Surface Mount - 50 - 800V > 2N6400

2N6400

ittelfuse

Expertise Applied | Answers Delivered

Description

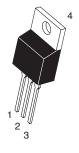
Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

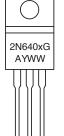
Features

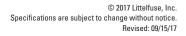
- Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 V
- These are Pb-Free devices

Functional Diagram

Additional Information




Samples


Po

Pin Out

TO-220AB CASE 221A STYLE 3

Surface Mount - 50 - 800V > 2N6400

Maximum Ratings † ($T_J = 25^{\circ}C$ unless otherwise noted)				
Rating Part Number			Value	Unit
	2N6400		50	
	2N6401		100	
Peak Repetitive Off-State Voltage (Note 1)	2N6402	V _{drm,}	200	V
$(T_{J} = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, 50 to 60 Hz, Gate Open})$	2N6403	V _{RRM}	400	v
	2N6404		600	
	2N6405		800	
On-State RMS Current (180° Conduction Angles; T _c = 100°C)			16	A
Average On-State RMS Current (180° Conduction Angles; T _c = 100°C)			10	A
Peak Non–Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 90°C)			160	A
Circuit Fusing Considerations (t = 8.3 ms)			145	A²s
Forward Peak Gate Power (Pulse Width \leq 1.0 $\mu s,T_{c}$ = 100°	P _{GM}	20	W	
Forward Average Gate Power (t = 8.3 ms, $T_c = 100^{\circ}C$)	P _{G(AV)}	0.5	W	
Forward Peak Gate Current (Pulse Width \leq 1.0 $\mu s, T_c$ = 100	I _{GM}	2.0	A	
Operating Junction Temperature Range	TJ	-40 to +125	°C	
Storage Temperature Range	T _{stg}	-40 to +125	°C	

†Indicates JEDEC Registered Data

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Maximum Ratings † ($T_1 = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	1.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

† Indicates JEDEC Registered Data

Surface Mount -50 - 800V > 2N6400

Electrical Characteristics - **OFF** ($T_c = 25^{\circ}C$ unless otherwise noted)

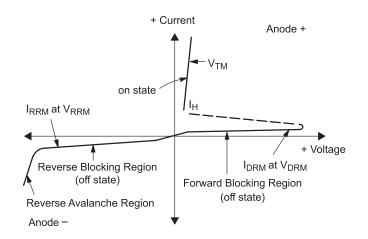
Characteristic		Symbol	Min	Тур	Max	Unit
†Peak Repetitive Blocking Current ($V_{AK} = V_{DRM} = V_{RRM}$; Gate Open)	$T_{J} = 25^{\circ}C$	l _{DRM} ,	-	-	1.0	μA
	T _J = 125°C	I _{RRM}	-	-	2.0	mA

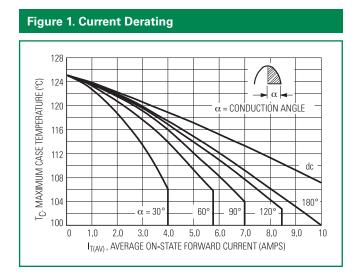
Electrical Characteristics - ON

Characteristic			Min	Тур	Max	Unit
†Peak Forward On–State Voltage ($I_{TM} = 32 \text{ A Peak}$, Pulse Width $\leq 1 \text{ ms}$, Duty Cycle $\leq 2\%$)		V _{TM}	_	_	1.7	V
†Gate Trigger Voltage (Continuous DC), All Quadrants	$T_c = 25^{\circ}C$		-	9.0	30	mA
(Continuous dc) (V_{_{\rm D}} = 12 Vdc, R_{_{\rm L}} = 100 Ω)	$T_c = -40^{\circ}C$	GT	-	_	60	
	$T_c = 25^{\circ}C$		_	0.7	1.5	V
†Gate Trigger Voltage (Continuous dc) (V $_{\rm D}$ = 12 Vdc, R $_{\rm L}$ = 100 Ω)	$T_c = -40^{\circ}C$	V _{GT}	-	-	2.5	
Gate Non–Trigger Voltage ($V_D = 12$ Vdc, $R_L = 100 \Omega$) $T_C = +125^{\circ}C$		V _{gD}	0.2	-	-	V
	$T_c = 25^{\circ}C$		-	18	40	mA
†Holding Current (V_{D} = 12 Vdc, Initiating Current = 200 mA, Gate Open)	$T_c = -40^{\circ}C$	I _H	-	_	60	
Turn-On Time ($I_{TM} = 12 \text{ A}, I_{GT} = 40 \text{ mAdc}, V_{D} = \text{Rated } V_{DRM}$)		t _{gt}	-	1.0	_	μs
	$T_c = 25^{\circ}C$	- t _q	-	15	-	μs
Turn-Off Time (I _{TM} = 16 A, IR = 16 A, VD = Rated V _{DRM})	T _J = +125°C		_	35	-	

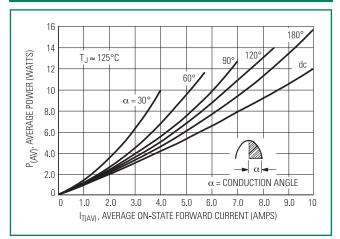
†Indicates JEDEC Registered Data

Dynamic Characteristics

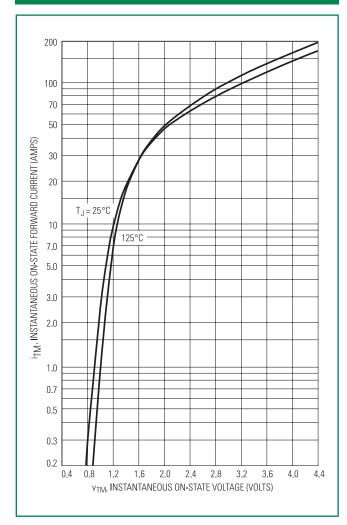

Characteristic		Symbol	Min	Тур	Max	Unit
Critical Rate–of–Rise of Off-State Voltage ($V_{D} = Rated V_{DRM'}$ Exponential Waveform)	T _J = +125°C	dv/dt(c)	_	50	_	V/µs

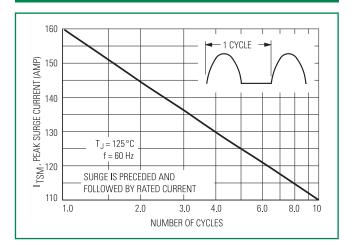


Surface Mount -50 - 800V > 2N6400


Voltage Current Characteristic of SCR

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current


Figure 2. Maximum On-State Power Dissipation



Surface Mount -50 - 800V > 2N6400

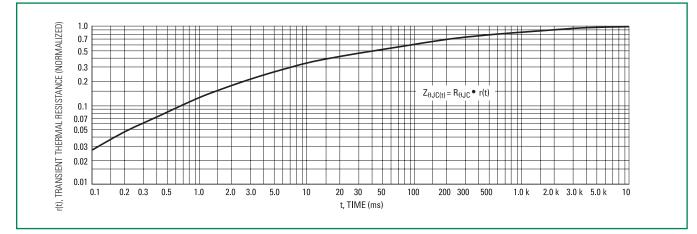
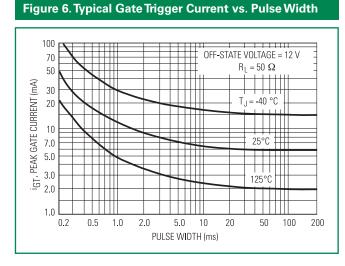
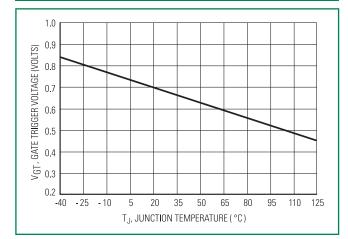

Figure 3. On–State Characteristics

Figure 4. Maximum Non-Repetitive Surge Current


Figure 5. Thermal Response



Surface Mount -50 - 800V > 2N6400

Typical Characteristics

Figure 8. Typical Gate Trigger Voltage vs. Junction Temperature

Figure 7. Typical Gate Trigger Current vs. Junction Temperature

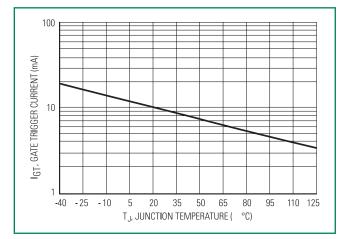
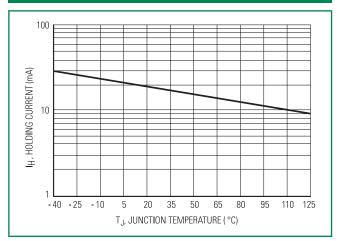



Figure 9. Typical Holding Current vs. Junction Temperature

