

Adafruit BME680

Created by lady ada

https://learn.adafruit.com/adafruit-bme680-humidity-temperature-barometic-pressure-voc-gas

Last updated on 2021-11-15 07:03:47 PM EST

©Adafruit Industries Page 1 of 28

3

6

7

7

8

8

9

9

10

10

11

12

12

13

14

15

15

17

21

21

21

22

23

24

25

26

26

26

26

27

28

Table of Contents

Overview

Pinouts

• Power Pins:

• SPI Logic pins:

• I2C Logic pins:

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Arduino Wiring & Test

• I2C Wiring

• SPI Wiring

• Install Adafruit_BME680 library

• Load Demo

BSEC Air Quality Library

• Install Library

• Load Example & Adjust

• QT Py + OLED Demo

Arduino Library Docs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of BME680 Library

• Python Installation of BME680 Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

Downloads

• Files

• Schematic & Fabrication Print - STEMMA QT Version

• Schematic & Fabrication Print - Original Version

©Adafruit Industries Page 2 of 28

Overview

The long awaited BME680 from Bosch gives you all the environmental sensing you

want in one small package. This little sensor contains temperature, humidity, baromet

ric pressure and VOC gas sensing capabilities. All over SPI or I2C, at a great price!

Like the BME280 & BMP280, this precision sensor from Bosch can measure humidity

with ±3% accuracy, barometric pressure with ±1 hPa absolute accuracy, and

temperature with ±1.0°C accuracy. Because pressure changes with altitude, and the

pressure measurements are so good, you can also use it as an altimeter with ±1

meter or better accuracy!

©Adafruit Industries Page 3 of 28

The BME680 takes those sensors to the next step in that it contains a small MOX

sensor. The heated metal oxide changes resistance based on the volatile organic

compounds (VOC) in the air, so it can be used to detect gasses & alcohols such as

Ethanol, Alcohol and Carbon Monoxide and perform air quality measurements. Note it

will give you one resistance value, with overall VOC content, it cannot differentiate

gasses or alcohols.

To make things easier and a bit more flexible, we've also included SparkFun Qwiic (ht

tps://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) connectors for the

I2C bus so you don't even need to solder! Just plug in a compatible cable and attach

©Adafruit Industries Page 4 of 28

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt

it to your MCU of choice, and you’re ready to load up some software and measure

some light.

Please note, this sensor, like all VOC/gas sensors, has variability and to get precise

measurements you will want to calibrate it against known sources! That said, for

general environmental sensors, it will give you a good idea of trends and

comparisons. We recommend that you run this sensor for 48 hours when you first

receive it to "burn it in", and then 30 minutes in the desired mode every time the

sensor is in use. This is because the sensitivity levels of the sensor will change during

early use and the resistance will slowly rise over time as the MOX warms up to its

baseline reading.

There are two versions of this board - the STEMMA QT version shown above, and

the original header-only version shown below. Code works the same on both!

©Adafruit Industries Page 5 of 28

For your convenience we've pick-and-placed the sensor on a PCB with a 3.3V

regulator and some level shifting so it can be easily used with your favorite 3.3V or 5V

microcontroller.

Pinouts

©Adafruit Industries Page 6 of 28

Power Pins:

Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have included

a voltage regulator on board that will take 3-5VDC and safely convert it down.

To power the board, give it the same power as the logic level of your

microcontroller - e.g. for a 5V micro like Arduino, use 5V

3Vo - this is the 3.3V output from the voltage regulator, you can grab up to

100mA from this if you like

GND - common ground for power and logic

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic

level safe. Use whatever logic level is on Vin!

SCK - This is the SPI Clock pin, its an input to the chip

SDO - this is the Serial Data Out / Microcontroller In Sensor Out pin, for data

sent from the BME680 to your processor

SDI - this is the Serial Data In / Microcontroller Out Sensor In pin, for data sent

from your processor to the BME680

CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input

to the chip

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 28

If you want to connect multiple BME680's to one microcontroller, have them share the

SDI, SDO and SCK pins. Then assign each one a unique CS pin.

I2C Logic pins:

SCK - this is also the I2C clock pin, connect to your microcontrollers I2C clock

line.

SDI - this is also the I2C data pin, connect to your microcontrollers I2C data line.

STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connectors to

dev boards with STEMMA QT connectors or to other things with various

associated accessories (https://adafru.it/Ft6)

Leave the other pins disconnected

Assembly

•

•

•

Your board may look a little different - the assembly process is the same!

©Adafruit Industries Page 8 of 28

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the breakout board:
Place the breakout board over the pins

so that the short pins poke through the

breakout pads

©Adafruit Industries Page 9 of 28

https://learn.adafruit.com//assets/26682
https://learn.adafruit.com//assets/26682
https://learn.adafruit.com//assets/26683
https://learn.adafruit.com//assets/26683

And Solder!
Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check

out our Guide to Excellent

Soldering (https://adafru.it/aTk)).

You're done! Check your solder joints

visually and continue onto the next steps

Arduino Wiring & Test

You can easily wire this breakout to any microcontroller, we'll be using an Arduino

compatible. For another kind of microcontroller, as long as you have 4 available pins it

is possible to 'bit-bang SPI' or you can use two I2C pins, but usually those pins are

fixed in hardware. Just check out the library, then port the code.

©Adafruit Industries Page 10 of 28

https://learn.adafruit.com//assets/26684
https://learn.adafruit.com//assets/26684
https://learn.adafruit.com//assets/26685
https://learn.adafruit.com//assets/26685
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/26686
https://learn.adafruit.com//assets/26686

I2C Wiring

Use this wiring if you want to connect via I2C interface

By default, the i2c address is 0x77. If you add a jumper from SDO to GND, the

address will change to 0x76.

Connect Vin (red wire on STEMMA

QT version) to the power supply,

3-5V is fine. Use the same voltage

that the microcontroller logic is

based off of. For most Arduinos,

that is 5V. For 3.3V logic devices,

use 3.3V

Connect GND (black wire on

STEMMA QT version) to common

power/data ground

Connect the SCK breakout pin to

the I2C clock SCL pin on your

Arduino compatible (yellow wire on

STEMMA QT version)

Connect the SDI breakout pin to the

I2C data SDA pin on your Arduino

compatible (blue wire on STEMMA

QT version)

•

•

•

•

©Adafruit Industries Page 11 of 28

https://learn.adafruit.com//assets/93613
https://learn.adafruit.com//assets/93613
https://learn.adafruit.com//assets/93614
https://learn.adafruit.com//assets/93614
https://learn.adafruit.com//assets/93615
https://learn.adafruit.com//assets/93615

SPI Wiring

Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make

wiring identical on all microcontrollers, we'll begin with 'software' SPI. The following

pins should be used:

Connect Vin to the power supply,

3V or 5V is fine. Use the same

voltage that the microcontroller

logic is based off of

Connect GND to common power/

data ground

Connect the SCK pin to Digital #13

but any pin can be used later

Connect the SDO pin to Digital #12

but any pin can be used later

Connect the SDI pin to Digital #11

but any pin can be used later

Connect the CS pin Digital #10 but

any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if you

desire, or change the pins to others.

Install Adafruit_BME680 library

To begin reading sensor data, you will need to install the Adafruit_BME680 library

(code on our github repository) (https://adafru.it/Btn). It is available from the Arduino

library manager so we recommend using that.

From the IDE open up the library manager...

•

•

•

•

•

•

©Adafruit Industries Page 12 of 28

https://learn.adafruit.com//assets/48071
https://learn.adafruit.com//assets/48071
https://github.com/adafruit/Adafruit_BME680
https://github.com/adafruit/Adafruit_BME680

And type in adafruit bme680 to locate the library. Click Install

Load Demo

Open up File->Examples->Adafruit_BME680->bmp680test and upload to your

microcontroller wired up to the sensor

Depending on whether you are using I2C or SPI, change the pin names and comment

or uncomment the following lines.

#define BME_SCK 13
#define BME_MISO 12
#define BME_MOSI 11
#define BME_CS 10

Adafruit_BME680 bme; // I2C
//Adafruit_BME680 bme(BME_CS); // hardware SPI
//Adafruit_BME680 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);

Once uploaded, open up the serial console at 9600 baud speed to see data being

printed out

©Adafruit Industries Page 13 of 28

Temperature is calculated in degrees C, you can convert this to F by using the classic

F = C * 9/5 + 32 equation.

Pressure is returned in the SI units of Pascals. 100 Pascals = 1 hPa = 1 millibar. Often

times barometric pressure is reported in millibar or inches-mercury. For future

reference 1 pascal =0.000295333727 inches of mercury, or 1 inch Hg = 3386.39

Pascal. So if you take the pascal value of say 100734 and divide by 3386.39 you'll get

29.72 inches-Hg.

Humidity is returned in Relative Humidity %

Gas is returned as a resistance value in ohms. This value takes up to 30 minutes to

stabilize! Once it stabilizes, you can use that as your baseline reading. Higher

concentrations of VOC will make the resistance lower.

You can also calculate Altitude. However, you can only really do a good accurate job

of calculating altitude if you know the hPa pressure at sea level for your location and

day! The sensor is quite precise but if you do not have the data updated for the

current day then it can be difficult to get more accurate than 10 meters.

BSEC Air Quality Library

The BME680 doesn't have built-in air quality calcualtion capabilities like other sensors

like the SGP30 or CCS811. Instead, you only get temperature, pressure, humidity and

gas resistance (the raw resistance value of the sensor in the BME60. So we have to

use a separate library from Bosch to perform the conversion to get Air Quality values

like the VOC and equivalent CO2.

The Bosch BSEC library is an all-in-one Arduino library that will get you all the values

from the sensor and also perform the AQI calculations. It is not an open source library!

You can only use it in Arduino and only with the chipsets supported.

©Adafruit Industries Page 14 of 28

We have tested the Adafruit SAMD21 (M0) series of chips and these work great. You

can use an Adafruit QT Py (https://adafru.it/Ofl), Trinket M0 (https://adafru.it/zya), Feat

her M0 (https://adafru.it/wRE), etc!

According to Bosch, ESP32 and ESP8266 are also supported (https://adafru.it/Ofm).

AVR is not recommended - you definitely cannot fit the library into an Uno/

ATmega328 or ATmega32u4, you could try using an Arduino Mega but it isnt

suggested.

Really we recommend a SAMD21 or ESP board!

Install Library

Load Example & Adjust

Load up the basic example

Look for the part in setup() where the iaqSensor is started.

Not every chipset is supported by the closed-source BSEC library!

©Adafruit Industries Page 15 of 28

https://www.adafruit.com/product/4600
https://www.adafruit.com/product/3500
https://www.adafruit.com/?q=feather+m0&sort=BestMatch
https://www.adafruit.com/?q=feather+m0&sort=BestMatch
https://github.com/BoschSensortec/BSEC-Arduino-library

Change BME680_I2C_ADDR_PRIMARY to BME680_I2C_ADDR_SECONDARY

We also recommend adding

while (!Serial) delay(10); // wait for console

right after Serial.begin so that the console will print any errors out right after its

opened

Upload to your board and open up the serial console at 115200 baud. You will see

comma-separated values with the following heading

Timestamp [ms], raw temperature [°C], pressure [hPa], raw relative

humidity [%], gas [Ohm], IAQ, IAQ accuracy, temperature [°C],

relative humidity [%], Static IAQ, CO2 equivalent, breath VOC

equivalent

Note that the last 3 values are the calculated values. They will take a few minutes to

normalize. Make sure to start your sensor in a clean air environment so it can

normalize!

You can check the basic_config_state example if you want to calibrate the

sensor, store the state in EEPROM, then re-write it on boot so you don't have to go

through the normalization process.

©Adafruit Industries Page 16 of 28

QT Py + OLED Demo

Here's a demo that uses a 1.3" OLED + QT Py for a plug-n-play air quality display

Adafruit QT Py - SAMD21 Dev Board with

STEMMA QT

What a cutie pie! Or is it... a QT Py? This

diminutive dev board comes with our

favorite lil chip, the SAMD21 (as made

famous in our GEMMA M0 and Trinket M0

boards).This time it...

https://www.adafruit.com/product/4600

Monochrome 1.3" 128x64 OLED graphic

display - STEMMA QT / Qwiic

These displays are small, only about 1.3"

diagonal, but very readable due to the

high contrast of an OLED display. This

display is made of 128x64 individual white

OLED pixels,...

https://www.adafruit.com/product/938

©Adafruit Industries Page 17 of 28

https://www.adafruit.com/product/4600
https://www.adafruit.com/product/4600
https://www.adafruit.com/product/4600
https://www.adafruit.com/product/938
https://www.adafruit.com/product/938
https://www.adafruit.com/product/938

STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long

This 4-wire cable is a little over 100mm /

4" long and fitted with JST-SH female 4-

pin connectors on both ends. Compared

with the chunkier JST-PH these are 1mm

pitch instead of...

https://www.adafruit.com/product/4210

/***
 This is a library for the BME680 gas, humidity, temperature & pressure sensor

 Designed specifically to work with the Adafruit BME680 Breakout
 ----> http://www.adafruit.com/products/3660

 These sensors use I2C or SPI to communicate, 2 or 4 pins are required
 to interface.

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing products
 from Adafruit!

 Written by Limor Fried & Kevin Townsend for Adafruit Industries.
 BSD license, all text above must be included in any redistribution
 ***/

#include <Adafruit_SSD1306.h>

#include "bsec.h"

Adafruit_SSD1306 display = Adafruit_SSD1306(128, 64, &Wire);

Bsec iaqSensor;
String output;

void setup() {
 Serial.begin(9600);
 //while (!Serial);

 Serial.println(F("BME680 test"));

 // SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally

©Adafruit Industries Page 18 of 28

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210

 if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3D)) { // Address 0x3D for 128x64
 Serial.println(F("SSD1306 allocation failed"));
 for(;;); // Don't proceed, loop forever
 }
 Serial.println("OLED begun");

 display.display();
 delay(100);
 display.clearDisplay();
 display.display();
 display.setTextSize(1);
 display.setTextColor(SSD1306_WHITE);
 display.setRotation(0);

 iaqSensor.begin(BME680_I2C_ADDR_SECONDARY, Wire);
 output = "\nBSEC library version " + String(iaqSensor.version.major) + "." +
String(iaqSensor.version.minor) + "." + String(iaqSensor.version.major_bugfix) + "."
+ String(iaqSensor.version.minor_bugfix);
 Serial.println(output);
 checkIaqSensorStatus();
 bsec_virtual_sensor_t sensorList[10] = {
 BSEC_OUTPUT_RAW_TEMPERATURE,
 BSEC_OUTPUT_RAW_PRESSURE,
 BSEC_OUTPUT_RAW_HUMIDITY,
 BSEC_OUTPUT_RAW_GAS,
 BSEC_OUTPUT_IAQ,
 BSEC_OUTPUT_STATIC_IAQ,
 BSEC_OUTPUT_CO2_EQUIVALENT,
 BSEC_OUTPUT_BREATH_VOC_EQUIVALENT,
 BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE,
 BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY,
 };

 iaqSensor.updateSubscription(sensorList, 10, BSEC_SAMPLE_RATE_LP);
 checkIaqSensorStatus();
 // Print the header
 output = "Timestamp [ms], raw temperature [°C], pressure [hPa], raw relative
humidity [%], gas [Ohm], IAQ, IAQ accuracy, temperature [°C], relative humidity
[%], Static IAQ, CO2 equivalent, breath VOC equivalent";
 Serial.println(output);
}

void loop() {
 display.setCursor(0,0);
 display.clearDisplay();

 unsigned long time_trigger = millis();
 if (! iaqSensor.run()) { // If no data is available
 checkIaqSensorStatus();
 return;
 }

 output = String(time_trigger);
 output += ", " + String(iaqSensor.rawTemperature);
 output += ", " + String(iaqSensor.pressure);
 output += ", " + String(iaqSensor.rawHumidity);
 output += ", " + String(iaqSensor.gasResistance);
 output += ", " + String(iaqSensor.iaq);
 output += ", " + String(iaqSensor.iaqAccuracy);
 output += ", " + String(iaqSensor.temperature);
 output += ", " + String(iaqSensor.humidity);
 output += ", " + String(iaqSensor.staticIaq);
 output += ", " + String(iaqSensor.co2Equivalent);
 output += ", " + String(iaqSensor.breathVocEquivalent);
 Serial.println(output);

 Serial.print("Temperature = "); Serial.print(iaqSensor.temperature);
Serial.println(" *C");

©Adafruit Industries Page 19 of 28

 display.print("Temperature: "); display.print(iaqSensor.temperature);
display.println(" *C");

 Serial.print("Pressure = "); Serial.print(iaqSensor.pressure / 100.0);
Serial.println(" hPa");
 display.print("Pressure: "); display.print(iaqSensor.pressure / 100);
display.println(" hPa");

 Serial.print("Humidity = "); Serial.print(iaqSensor.humidity); Serial.println("
%");
 display.print("Humidity: "); display.print(iaqSensor.humidity); display.println("
%");

 Serial.print("IAQ = "); Serial.print(iaqSensor.staticIaq); Serial.println("");
 display.print("IAQ: "); display.print(iaqSensor.staticIaq); display.println("");

 Serial.print("CO2 equiv = "); Serial.print(iaqSensor.co2Equivalent);
Serial.println("");
 display.print("CO2eq: "); display.print(iaqSensor.co2Equivalent);
display.println("");

 Serial.print("Breath VOC = "); Serial.print(iaqSensor.breathVocEquivalent);
Serial.println("");
 display.print("VOC: "); display.print(iaqSensor.breathVocEquivalent);
display.println("");

 Serial.println();
 display.display();
 delay(2000);
}

// Helper function definitions
void checkIaqSensorStatus(void)
{
 if (iaqSensor.status != BSEC_OK) {
 if (iaqSensor.status < BSEC_OK) {
 output = "BSEC error code : " + String(iaqSensor.status);
 Serial.println(output);
 display.setCursor(0,0);
 display.println(output);
 display.display();
 for (;;) delay(10);
 } else {
 output = "BSEC warning code : " + String(iaqSensor.status);
 Serial.println(output);
 }
 }

 if (iaqSensor.bme680Status != BME680_OK) {
 if (iaqSensor.bme680Status < BME680_OK) {
 output = "BME680 error code : " + String(iaqSensor.bme680Status);
 Serial.println(output);
 display.setCursor(0,0);
 display.println(output);
 display.display();
 for (;;) delay(10);
 } else {
 output = "BME680 warning code : " + String(iaqSensor.bme680Status);
 Serial.println(output);
 }
 }
}

©Adafruit Industries Page 20 of 28

Arduino Library Docs

Arduino Library Docs (https://adafru.it/Awf)

Python & CircuitPython

It's easy to use the BME680 sensor with Python and CircuitPython, and the Adafruit

CircuitPython BME680 (https://adafru.it/Bto) module. This module allows you to easily

write Python code that reads the humidity, temperature, pressure, and more from the

sensor.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up a BME680 to your board exactly as shown on the previous pages for

Arduino. Here's an example of wiring a Feather M0 to the sensor with I2C:

©Adafruit Industries Page 21 of 28

https://adafruit.github.io/Adafruit_BME680/html/class_adafruit___b_m_e680.html
https://github.com/adafruit/Adafruit_CircuitPython_BME680
https://github.com/adafruit/Adafruit_CircuitPython_BME680
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to sensor VIN (red wire on

STEMMA QT version)

Board GND to sensor GND (black

wire on STEMMA QT version)

Board SCL to sensor SCK (yellow

wire on STEMMA QT version)

Board SDA to sensor SDI (blue wire

on STEMMA QT version)

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C:

•

•

•

•

©Adafruit Industries Page 22 of 28

https://learn.adafruit.com//assets/93617
https://learn.adafruit.com//assets/93617
https://learn.adafruit.com//assets/93619
https://learn.adafruit.com//assets/93619
https://learn.adafruit.com//assets/93620
https://learn.adafruit.com//assets/93620
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor VIN (red wire on

STEMMA QT version)

Pi GND to sensor GND (black wire

on STEMMA QT version)

Pi SCL to sensor SCK (yellow wire

on STEMMA QT version)

Pi SDA to sensor SDI (blue wire on

STEMMA QT version)

CircuitPython Installation of BME680

Library

Next you'll need to install the Adafruit CircuitPython BME680 (https://adafru.it/Bto) lib

rary on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

•

•

•

•

©Adafruit Industries Page 23 of 28

https://learn.adafruit.com//assets/93622
https://learn.adafruit.com//assets/93622
https://learn.adafruit.com//assets/93623
https://learn.adafruit.com//assets/93623
https://learn.adafruit.com//assets/93624
https://learn.adafruit.com//assets/93624
https://github.com/adafruit/Adafruit_CircuitPython_BME680
file:///home/welcome-to-circuitpython/installing-circuitpython

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the

necessary libraries from the bundle:

adafruit_bme680.mpy

adafruit_bus_device

You can also download the adafruit_bme680.mpy from its releases page on Github (h

ttps://adafru.it/Btr).

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_bme680.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the

CircuitPython >>> prompt.

Python Installation of BME680 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-bme680

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

•

•

©Adafruit Industries Page 24 of 28

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_BME680/releases
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython & Python Usage

To demonstrate the usage of the sensor we'll initialize it and read the temperature,

humidity, and more from the board's Python REPL.

Run the following code to import the necessary modules and initialize the I2C

connection with the sensor:

import board
import adafruit_bme680
i2c = board.I2C()
sensor = adafruit_bme680.Adafruit_BME680_I2C(i2c)

Now you're ready to read values from the sensor using any of these properties:

temperature - The sensor temperature in degrees Celsius.

gas - The resistance (in Ohms) of the gas sensor. This is proportional to the

amount of VOC particles in the air.

humidity - The percent humidity as a value from 0 to 100%.

pressure - The pressure in hPa.

altitude - The altitude in meters.

print('Temperature: {} degrees C'.format(sensor.temperature))
print('Gas: {} ohms'.format(sensor.gas))
print('Humidity: {}%'.format(sensor.humidity))
print('Pressure: {}hPa'.format(sensor.pressure))

For altitude you'll want to set the pressure at sea level for your location to get the

most accurate measure (remember these sensors can only infer altitude based on

pressure and need a set calibration point). Look at your local weather report for a

pressure at sea level reading and set the seaLevelhPA property:

sensor.seaLevelhPa = 1014.5

Then read the altitude property for a more accurate altitude reading (but remember

this altitude will fluctuate based on atmospheric pressure changes!):

•

•

•

•

•

©Adafruit Industries Page 25 of 28

print('Altitude: {} meters'.format(sensor.altitude))

That's all there is to using the BME680 sensor with CircuitPython!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import adafruit_bme680

Create sensor object, communicating over the board's default I2C bus
i2c = board.I2C() # uses board.SCL and board.SDA
bme680 = adafruit_bme680.Adafruit_BME680_I2C(i2c, debug=False)

change this to match the location's pressure (hPa) at sea level
bme680.sea_level_pressure = 1013.25

You will usually have to add an offset to account for the temperature of
the sensor. This is usually around 5 degrees but varies by use. Use a
separate temperature sensor to calibrate this one.
temperature_offset = -5

while True:
 print("\nTemperature: %0.1f C" % (bme680.temperature + temperature_offset))
 print("Gas: %d ohm" % bme680.gas)
 print("Humidity: %0.1f %%" % bme680.relative_humidity)
 print("Pressure: %0.3f hPa" % bme680.pressure)
 print("Altitude = %0.2f meters" % bme680.altitude)

 time.sleep(1)

Python Docs

Python Docs (https://adafru.it/C42)

Downloads

Files

Fritzing object in Adafruit Fritzing library (https://adafru.it/c7M)

EagleCAD PCB files on github (https://adafru.it/Btt)

BME680 Datasheet (https://adafru.it/Btu)

•

•

•

©Adafruit Industries Page 26 of 28

https://circuitpython.readthedocs.io/projects/bme680/en/latest/
https://github.com/adafruit/Fritzing-Library/
https://github.com/adafruit/Adafruit-BME680-PCB
https://cdn-shop.adafruit.com/product-files/3660/BME680.pdf

More reading:

The next generation of low-cost personal air quality sensors forquantitative

exposure monitoring (https://adafru.it/Bts)

New small, low-power MOX VOC sensors: how might they (https://adafru.it/Btv)

be used for indoor air quality monitoring? (https://adafru.it/Btv)

Schematic & Fabrication Print - STEMMA QT

Version

•

•

©Adafruit Industries Page 27 of 28

https://cdn-learn.adafruit.com/assets/assets/000/047/741/original/nextgen.pdf?1509307283
https://cdn-learn.adafruit.com/assets/assets/000/047/741/original/nextgen.pdf?1509307283
https://cdn-learn.adafruit.com/assets/assets/000/047/742/original/ATA1701_VOCs_and_IAQ_FINAL_ENG-wp.pdf?1509307332
https://cdn-learn.adafruit.com/assets/assets/000/047/742/original/ATA1701_VOCs_and_IAQ_FINAL_ENG-wp.pdf?1509307332

