Pad RAM
SPSTR, 219, 297, 404
SPSTR L, 172
SQR, 105, 108
Square Root (SQR), 105, 108
STAMP Directive. See $STAMP

Directive
StampLoader.exe program, 76
Static Sensitive Devices, 25
STEP. See FOR...NEXT
STOP, 447
STORE, 449, 459
STR, 163, 166, 172, 219, 228, 259,

297, 305, 404, 422
Strings

Displaying, 166
Subroutines, 209, 375
Subtract (-), 109, 110
Switching Program Slots, 381–85
Symbol Name Rules, 86
Symbols (Characters). See +

#, 161
$, 161
%, 161

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 499

&, 118
&/, 120
*, 110
*, 109
**, 109, 111
*/, 109, 112
/, 109, 113
//, 109, 113
?, 163, 165, 228, 305, 422
@, 154, 161
^, 119
^/, 121
|, 118
|/, 120
~, 105, 106
+, 96, 109
<, 232
<<, 117
<=, 232
<>, 232
=, 232
>, 232
>=, 232
>>, 117

SYNCHRONOUS SERIAL, 431–34, 435–
40, See also SHIFTIN, SHIFTOUT<
I2CIN, I2COUT

Syntax Conventions, 128
Syntax Enhancements for PBASIC 2.5,

124
Syntax Highlighting, 37, 56

Customized, 57
PBASIC versions, 45

— T —
TAB, 168
Tables, 153–58, 183–86, 271–76, 277–

80
Tabs

(diagram), 59
Character, 57
Fixed plus Smart Tabs, 59

Fixed Tab Positions List, 60
Fixed Tabs, 58
in Debug Terminal, 65
Smart Tabs, 58
Tab Behavior, 58–59

Telephone Touch Tones, 179
Templates, 62
Text Wrapping

Debug Terminal, 64
Theory of Operation, 7
TIME. See PAUSE, POLLWAIT
Timeout, 393, 408, 415, 425
Tip of the Day, 55
TO. See FOR...NEXT
TOGGLE, 281, 455–57
Tone Generation, 179–82, 199–201,

445–46
Transmit Pane, 52
Troubleshooting Serial, 410, 427
Truth Table

IF...THEN, 235
POLLIN, 316
POLLOUT, 327

Two's Compliment, 104

— U —
Unary Operators, 104, 105–9

Absolute Value (ABS), 105
Cosine (COS), 105, 106
Decoder (DCD), 105, 106
Encoder (NCD), 105, 107
Inverse (~), 105, 106
Negative (-), 105, 106
Sine (SIN), 105, 107
Square Root (SQR), 105, 108

Unit Circle, 107, 114
UNITOFF, 467, See XOUT
UNITON, 467, See XOUT
UNITSONf, 467, See XOUT
UNTIL. See DO...LOOP
Untitled#, 36
USB Port

