

Adafruit MCP4728 I2C Quad DAC
Created by Bryan Siepert

https://learn.adafruit.com/adafruit-mcp4728-i2c-quad-dac

Last updated on 2021-11-15 07:55:16 PM EST

©Adafruit Industries Page 1 of 19

3

5

5

5

6

6

6

7

7

8

8

9

10

11

11

11

12

13

14

14

15

16

18

18

18

19

19

Table of Contents

Overview

Pinouts

• Power Pins

• I2C Logic Pins

• Other Pins

Arduino

• Wiring

• Library Installation

• Basic Reading Example

• Basic Example Code

• Vrefs and You

• Vref Example

• Vref Example

Arduino Docs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of MCP4728 Library

• Python Installation of MCP4728 Library

• CircuitPython & Python Usage

• Vrefs and You

• Vref Example

Python Docs

Downloads

• Files

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 19

Overview

If you've ever said to yourself "Gee, I wish these four 12-bit DACs came in a single

package with the ability to save their settings to an EEPROM", well I have good news.

The MCP4728 is the answer to your wishes! Within its little package, the MCP4728

has four 12-bit DACs for whatever voltage setting needs you may have. In addition, it

has the ability to store the settings for the DACs to an internal EEPROM. Once saved

to the internal non-volatile memory, the settings will be loaded by default when the

DAC powers up.

To take things even further, the MCP4728 lets you chose between two sources for

your reference voltage: the input voltage that you use to power it on the VCC pin, or

an internal 2.048V reference voltage. If you use the internal reference voltage (Vref in

©Adafruit Industries Page 3 of 19

DAC speak) you can choose between 1X and 2X gain for the output, allowing your

voltages to range from 0V to 2.048 or 0V- 4.096V as your application requires.

By default you'll use the input voltage as your Vref, allowing you to scale the voltages

from 0V-3.3V or 5V depending on your input voltage.

The breakout for the MCP4728 is populated with the required support circuitry to use

it with your microcontroller of choice or Blinka-supported computer. The SparkFun

Qwiic (https://adafru.it/Fpw) compatible STEMMA QT (https://adafru.it/Ft4) JST SH

connectors ease the process of connecting the MCP4728 to your project and allows

you to easily share an I2C bus with other STEMMA QT, Qwiic, Grove or other

compatible sensors.

Our drivers, wiring diagrams, and example code for Arduino, CircuitPython and

Python make it easy to get started so you can get rolling with your project instead of

figuring out how to wire things or get the code working.

©Adafruit Industries Page 4 of 19

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

Pinouts

Power Pins

Vcc - this is the power pin. The MCP4728 will handle both 3.3V logic level

boards like Feathers or 5V logic level boards like the Arduino Uno

GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontroller's I2C clock line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

SDA -I2C data pin, connect to your microcontroller's I2C data line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connectors to

dev boards with STEMMA QT connectors or to other things with various

associated accessories (https://adafru.it/Ft6)

•

•

•

•

•

©Adafruit Industries Page 5 of 19

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

Other Pins

LDAC - Output latching pin. Can be used to latch the output when updating

channels.

RDY - Ready status pin, It is driven low by the DAC when the EEPROM is being

written to, signifying that he DAC will not process commands. Goes High when

the write is done

VA, VB, VC, VD - DAC output pins for each channel

Arduino

Wiring

Wiring the MCP4728 to communicate with your microcontroller is straightforward

thanks to the I2C interface. For these examples, we can use the Metro or Arduino to

update the DAC. The instructions below show a Metro (https://adafru.it/

METROXMETR), but the same applies to an Arduino

Arduino 5V to MCP4728 VCC (red

wire) if you are running a 5V board

Arduino (Uno, etc.). If your board is

3V, connect to that instead.

Arduino GND to MCP4728 GND

(black wire)

Arduino SCL to MCP4728 SCL

(yellow wire)

Arduino SDA to MCP4728 SDA

(blue wire)

Multimeter Positive Lead to

MCP4728 VA, VB, VC, and VD in

sequence

Multimeter Negative Lead to GND

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 19

https://www.adafruit.com/product/2488
https://learn.adafruit.com//assets/86590
https://learn.adafruit.com//assets/86590
https://learn.adafruit.com//assets/86591
https://learn.adafruit.com//assets/86591

Library Installation

Once wired up, to start using the MCP4728, you'll need to install the Adafruit_MCP47

28 library (https://adafru.it/IaJ). The library is available through the Arduino library

manager so we recommend taking that approach.

From the Arduino IDE, open up the Library Manager:

Click the Manage Libraries ... menu item, search for Adafruit MCP4728, and select

the Adafruit MCP4728 library and click Install:

Basic Reading Example

Open up File -> Examples -> Adafruit MCP4728 -> basic_demo and upload to your

Arduino wired up to the sensor.

One you've uploaded the sketch to your board, measure the voltages on each of the

four channel outputs and verify that they're within the ranges given for the logic level

of your microcontroller.

The values will differ slightly for you but they should be close to the following for a 5V

logic level device such as a Metro 328 or Arduino Uno:

5V on VA

2.5V on VB

1.25V on VC

•

•

•

©Adafruit Industries Page 7 of 19

https://github.com/adafruit/Adafruit_MCP4728
https://github.com/adafruit/Adafruit_MCP4728

0V on VD

For a 3.3V logic level device such as a Metro M4 or Feather M0 the voltages should

be close to:

3.3V on VA

1.65V on VB

0.825V on VC

0V on VD

Basic Example Code

// Basic demo for configuring the MCP4728 4-Channel 12-bit I2C DAC

#include <Adafruit_MCP4728.h>

#include <Wire.h>

Adafruit_MCP4728 mcp;

void setup(void) {

 Serial.begin(115200);

 while (!Serial)

 delay(10); // will pause Zero, Leonardo, etc until serial console opens

 Serial.println("Adafruit MCP4728 test!");

 // Try to initialize!

 if (!mcp.begin()) {

 Serial.println("Failed to find MCP4728 chip");

 while (1) {

 delay(10);

 }

 }

 mcp.setChannelValue(MCP4728_CHANNEL_A, 4095);

 mcp.setChannelValue(MCP4728_CHANNEL_B, 2048);

 mcp.setChannelValue(MCP4728_CHANNEL_C, 1024);

 mcp.setChannelValue(MCP4728_CHANNEL_D, 0);

}

void loop() { delay(1000); }

Vrefs and You

Reference Voltages (Vref for short) are an important topic to understand when

working with DACs. The Vref determines the top of the voltage range that the DAC

will output. This is because the DAC starts with the Vref as the output voltage and if

the DAC settings specify a lower voltage, the internal circuitry will reduce the Vref

voltage down to the specified amount.

•

•

•

•

•

©Adafruit Industries Page 8 of 19

If your Vref is 5V, you will be able to have the DAC output voltages from 0V up to 5V.

Similarly if you are using a 3.3V source as your Vref, you will be able to scale the

DAC's output voltages from 0V to 3.3V. If you need your DAC to output a voltage, your

Vref will need to be the same or a higher voltage.

The MCP4728 can choose one of two sources for its Vref. The first is the VCC pin

which can take a supply voltage between 2.7V and 5.5V. This will match the output

range of the DAC to the logic level of your microcontroller.

The second option is to use the 2.048V Vref in the MCP4728 itself. Normally this

would mean the highest voltage you can output is 2.048V however when using the

internal Vref, you can optionally apply a 2X gain to the Vref, doubling it and allowing

your output voltages to range from 0V to 4.096V

Vref Example

The second included demo has an example of how to set the Vref and Gain for a

channel. Open up File -> Examples -> Adafruit MCP4728 -> vref_demo and upload to

your board wired up to the sensor.

With the exception of Channel A, the examples below show how using the same value

for the channels but different Vref values will change the output voltage for the

channel.

Use your multimeter on the channel's voltage pin to verify the values.

Channel A

// Vref = MCP_VREF_VDD, value = 0, 0V

 mcp.setChannelValue(MCP4728_CHANNEL_A, 0);

The value for Channel A is being set to 0, so the Vref doesn't matter, the voltage on

the VA pin will be 0V either way.

Channel B

// value is vref/2, with 2.048V internal Vref and 1X gain

 // = 2.048/2 = 1.024V

 mcp.setChannelValue(MCP4728_CHANNEL_B, 2048, MCP4728_VREF_INTERNAL,

 MCP4728_GAIN_1X);

©Adafruit Industries Page 9 of 19

For Channel B we're using the Internal 2.048 Vref with the 1X gain, so the Vref is

2.048V. The value is set to 2048 or Vref/2, so the resulting voltage on the VB pin is

half of 2.048V, 1.024V

Channel C

// value is vref/2, with 2.048V internal vref and *2X gain*

 // = 4.096/2 = 2.048V

 mcp.setChannelValue(MCP4728_CHANNEL_C, 2048, MCP4728_VREF_INTERNAL,

 MCP4728_GAIN_2X);

Channel C uses the 2.048V internal Vref with a 2X gain, bringing the Vref up to

4.096V. The value is again set to Vref/ 2, so the resulting voltage on the VC pin is

2.048V

Channel D

// value is vref/2, Vref is MCP4728_VREF_VDD(default), the power supply voltage

(usually 3.3V or 5V)

 // For Vdd/Vref = 5V, voltage = 2.5V

 // For 3.3V, voltage = 1.65V

 // Values will vary depending on the actual Vref/Vdd

 mcp.setChannelValue(MCP4728_CHANNEL_D, 2048);

Finally, channel D is using the power supply voltage as Vref, so with the 5V logic level

of an Arduino Uno or similar Vref will be 5V. Just like the previous examples, the value

for Channel D is set to Vref/2 but because the Vref in this case is 5V, the resulting

voltage on pin VD is 2.5V.

Note that if you are using a 3.3V logic level board, Vref will be 3.3V so to voltage on V

D will be 1.65V

Vref Example

// Demo for configuring the Vref of the MCP4728 4-Channel 12-bit I2C DAC

#include <Adafruit_MCP4728.h>

#include <Wire.h>

Adafruit_MCP4728 mcp;

void setup(void) {

 Serial.begin(115200);

 while (!Serial)

 delay(10); // will pause Zero, Leonardo, etc until serial console opens

 Serial.println("Adafruit MCP4728 test!");

 // Try to initialize!

©Adafruit Industries Page 10 of 19

 if (!mcp.begin()) {

 Serial.println("Failed to find MCP4728 chip");

 while (1) {

 delay(10);

 }

 }

 Serial.println("MCP4728 Found!");

 /*

 * @param channel The channel to update

 * @param new_value The new value to assign

 * @param new_vref Optional vref setting - Defaults to `MCP4728_VREF_VDD`

 * @param new_gain Optional gain setting - Defaults to `MCP4728_GAIN_1X`

 * @param new_pd_mode Optional power down mode setting - Defaults to

 * `MCP4728_PD_MOOE_NORMAL`

 * @param udac Optional UDAC setting - Defaults to `false`, latching (nearly).

 * Set to `true` to latch when the UDAC pin is pulled low

 *

 */

 // Vref = MCP_VREF_VDD, value = 0, 0V

 mcp.setChannelValue(MCP4728_CHANNEL_A, 0);

 // value is vref/2, with 2.048V internal Vref and 1X gain

 // = 2.048/2 = 1.024V

 mcp.setChannelValue(MCP4728_CHANNEL_B, 2048, MCP4728_VREF_INTERNAL,

 MCP4728_GAIN_1X);

 // value is vref/2, with 2.048V internal vref and *2X gain*

 // = 4.096/2 = 2.048V

 mcp.setChannelValue(MCP4728_CHANNEL_C, 2048, MCP4728_VREF_INTERNAL,

 MCP4728_GAIN_2X);

 // value is vref/2, Vref is MCP4728_VREF_VDD(default), the power supply

 // voltage (usually 3.3V or 5V) For Vdd/Vref = 5V, voltage = 2.5V For 3.3V,

 // voltage = 1.65V Values will vary depending on the actual Vref/Vdd

 mcp.setChannelValue(MCP4728_CHANNEL_D, 2048);

 mcp.saveToEEPROM();

}

void loop() { delay(1000); }

Arduino Docs

Arduino Docs (https://adafru.it/HE5)

Python & CircuitPython

CircuitPython Microcontroller Wiring

Wiring the MCP4728 to communicate with your microcontroller is straightforward

thanks to the I2C interface. For these examples, we can use a multimeter to measure

the voltages output on each of the DAC's channels. The instructions below reference

an Adafruit Feather (https://adafru.it/Cmy) microcontroller, but the same applies to a

Metro M0 or M4 or other CircuitPython compatible board (https://adafru.it/Em8).

©Adafruit Industries Page 11 of 19

https://adafruit.github.io/Adafruit_MCP4728/html/class_adafruit___m_c_p4728.html
https://www.adafruit.com/product/3857
https://circuitpython.org/downloads

Feather 3.3V to MCP4728 VCC (red

wire)

Feather GND to MCP4728 GND

(black wire)

Feather SCL to MCP4728 SCL

(yellow wire)

Feather SDA to MCP4728 SDA (blue

wire)

Multimeter Positive Lead to

MCP4728 VA, VB, VC, and VD in

sequence

Multimeter Negative Lead to GND

Python Computer Wiring

Since there are dozens of Linux computers/boards you can use, we will show wiring

for Raspberry Pi (https://adafru.it/scY). For other platforms, please visit the guide for

CircuitPython on Linux to see whether your platform is supported (https://adafru.it/

BSN).

Here's the Raspberry Pi wired with I2C:

•

•

•

•

•

•

©Adafruit Industries Page 12 of 19

https://learn.adafruit.com//assets/85995
https://learn.adafruit.com//assets/85995
https://learn.adafruit.com//assets/85996
https://learn.adafruit.com//assets/85996
https://www.adafruit.com/product/3055
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

RPi 3.3V to MCP4728 VCC (red

wire)

RPi GND to MCP4728 GND (black

wire)

RPi SCL to MCP4728 SCL (yellow

wire)

RPi SDA to MCP4728 SDA (blue

wire)

Multimeter Positive Lead to

MCP4728 VA, VB, VC, and VD in

sequence

Multimeter Negative Lead to GND

CircuitPython Installation of MCP4728 Library

You'll need to install the Adafruit CircuitPython MCP4728 (https://adafru.it/IaK) library

on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/uap). Our CircuitPython starter guide has a great page on how to

install the library bundle (https://adafru.it/ABU).

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_mcp4728.mpy

adafruit_bus_device

•

•

•

•

•

•

•

•

©Adafruit Industries Page 13 of 19

https://learn.adafruit.com//assets/85997
https://learn.adafruit.com//assets/85997
https://learn.adafruit.com//assets/85998
https://learn.adafruit.com//assets/85998
https://github.com/adafruit/Adafruit_CircuitPython_MCP4728
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_mcp4728.mpy file and adafruit_bus_device folder copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Python Installation of MCP4728 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-mcp4728

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the DAC, we'll initialize it and set the output values for

each of the channels. Type the following code in the CircuitPython REPL to import the

necessary modules and initialize the I2C connection with the DAC:

import board

import busio

import adafruit_mcp4728

i2c = busio.I2C(board.SCL, board.SDA)

mcp4728 = adafruit_mcp4728.MCP4728(i2c)

Next, we'll set the values for each channel and then test the voltages with a

multimeter

•

©Adafruit Industries Page 14 of 19

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

mcp4728.channel_a.value = 65535

mcp4728.channel_b.value = int(65535/2)

mcp4728.channel_c.value = int(65535/4)

mcp4728.channel_d.value = 0

You can now use a multimeter to check the voltages on each of the output pins, VA,

VB, VC, and VD. The values will differ slightly for you but they should be close to:

3.3V on VA

1.65V on VB

0.825V on VC

0V on VD

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import adafruit_mcp4728

i2c = board.I2C() # uses board.SCL and board.SDA

mcp4728 = adafruit_mcp4728.MCP4728(i2c)

mcp4728.channel_a.value = 65535 # Voltage = VDD

mcp4728.channel_b.value = int(65535 / 2) # VDD/2

mcp4728.channel_c.value = int(65535 / 4) # VDD/4

mcp4728.channel_d.value = 0 # 0V

Vrefs and You

Reference Voltages (Vref for short) are an important topic to understand when

working with DACs. The Vref determines the top of the voltage range that the DAC

will output. This is because the DAC starts with the Vref as the output voltage and if

the DAC settings specify a lower voltage, the internal circuitry will reduce the Vref

voltage down to the specified amount.

If your Vref is 5V, you will be able to have the DAC output voltages from 0V up to 5V.

Similarly if you are using a 3.3V source as your Vref, you will be able to scale the

•

•

•

•

The keen-eyed will have noticed that the MCP4728 is a 12-bit DAC but we're

using 16-bit numbers to set the value. CircuitPython uses 16-bit values for

voltages, regardless of the underlying hardware. Use "raw_value" to set an

unscaled value

©Adafruit Industries Page 15 of 19

DAC's output voltages from 0V to 3.3V. If you need your DAC to output a voltage, your

Vref will need to be the same or a higher voltage.

The MCP4728 can choose one of two sources for its Vref,. The first is the VCC pin

which can take a supply voltage between 2.7V and 5.5V. This will match the output

range of the DAC to the logic level of your microcontroller.

The second option is to use the 2.048V Vref in the MCP4728 itself. Normally this

would mean the highest voltage you can output is 2.048V however when using the

internal Vref, you can optionally apply a 2X gain to the Vref, doubling it and allowing

your output voltages to range from 0V to 4.096V

Vref Example

The included Vref example code shows how the Vref and gain settings work. Typing

the following into the CircuitPython REPL to follow along and setup the required

library imports, and instantiate the mcp4728 library object.

Additionally we'll define a variable that represents the maximum value for a 12-bit

DAC like this one. When the raw_value of a channel of the mcp4728 is set to this, it

will output the maximum possible voltage for that channel, as defined by the current

Vref.

from time import sleep

import board

import busio

import adafruit_mcp4728

i2c = busio.I2C(board.SCL, board.SDA)

mcp4728 = adafruit_mcp4728.MCP4728(i2c)

FULL_VREF_RAW_VALUE = 4095

Next we will set the raw value for channel a to half of this full value so that the output

will be half of the Vref. We're wrapping the result of dividing the max value in an `int`

For brevity, we will assume a logic level of 3.3V. If the logic level for your device

is something else, the resulting voltages will be different. Subtle difference in the

VDD voltage will also affect the measured values

©Adafruit Industries Page 16 of 19

call to make sure the resulting value is an integer type that the raw_value property

expects.

Once this is run, measure the voltage on the VA pin with your multimeter. Since the

Vref is set to VDD, which is the logic level of the microcontroller, the Vref will be 3.3V.

With setting the value to half of the maximum, the resulting voltage should be 3.3V/2

or approximately 1.65V

mcp4728.channel_a.raw_value = int(FULL_VREF_RAW_VALUE/2)

mcp4728.channel_a.vref = adafruit_mcp4728.Vref.VDD

mcp4728.channel_b.raw_value = int(FULL_VREF_RAW_VALUE/2) # VDD/2

mcp4728.channel_b.vref = adafruit_mcp4728.Vref.INTERNAL

mcp4728.channel_b.gain = 1

Next we'll set the Vref for channel B to use the DAC's internal Vref of 2.048V. Since

we are using the internal Vref, we can set the gain on the internal Vref to 1X, so the

final Vref voltage remains 2.048V.

We set the value of the channel to the same value as the previous example, however

when you measure the voltage on channel B's output pin VB, you will see that

because we're using a different lower Vref, the resulting voltage is approximately

1.024V, again half of the 2.048V Vref.

mcp4728.channel_c.raw_value = int(FULL_VREF_RAW_VALUE/2) # VDD/2

mcp4728.channel_c.vref = adafruit_mcp4728.Vref.INTERNAL

mcp4728.channel_c.gain = 2

Finally for channel C, we again set the raw value to half of the maximum, so the

resulting voltage should be half of the Vref voltage. We then set the Vref source to the

internal 2.048V Vref, however this time we set the internal Vref's gain to 2X, making

the final Vref voltage 4.096V. With the value for the channel set to half of the

maximum, we get half of the Vref value, or in this case approximately 2.048V on pin

VC

Without changing output value setting compared to the first channel, we were able to

change the output voltage by changing the Vref.

©Adafruit Industries Page 17 of 19

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

from time import sleep

import board

import adafruit_mcp4728

i2c = board.I2C() # uses board.SCL and board.SDA

mcp4728 = adafruit_mcp4728.MCP4728(i2c)

FULL_VREF_RAW_VALUE = 4095

pylint: disable=no-member

mcp4728.channel_a.raw_value = int(FULL_VREF_RAW_VALUE / 2) # VDD/2

mcp4728.channel_a.vref = (

 adafruit_mcp4728.Vref.VDD

) # sets the channel to scale between 0v and VDD

mcp4728.channel_b.raw_value = int(FULL_VREF_RAW_VALUE / 2) # VDD/2

mcp4728.channel_b.vref = adafruit_mcp4728.Vref.INTERNAL

mcp4728.channel_b.gain = 1

mcp4728.channel_c.raw_value = int(FULL_VREF_RAW_VALUE / 2) # VDD/2

mcp4728.channel_c.vref = adafruit_mcp4728.Vref.INTERNAL

mcp4728.channel_c.gain = 2

mcp4728.save_settings()

while True:

 sleep(1)

Python Docs

Python Docs (https://adafru.it/HE6)

Downloads

Files

MCP4728 Datasheet (https://adafru.it/cfQ)

EagleCAD files on GitHub (https://adafru.it/IaL)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/IaM)

Note the use of the mcp4728.save_settings() command -- this stores the current

settings into the breakout board's EEPROM, so at boot-up it will always supply

the amount of voltage that was saved.

•

•

•

©Adafruit Industries Page 18 of 19

https://circuitpython.readthedocs.io/projects/mcp4728/en/latest/
http://ww1.microchip.com/downloads/en/DeviceDoc/22187E.pdf
https://github.com/adafruit/Adafruit-MCP4728-PCB
https://github.com/adafruit/Fritzing-Library/raw/master/parts/Adafruit%20MCP4728.fzpz

