
 

14-Segment Alpha-numeric LED

FeatherWing

Created by lady ada

 

https://learn.adafruit.com/14-segment-alpha-numeric-led-featherwing

Last updated on 2021-11-15 06:41:18 PM EST

©Adafruit Industries Page 1 of 34



3

6

7

7

8

8

8

9

9

10

16

17

18

19

21

21

21

21

21

23

23

23

27

28

29

30

31

33

33

34

Table of Contents

Overview

Pinouts

• Power Pins

• I2C pins

• Address Jumpers

• Changing Addresses

Assembly

• Prepare the header strips:

• Add the FeatherWing PCB:

• And Solder!

Usage

• Install Adafruit GFX

• Run Test!

• Library Reference

• ASCII data

• Writing Data

CircuitPython

• Adafruit CircuitPython Module Install

• Bundle Install

• Usage

• I2C Initialization

• LED Matrix

• Brightness and Blinking

• LED 7-segment Display

• Setting Individual Digits

• Display Numbers and Hex Values

• LED 14-segment Quad Alphanumeric Display

Downloads

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 34



Overview 

Display, elegantly, 012345678 or 9! Gaze, hypnotized, at ABCDEFGHIJKLM - well it

can display the whole alphabet. You get the point.

This is the Adafruit 0.56" 4-Digit 14-Segment Display w/ FeatherWing Combo Pack!

Available in Blue, Green, Red, White, and Yellow. It is a nice, bright alphanumeric

display that shows letters and numbers in a beautiful hue. It's super bright and

designed for viewing from distances up to 23 feet (7 meters) away. Each of the digit

sets have 14 segments on a dark background and we give you a set of two

alphanumeric displays as well as a Featherwing driver board so you can make a clock

or a four letter word.

Works with any and all Feathers!

 

©Adafruit Industries Page 3 of 34



14-Segment Matrices like these are 'multiplexed' - so to control all the seven-segment

LEDs you need 18 pins. That's a lot of pins, and there are driver chips like the

MAX7219 (http://adafru.it/453) that can control a matrix for you but there's a lot of

wiring to set up and they take up a ton of space. Wouldn't it be awesome if you could

control a matrix without tons of wiring? That's where these Alphanumeric LED Matrix

FeatherWings come in, they make it really easy to add a 4-digit alphanumeric display

with decimal points.

The LEDs themselves do not connect to the Feather. Instead, a matrix driver chip

(HT16K33) does the multiplexing for you. The Feather simply sends i2c commands to

 

 

©Adafruit Industries Page 4 of 34

https://www.adafruit.com/products/453
https://www.adafruit.com/products/453


the chip to tell it what LEDs to light up and it is handled for you. This takes a lot of the

work and pin-requirements off the Feather. Since it uses only I2C for control, it works

with any Feather and can share the I2C pins for other sensors or displays.

The product kit comes with:

A fully tested and assembled Adafruit 4-Digit 14-Segment LED Matrix Display

FeatherWing

Ultra-bright 4-digit 0.54" tall segmented display

Two sixteen pin headers

A bit of soldering is required to attach the matrix onto the FeatherWing but its very

easy to do and only takes about 5 minutes!

Of course, in classic Adafruit fashion, we also have a detailed tutorial showing you

how to solder, wire and control the display. We even wrote a very nice library for the

backpacks so you can get running in under half an hour, displaying images on the

matrix or numbers on the 7-segment (https://adafru.it/aLI). If you've been eyeing

matrix displays but hesitated because of the complexity, his is the solution you've

been looking for!

• 

• 

• 

 

©Adafruit Industries Page 5 of 34

https://github.com/adafruit/Adafruit-LED-Backpack-Library
https://github.com/adafruit/Adafruit-LED-Backpack-Library
https://github.com/adafruit/Adafruit-LED-Backpack-Library


Pinouts 

The 14-segment backpack makes it really easy to add a 4-digit numeric display with

decimal points

The LEDs themselves do not connect to the Feather. Instead, a matrix driver chip

(HT16K33) does the multiplexing for you. The Feather simply sends i2c commands to

the chip to tell it what LEDs to light up and it is handled for you. This takes a lot of the

work and pin-requirements off the Feather. Since it uses only I2C for control, it works

with any Feather and can share the I2C pins for other sensors or displays.

 

 

©Adafruit Industries Page 6 of 34



Power Pins

The LED matrix uses only the 3V (second from the right, above) and GND (fourth from

the right) pins for power and logic. Current draw depends on how many LEDs are lit

but you can approximate it as about 80mA for most uses.

Note that the 3.3V power supply is a tiny bit lower than the forward voltage for the

pure green, blue and white LED matrices but we didn't find any significant

degredation in brightness. Really, they're still very bright.

I2C pins

All LED control is done over I2C using the HT16K33 interface library. This means SDA

(leftmost) and SCL (to the right of SDA) must be connected, see above for those pins.

The default address is 0x70 but you can change the address to 0x71-0x77 by bridging

solder onto the address pins.

 

 

©Adafruit Industries Page 7 of 34



Address Jumpers

Changing Addresses

You can change the address of a backpack very easily. Look on the back to find the

two or three A0, A1 or A2 solder jumpers. Each one of these is used to hardcode in

the address. If a jumper is shorted with solder, that sets the address. A0 sets the

lowest bit with a value of 1, A1 sets the middle bit with a value of 2 and A2 sets the

high bit with a value of 4. The final address is 0x70 + A2 + A1 + A0. So for example if A

2 is shorted and A0 is shorted, the address is 0x70 + 4 + 1 = 0x75. If only A1 is

shorted, the address is 0x70 + 2 = 0x72

Assembly 

 

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a two 14-

segment dualdisplays in one of the colors

we provide (say, red, yellow, blue or

green). You'll need to solder the matrix

onto the backpack but it's an easy task.

 

©Adafruit Industries Page 8 of 34

https://learn.adafruit.com//assets/32144
https://learn.adafruit.com//assets/32144


 

Prepare the header strips:

You'll need three 7-pin and a 3-pin strip

of header to attach the Featherwing to

your Feather. Cut the header strip to

length if necessary. It will be easier to

solder if you insert it into a breadboard - 

long pins down

 

Add the FeatherWing PCB:

Place the circuit board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 9 of 34

https://learn.adafruit.com//assets/32145
https://learn.adafruit.com//assets/32145
https://learn.adafruit.com//assets/32146
https://learn.adafruit.com//assets/32146


 

 

 

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check

out our Guide to Excellent

Soldering (https://adafru.it/aTk)).

©Adafruit Industries Page 10 of 34

https://learn.adafruit.com//assets/32147
https://learn.adafruit.com//assets/32147
https://learn.adafruit.com//assets/32148
https://learn.adafruit.com//assets/32148
https://learn.adafruit.com//assets/32149
https://learn.adafruit.com//assets/32149
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering


 

 

 

Do both all 4 header strips completely!

 

©Adafruit Industries Page 11 of 34

https://learn.adafruit.com//assets/32150
https://learn.adafruit.com//assets/32150
https://learn.adafruit.com//assets/32151
https://learn.adafruit.com//assets/32151
https://learn.adafruit.com//assets/32152
https://learn.adafruit.com//assets/32152
https://learn.adafruit.com//assets/32153
https://learn.adafruit.com//assets/32153


 

Check your solder joints visually and

continue onto the next step

 

Next we'll attach the LED matrices

Check the Matrices and line it up next to

the FeatherWing

Be careful to NOT PUT THE DISPLAYS

ON UPSIDE DOWN OR IT WONT WORK!!

Check the image to make sure the

'decimal point' dots are on the bottom,

matching the silkscreen.

 

Slot the LED module on top, check again

that you have it right way up!

©Adafruit Industries Page 12 of 34

https://learn.adafruit.com//assets/32154
https://learn.adafruit.com//assets/32154
https://learn.adafruit.com//assets/32155
https://learn.adafruit.com//assets/32155
https://learn.adafruit.com//assets/32156
https://learn.adafruit.com//assets/32156


 

 

Since there's two modules and they don't

sit completely flat on the PCB you may

want to use a little tape to bind the

modules together to minimize any gap in

between.

 

Flip over the kit and bend a few of the

LED matrix legs out to keep the LED from

slipping out while you solder

©Adafruit Industries Page 13 of 34

https://learn.adafruit.com//assets/32157
https://learn.adafruit.com//assets/32157
https://learn.adafruit.com//assets/32158
https://learn.adafruit.com//assets/32158
https://learn.adafruit.com//assets/32159
https://learn.adafruit.com//assets/32159


 

 

 

Solder the matrix in place. Note this will

be a little tougher because there's not as

much space. Go slow, do one pin at a

time and you can clip it after each point if

you need!

 

©Adafruit Industries Page 14 of 34

https://learn.adafruit.com//assets/32160
https://learn.adafruit.com//assets/32160
https://learn.adafruit.com//assets/32161
https://learn.adafruit.com//assets/32161
https://learn.adafruit.com//assets/32165
https://learn.adafruit.com//assets/32165
https://learn.adafruit.com//assets/32167
https://learn.adafruit.com//assets/32167


 

Check your solder joints visually and

continue onto the next step

 

 

Once soldered, clip each wire short

©Adafruit Industries Page 15 of 34

https://learn.adafruit.com//assets/32166
https://learn.adafruit.com//assets/32166
https://learn.adafruit.com//assets/32168
https://learn.adafruit.com//assets/32168
https://learn.adafruit.com//assets/32169
https://learn.adafruit.com//assets/32169


 

 

You're done! You can now install software

and get blinking

Usage 

To talk to the LED helper chip you'll need to use our Arduino Adafruit LED Backpack

library from github (https://adafru.it/aLI).

 

©Adafruit Industries Page 16 of 34

https://learn.adafruit.com//assets/32170
https://learn.adafruit.com//assets/32170
https://learn.adafruit.com//assets/32171
https://learn.adafruit.com//assets/32171
https://github.com/adafruit/Adafruit-LED-Backpack-Library
https://github.com/adafruit/Adafruit-LED-Backpack-Library


To download you can visit the repository, or simply click on this button:

Download Adafruit LED Backpack

library

https://adafru.it/ncm

Rename the uncompressed folder Adafruit_LEDBackpack. Check that the Adafruit_L

EDBackpack folder contains Adafruit_LEDBackpack.cpp and Adafruit_LEDBackpack.h

Place the Adafruit_LEDBackpack library folder your arduinosketchfolder/libraries/

folder.

You may need to create the libraries subfolder if it's your first library. We also have a

great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Install Adafruit GFX

You will need to do the same for the Adafruit_GFX library available here (https://

adafru.it/aJa)

Download Adafruit GFX

https://adafru.it/cBB

Rename the uncompressed folder Adafruit_GFX and check that the Adafruit_GFX

folder contains Adafruit_GFX.cpp and Adafruit_GFX.h

Place the Adafruit_GFX library folder your arduinosketchfolder/libraries/ folder like

you did with the LED Backpack library

If using an older version of the Arduino IDE (pre-1.8.10), also locate and install the Ada

fruit_BusIO (https://adafru.it/Ldl) library (newer versions do this automatically when

using the Arduino Library Manager).

Adafruit_GFX isn’t actually used for the segmented display, it's only for the matrix

backpacks but it's still required by the library so please install it to avoid errors!

Restart the IDE.

©Adafruit Industries Page 17 of 34

https://github.com/adafruit/Adafruit_LED_Backpack/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip


Run Test!

Once you've restarted you should be able to select the File->Examples-

>Adafruit_LEDBackpack->quadalphanum example sketch. Upload it to your Feather as

usual. You should see a basic test program that goes through a bunch of different

routines.

Upload to your Arduino, and open up the Serial console at 9600 baud speed. You'll

see each digit light up all the segments, then the display will scroll through the 'font

table' showing every character that it knows how to display. Finally, you'll get a notice

 

 

©Adafruit Industries Page 18 of 34



to start typing into the serial console. Type a message and hit return, you'll see it

scroll onto the display!

Library Reference

For the quad displays, we have a special object that can handle ascii data for easy

printing.

You can create the object with

Adafruit_AlphaNum4 alpha4 = Adafruit_AlphaNum4();

 

 

©Adafruit Industries Page 19 of 34



There's no arguments or pins because the backpacks use the fixed I2C pins.

By default, the address is 0x70, but you can pass in the I2C address used when you

initialize the display with begin

alpha4.begin(0x70);  // pass in the address

Next up, the segments can be turned on/off for each digit by writing the 'raw' bitmap

you want, for example, all the LEDs off on digit #3 is

alpha4.writeDigitRaw(3, 0x0);

All the segments on for digit #0 is

alpha4.writeDigitRaw(0, 0x3FFF);

This is the segment map:

the 16 bit digit you pass in for raw image has this mapping:

0 DP N M L K J H G2 G1 F E D C B A 

The first bit isn't used, you can make it 0 or 1

To turn on just the A segment, use 0x0001

To turn on just the G1 segment, use 0x0040

 

©Adafruit Industries Page 20 of 34



ASCII data

If you're just looking to print 'text' you can use our font table, just pass in an ASCII

character!

For example, to set digit #0 to A call:

alpha4.writeDigitAscii(0, 'A')

Writing Data

Don't forget to 'write' the data to the display with

alpha4.writeDisplay();

That's what actually 'sets' the data onto the LEDs!

CircuitPython 

Adafruit CircuitPython Module Install

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) modul

e on your board. Remember this module is for Adafruit CircuitPython firmware and not

MicroPython.org firmware!

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board.  Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx).  This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

©Adafruit Industries Page 21 of 34

https://learn.adafruit.com/welcome-to-circuitpython/overview
https://github.com/adafruit/Adafruit_CircuitPython_HT16K33
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle


For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

adafruit_register

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

If your board doesn't support USB mass storage, like the ESP8266, then use a tool

like ampy to copy the file to the board (https://adafru.it/s1f). You can use the latest

version of ampy and its new directory copy command (https://adafru.it/q2A) to easily

move module directories to the board.

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33, adafruit_bus_device, and adafruit_register folders/modules

copied over.

• 

• 

• 

 

©Adafruit Industries Page 22 of 34

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries#non-express-boards-11-13
file:///home/micropython-for-samd21/usb-mass-storage#mac-osx-file-copy-issues
file:///home/micropython-for-samd21/usb-mass-storage#mac-osx-file-copy-issues
file:///home/micropython-basics-load-files-and-run-code
file:///home/micropython-basics-load-files-and-run-code
file:///home/micropython-basics-load-files-and-run-code/file-operations#copy-directories-to-board


Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL.  You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL  (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

I2C Initialization

First you'll need to initialize the I2C bus for your board.  First import the necessary

modules:

import board

import busio as io

Note if you're using the ESP8266 or other boards which do not support hardware I2C

you need to import from the bitbangio module instead of busio:

import board

import bitbangio as io

Now for either board run this command to create the I2C instance using the default

SCL and SDA pins (which will be marked on the boards pins if using a Feather or

similar Adafruit board):

i2c = io.I2C(board.SCL, board.SDA)

LED Matrix

To use a LED matrix you'll first need to import the adafruit_ht16k33.matrix module and

create an instance of the appropriate Matrix class.  There are three classes currently

available to use:

Matrix8x8 - This is for a simple 8x8 matrix (square or round pixels, they're both

the same driver and code).

Matrix16x8 - This is for a 16x8 matrix (i.e. double the width of the 8x8 matrices).

 For the LED Matrix FeatherWing you want to use this Matrix16x8 class.

• 

• 

©Adafruit Industries Page 23 of 34

https://learn.adafruit.com/welcome-to-circuitpython/the-repl


Matrix8x8x2 - This is for a 8x8 bi-color matrix.

For example to use the Matrix16x8 class import the module and create an instance

with:

import adafruit_ht16k33.matrix 

matrix = adafruit_ht16k33.matrix.Matrix16x8(i2c)

The above command will create the matrix class using the default I2C address of the

display (0x70).  If you've changed the I2C address (like when using multiple

backpacks or displays) you can override it in the initializer using an optional address k

eyword argument.

For example to create an instance of the Matrix8x8 class on address 0x74:

matrix = adafruit_ht16k33.matrix.Matrix8x8(i2c, address=0x74)

You might notice the matrix turns on to a 'jumbled' collection of random LEDs.  Don't

worry!  The display isn't broken, right now the module that controls it doesn't clear the

display state on startup so you might see noise from random memory values.

To clear the display and turn all the pixels off you can use the fill command with a

color of 0 (off):

matrix.fill(0)

• 

 

©Adafruit Industries Page 24 of 34



By default the display will update automatically. This way you do not need to call the s

how function every time you update the display buffer. However, this means it is being

sent the contents of the display buffer with every change. This can slow things down

if you're trying to do something fancy. If you think you're running into that issue, you

can simply turn the auto write feature off. Then you will need to call show to update

the display.

# auto write can be turned off

matrix.auto_write = False

# and fill is same as before

matrix.fill(0)

# but now you have to call show()

matrix.show()

To turn all the pixels on you can use fill with a color of 1 (on):

matrix.fill(1)

If you're using the bi-color matrix you can even use a fill color of 2 or 3 to change to

different colors of red, green, and yellow (red + green).

 

 

©Adafruit Industries Page 25 of 34



Next you can set pixels on the display by accessing them using x,y coordinates and

setting a color:

X position - X position of the pixel on the matrix.

Y position - Y position of the pixel on the matrix.

Color - 0 for off, 1 for on (or one of the LEDs for bi-color display), 2 or 3 for other

bi-color display colors.

The general way to set a pixel is:

matrix[x,y] = color

For example to set the first pixel at position 0, 0 to on:

matrix[0, 0] = 1

Or to set the opposite corner pixel at position 7, 7 to on:

matrix[7, 7] = 1

• 

• 

• 

 

 

©Adafruit Industries Page 26 of 34



That's all there is to controlling the pixels on a LED matrix!  Right now the matrix

library is simple and only exposes basic pixel control.  In the future more advanced

drawing commands might be avaialable.

Brightness and Blinking

You can change the brightness of the entire display with the brightness property.  This

property has a value from 0 to 15 where 0 is the lowest brightness and 15 is the

highest brightness.  Note that you don't need to call show after calling brightness, the

change is instant.

For example to set the brightness to the minimum:

matrix.brightness = 0

Or to set it back to maximum:

matrix.brightness = 15

 

 

©Adafruit Industries Page 27 of 34



You can also make the entire display blink at 3 different rates using the blink_rate

property, which has a value 0 to 3:

0 = no blinking

1 = fast blinking (~once a 1/2 second)

2 = moderate blinking (~once a second)

3 = slow blinking (~once every 2 seconds)

Again you don't need to call show after setting the blink rate, the change will

immediately take effect.

For example to blink quickly:

matrix.blink_rate = 1

And to stop blinking:

matrix.blink_rate = 0

LED 7-segment Display

To use a 7-segment display you'll first need to import the adafruit_ht16k33.segments 

module and create an instance of the Seg7x4 class.

import adafruit_ht16k33.segments

display = adafruit_ht16k33.segments.Seg7x4(i2c)

• 

• 

• 

• 

 

©Adafruit Industries Page 28 of 34



The above command will create the 7-segment class using the default I2C address of

the display (0x70).  If you've changed the I2C address (like when using multiple

backpacks or displays) you can override it in the initializer using an optional address k

eyword argument.

For example to create an instance of the Seg7x4 class on address 0x74:

display = adafruit_ht16k33.Seg7x4(i2c, address=0x74)

You might notice the display turns on to a 'jumbled' collection of random LEDs.  Don't

worry!  The display isn't broken, right now the module that controls it doesn't clear the

display state on startup so you might see noise from random memory values.

To clear the display and turn all the LEDs off you can use the fill command with a color

of 0 (off):

display.fill(0)

Setting Individual Digits

You can put a numeric value in any of the display's 4 positions by accessing it using

the index of the position.  For example to set position 0 to the number 1 and position 1

to the number 2 call:

display[0] = '1'

display[1] = '2'

display.show()

 

©Adafruit Industries Page 29 of 34



Display Numbers and Hex Values

You can also use the print function to write to the entire display. Remember the

display only has 4 digits so a best effort will be made to display the number--you

might need to round the number or adjust it to fit!

display.print(1234)

display.show()

display.print(3.141)

display.show()

To display hex values, pass in a string to print. The hex characters A-F can be

displayed.

display.print('FEED')

display.show()

If you want to work with actual integer values, then use the built in string formatting.

display.print('{:x}'.format(65261))

display.show()

 

 

©Adafruit Industries Page 30 of 34



You can pass some special characters to the display to control extra capabilities:

Colon - Use ':' to turn the colon on, you don't need to specify the position

parameter.  Use ';' to turn the colon off.

Hex character - Use a character 'a' through 'f' to display a high hex character

value at a specified position.

LED 14-segment Quad Alphanumeric

Display

To use a 14-segment quad alphanumeric display it's almost exactly the same as the 7-

segment display, but with a slightly different class name.  Import the adafruit_ht16k33

.segments module again but this time create an instance of the Seg14x4 class.

import adafruit_ht16k33.segments

display = adafruit_ht16k33.segments.Seg14x4(i2c)

The above command will create the 14-segment class using the default I2C address of

the display (0x70).  If you've changed the I2C address (like when using multiple

backpacks or displays) you can override it in the initializer using an optional address k

eyword argument.

For example to create an instance of the Seg14x4 class on address 0x74:

display = adafruit_ht16k33.segments.Seg14x4(i2c, address=0x74)

 

• 

• 

©Adafruit Industries Page 31 of 34



You might notice the display turns on to a 'jumbled' collection of random LEDs.  Don't

worry!  The display isn't broken, right now the module that controls it doesn't clear the

display state on startup so you might see noise from random memory values.

To clear the display and turn all the LEDs off you can use the fill command with a color

of 0 (off):

display.fill(0)

display.show()

To access the individual digits, it's the same as with the 7-segment display. However,

the 14-segment display can take any alphanumeric character. For example:

display[0] = 'C'

display[1] = 'I'

display[2] = 'P'

display[3] = 'Y'

display.show() 

 

 

©Adafruit Industries Page 32 of 34



You can use the print function to write to the entire display.

display.print('CPY!')

display.show()

Downloads 

Arduino LED Backpack Library (https://adafru.it/mau) 

EagleCAD Featherwing PCB files (https://adafru.it/nco) 

Fritzing objects in Adafruit Fritzing library (https://adafru.it/aP3) 

Schematic

 

 

• 

• 

• 

 

©Adafruit Industries Page 33 of 34

https://github.com/adafruit/Adafruit_LED_Backpack
https://github.com/adafruit/Adafruit-LED-Backpack-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library

