

Arduino Tips, Tricks, and Techniques

Created by lady ada

https://learn.adafruit.com/arduino-tips-tricks-and-techniques

Last updated on 2021-11-15 05:54:37 PM EST

©Adafruit Industries Page 1 of 35

3

3

4

12

13

14

14

14

15

16

17

17

18

18

19

20

21

22

22

22

23

24

24

24

27

29

29

29

30

30

31

31

34

35

35

Table of Contents

Arduino UNO FAQ

• Arduino Timeline

• New USB Chip

• More 3.3v power!

• UNO R2 and R3

Arduino Libraries

• Need Help Installing a Library?

• What is a library?

• Using Libraries

• What's in a library?

• It's important to remember!

• How to install libraries

Bootloader

• Bootloader for the Atmega328

• "No-Wait" Bootloader

• No-Hang Bootloader

• Upload Sketches with AVRDUDE

Upgrade

• Introduction

• Replace the Chip

• Download an Arduino IDE with ATmega328 compatibility

3.3V Conversion

• Introduction

• Replace the Regulator

• Replacing the Fuse

Arduino Hacks

• Bumpers

• Free up some RAM

ArduinoISP

• Introduction

• Parts

• Assemble

• Load the Code

• Bonus! Using with AVRdude

Support Forums

©Adafruit Industries Page 2 of 35

Arduino UNO FAQ

There's so many Arduino's out there, it may get a little confusing. We wanted to clarify

for people some of the changes in the latest version.

NB this is just our opinion and interpretation of some of the decisions made by

Arduino. We aren't associated with Arduino, and don't speak for them! If you have to

get an Official Response to your Arduino question please contact them directly. Thx!

NB2 Still in progress, we're collecting common questions to answer. If you have more

questions, please post them in our forums (https://adafru.it/forums).

Arduino Timeline

But first…some history! First there was the serial Arduino (what's the name of it?) with

RS232 which was not used outside of the Arduino team & friends.

The first popularly manufactured Arduino was called the NG (New Generation, like

Star Trek, yknow?) The NG used the Atmega8 chip running at 16 MHz and an FT232

chip for the USB interface. The bootloader takes up 2KB of space and runs at 19200

baud.

The next version was the Diecimila. The Diecimila updated the chip from the Atmega8

to the Atmega168. The great thing here is double the space and memory (16K instead

of 8K). It still ran at 16MHz. The Diecimila also added two extra header pins for 3.3V

(from the FTDI chip) and the reset pin which can be handy when a shield is covering

©Adafruit Industries Page 3 of 35

http://forums.adafruit.com/

up the Reset button. The bootloader takes up 2KB of space and runs at 19200 baud.

Auto-resetting was also added which makes life awesomer for everyone.

In 2009, the Duemilanove was released. This one also upgraded the chip again, to

the Atmega328. Yet another doubling of space and memory! Another upgrade is now

the power is automagically switched between USB and DC-jack which removed the

previous jumper. This makes it easier and faster to move from programming to

standalone and got rid of some confusion. The bootloader takes up 2KB of space and

runs at 57600 baud.

In 2010, we have the Uno! The Uno still uses the 328P chip and the power switcher. It

has a smaller bootloader called OptiBoot (more space for users' projects) that runs at

115K. So even though the chip is the same, you get another 1.5K of extra flash space

that was previously used by the bootloader. The FTDI chip has also been replaced

with a atmega8u2 which allows for different kinds of USB interfaces. Finally, there's an

extra 3.3V regulator (LP2985) for a better 3.3V supply. whew!

New USB Chip

So! All of the older Arduinos (NG, Diecimila and Duemilanove) have used an FTDI chip

(the FT232RL) to convert the TTL serial from the Arduino chip (Atmel ATmega). This

allows for printable debugging, connecting to software like PureData/Max,

Processing, Python, etc. etc. It also allows updating the firmware via the serial

bootloader.

The good news about the FT232RL has royalty-free drivers and pretty much just

works. The bad news is that it can -only- act as a USB/Serial port. It can't act like a

keyboard, mouse, disk drive, MIDI device, etc.

©Adafruit Industries Page 4 of 35

The Uno has changed that by exchanging the FT232RL chip with an atmega8u2 chip.

There are a few things that are possible with this new chip but before we discuss that

lets make it clear that by default, this chip acts identically to the FTDI chip that it

replaces. It's just a USB-serial port!

One improvement in updating the chip is that, previously, Mac users needed to install

FTDI drivers. The 8u2 imitates a 'generic' CDC serial device. So now, Mac users do

not have to install a driver. Windows users still need to install the .INF file but luckily

there are no drivers. This means there will be fewer problems with new versions of

windows. There is no way to have a serial USB device that doesn't require an INF file

in windows, sadly :(

The big thing that is nice about the 8u2 is that advanced users can turn it into a

different kind of USB device. For example it can act like a keyboard or mouse. Or a

disk driver. Or a MIDI interface, etc. Right now there are no examples of how to do

this, but we hope to post some shortly.

And, finally, going with the 8u2 reduced the price of the board which made up for

some of the other extras.

©Adafruit Industries Page 5 of 35

Why not just go with a atmega32u4?

The Arduino team has indicated they thought about this but preferred that

hackability of a DIP chip.

Right now there are a few Arduino's with a 32u4 chip such as the Leonardo, Micro

and Esplora

How can I change the USB firmware?

The 8u2 can be programmed by soldering a 6-pin ISP header (the R3 has the 6-pin

header pre-soldered in) and using a standard AVR programmer. You can also use

the bootloader (DFU) in the 8u2. On first generation Unos, you enable this by

soldering the 10K resistor right underneath the board. (R2 and R3 versions of the

Uno use the 16U2 and do not require the resistor!) Again, we don't have any

examples or tutorials but hope to shortly.

©Adafruit Industries Page 6 of 35

The code for the 8u2 is based on LUFA, Dean Cameran's totally awesome USB-AVR

library that has great examples and documentation. Its also completely open source.

Does the Uno use a resonator or a crystal for the

processor clock?

The FT232RL had an internal oscillator whereas the 8u2 does not. That means

there is a 16mhz crystal next to the 8u2 to allow it to keep up with precise USB

timing.

On the other hand, the Atmega328p chip that is the core processor in the Arduino

now has a 16mhz ceramic resonator. Ceramic resonators are slightly less precise

than crystals but we have been assured that this one was specified and works

quite well.

©Adafruit Industries Page 7 of 35

So the Arduino is not as precise, timing-wise?

The short answer is: yes. The long answer is that most things that people are doing

with Arduino do not rely on 20ppm precision timing where 100ppm would fail. For

people who want long term precise timekeeping we suggest going with a TCXO

(temperature compensation crystal oscillator) - but you would know if you needed

that.

©Adafruit Industries Page 8 of 35

Why not have one 16Mhz crystal shared between both?

Good question, technically you can. However, in practice the board did not make it

through FCC certification with one crystal (long traces with fast squarewaves = lots

of noise).

OK well lets say I don't care about that...

You can absolutely connect the CLKO out the crystal from the '8u2 to the '328p but

you're on your own as we don't think there will be any tutorials about that.

Whats with the FCC logo on the back?

Arduino is now FCC certified! That means that the board by itself passes FCC

certification for electromagnetic emissions. It does not mean that your project is

FCC certified. The moment you change the Arduino, it's no longer FCC certified

(although we'd like some back-up documentation on this).

It is also, still, CE certified for Europeans.

A new Bootloader?

There's a new bootloader. It works just like the old one - being an STK500-protocol

compatible but its a quarter of the size! Down from 2K, the new bootloader is a tiny

512b. This gives you more space for your project code! Yay! It's also faster - 115K

instead of 57.6k so you'll be uploading code in 3 seconds.

©Adafruit Industries Page 9 of 35

The Bad News is that you must make sure to select Uno in the Boards menu!!! If

you don't things will be confusing because the bootloader speed is wrong, and you

won't get that extra 1.5K!

Overall, its a good direction, and the chips can be used in older Arduinos just fine

(so you can upgrade your Diecimila or Duemilanove to the Uno by simply replacing

the chip).

For more detailed information about the bootloader, such as source code, please

visit the Optiboot (https://adafru.it/aUM) project page.

Why not just use the '8u2 as a programmer?

While it is possible that the 8u2 could act as a full ISP programmer there are a few

reasons why its good that it isn't.

Giving beginners access to a full ISP programmer will result in bricked chips.

There's no risk of messing up the Arduino chip beyond recognition if it's just

being bootloaded

Having the chip act only as a USB/serial passthrough simplifies the firmware

so that the chip has only one function instead of having to have it do double

duty as programmer -and- serial interface (think about it, its not easy)

Backwards compatibility - the Arduino chips can still be programmed with

FTDI breakout boards or cables, making it easy for people to breadboard or

make clones.

How does the new '8u2 affect Arduino-derivatives?

Every USB device needs to have a unique product id and vendor id. Vendor IDs

(VID) are sold to companies and Product IDs (PID) are chosen by that company. So

for example FTDI owns VID #0403 and they give their chips ID's between #0000

and #FFFF (65,536 different PIDs) Older Ardiuno's used FTDI's VID/PID as that is

part of the deal when you purchase their chips. Because the Uno does not use an

FTDI chip anymore, the Arduino team had to purchase a USB Vendor ID (VID).

Every Arduino product will now have their own PID starting with the Uno (#0001).

If you want to make your own Arduino-compatible board, you have a few choices:

Don't use an 8u2, go with an FTDI chip instead that comes with a VID

If you're planning to make more than one board for your personal use, you

will have to purchase a VID from USB IF (https://adafru.it/aUN) for a one time

$2000 fee

1.

2.

3.

1.

2.

©Adafruit Industries Page 10 of 35

http://code.google.com/p/optiboot/
http://www.usb.org/developers/vendor/

If you're making a single board for your own experimentation, you can pick a

VID/PID that doesn't interfere with any devices on your computer and

substitute those in

You can purchase licenses for single VID/PID pairs from companies that

develop USB devices (we dont have any specific links at the moment)

However, you can't use the Arduino VID when distributing your own Arduino-

compatibles! If the cost of a VID is too much for you, simply go with an FTDI chip,

K?

I tried to find a place to buy some '8u2s and couldnt

locate any!

Yep, there is a worldwide shortage of Atmel parts right now. Even the chip used in

the Arduino core (Atmega328P) is really hard to get. This happens after

recesssions. We hope that these and other Atmel chips will show up again in

places like digikey soon. Till then, keep searching on findchips.com!

So does this mean there may be an Arduino shortage?

Probably not. The Arduino team buys chips in the 10's of thousands, directly from

Atmel. They probably get priority over distributors because of this. We're assuming

the team bought enough to last for a while.

Did the Arduino team move from the FTDI chip to the '8u2

to screw over derivative-makers?

While the appearance of a hard-to-get chip coupled with the VID/PID mishegas

may seem to be a little annoying, we don't think that means that the Arduino team

is being malicious or attempting to make life difficult for people who make

derivatives. The move to an '8u2 makes the Arduino more powerful, and easy to

use as there are fewer drivers to install. While there is a shortage now, there will

eventually be plenty of chips on the market.

Some people in the Arduino forum have thought of forming a group that would

purchase a VID for Arduinites to use in personal projects. This is a pretty good idea

and its probably the best way to avoid VID/PID conflicts. Between 65,536 projects,

that comes to under a nickel per PID.

And of course, because they didn't get rid of the bootloader system, you can

always just use an FTDI chip.

3.

4.

©Adafruit Industries Page 11 of 35

Are Shields still going to work?

All previous shields should still work perfectly fine as the header spacing is the

same, the core chip is the same and the location of parts is the same. In fact, some

should work better because the 3V supply has been upgraded (see next point).

Will enclosures, plates, etc still work?

Yup! The Uno is physicially the same size and layout as previous Arduinos. The

mounting holes are in the same location. There is an additional mounting hole as

well, now.

More 3.3v power!

One sad thing about older boards is that they had a 3.3v power supply but it was

really just whatever the FTDI chip's internal 3.3v regulator could give. You -could- get

50mA out of it, maybe. But high power stuff like XBees, SD cards, some fast ADC or

DACs could easily drag down the FTDI chip and reset the USB connection. The Uno

solves this problem by adding a new 3.3V regulator the LP2985 which can easily

provide 150mA.

The LP2985 is a very high quality regulator, and will work great for powering stuff and

as a nice solid 1% analog reference.

©Adafruit Industries Page 12 of 35

Why is the Arduino chip running at 16MHz when it can run

at 20MHz?

This is a common question. The reason is that the first Arduino used the Atmega8

which could not run faster than 16Mhz. As the chip has been upgraded they

wanted to make the boards speed compatible. Arduino is also not really intended

for fast-processing (its only 8-bit anyways) so the chips are running at 16MHz.

Is it still Open source hardware and software?

Yes! The Uno is still available under a Creative commons license. You can get the

latest schematics and layouts over at the Arduino website. (https://adafru.it/aP4)

UNO R2 and R3

During fall of 2011, the Arduino team revealed that there will be a new minor revision

of the classic Arduino, the "UNO R3" (revision 3). A lot of people have asked us about

the R3 so here is everything we know so far.

The UNO R3 is not available to resellers until December 1st or so. Really!

Nobody has them until then!

The UNO R3 is backwards compatible with the UNO - same driver, same

uploading, same look

There are a few changes in the UNO, here is what they are:

The USB controller chip has moved from an atmega8u2 (8K flash) to an

atmega16u2 (16K flash). This does not mean that you have more flash or RAM for

your sketches this upgrade is for the USB interface chip only. In theory this will

mean that it will be easier to have low level USB interfaces such as MIDI/

Joystick/Keyboard available. However these are only theoretical at this time,

there is no example code or firmware which will actually do this.

There are three more breakout pins on the PCB, next to the AREF pin there is

are two I2C pins (SDA/SCL) - this is a duplication of the Analog 4 and 5 pins.

There is not an extra I2C interface or anything, its just that they made a copy of

those pins there for future shields since the I2C pins are in a different place on

Mega. There is also an IOREF pin which is next to the Reset pin - this is to let

shields know what the running I/O pin voltage is on the board (for the UNO, its

5V). Again, this is a duplication of the power pin, it does not add voltage level

shifting to the UNO.

The RESET button has moved to be next to the USB connector, this makes it

easier to press when a shield is on top.

1.

2.

1.

2.

3.

©Adafruit Industries Page 13 of 35

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno

Here is what didn't change in the UNO:

Processor size and speed - its the same ATMega328P running at 16MHz that

we've had since the Duemilanove. Your code will not run faster or better on the

R3

Same number of pins - no extra pins are added EVEN THOUGH THERE ARE

MORE BREAKOUTS (see above!)

Board size and shape - same size as before

Shield compatibility - Every shield that works and plugs into the UNO R1/R2

should be able to work fine with the R3

Driver - the driver is the same

Upload speed - same upload speed and technique

If you want to get up an Arduino R3 now, visit the adafruit store (http://adafru.it/50)

and pick up a board or pack!

Arduino Libraries

Need Help Installing a Library?

Check out our super-detailed tutorial for all operating systems here:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

What is a library?

Libraries are great places, and not yet illegal in the United States! If you ever need to

learn how to do something, like say fix a motorcycle, you can go to your local library

and take out a book. Sure you could buy the book but the library is nice because as a

resource you can get the book whenever you need it, keeping your house

uncluttered.

Software Libraries are very similar. We already studied what a procedure is, in lesson

3 (https://adafru.it/aV0): a procedure is a list of things to do. A library is a big

collection of procedures, where all the procedures are related! If you, say, want to

control a motor, you may want to find a Motor Control Library: a collection of

procedures that have already been written for you that you can use without having to

do the dirty work of learning the nuances of motors.

For example, this is the Serial Library, which allows the Arduino to send data back to

the computer:

1.

2.

3.

4.

5.

6.

©Adafruit Industries Page 14 of 35

http://www.adafruit.com/products/50
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://www.ladyada.net/learn/arduino/lesson3.html
http://www.ladyada.net/learn/arduino/lesson3.html

Using Libraries

One of the best features of the Arduino project is the ability to add on pre-crafted

libraries that add hardware support. There's tons of them, and you can pick and

choose which to install. They're only loaded in when the sketch you're working on

needs them, so for the most part you can download and stash them for future use.

Sketches will often depend on libraries, you can see what they are by looking at the

top of the sketch. If you see something like:

#include <FatReader.h>

That means that you'll need a library called FatReader or a library that contains the file

FatReader. If you dont have it installed you'll get an error:

©Adafruit Industries Page 15 of 35

What's in a library?

A library is a folder with some files in it, the files will end in .cpp (C++ code file) and .h (

C++ header file).

©Adafruit Industries Page 16 of 35

There may also be some .o files. The .o files are C++ compiled Objects. If you end up

working on the library and modifying it, be sure to delete the .o files as that will force

the Arduino IDE to recompile the modified .cpp's into fresh .o's.

Two optional files you may see are keywords.txt (this is a hints file to tell the Arduino

IDE how to colorize your sketch and examples folder, which may have some handy

test-sketches. These will show up under the File→Examples→Library dropdown.

It's important to remember!

The structure of the library folder is very important! The .c and .h files must be in the

'lowest level' of folders. For example, you cant have Arduino/libraries/WaveHC/

WaveHC/file.c or Arduino/libraries/MyLibraries/WaveHC/file.c - it must be Arduino/

libraries/WaveHC/file.c

How to install libraries

In Arduino v16 and earlier, libraries were stored in the ArduinoInstallDirectory/

hardware/libraries folder, which also contained all the built-in libraries (like Wire and

Serial).

©Adafruit Industries Page 17 of 35

In v17 and up, the user libraries are now stored in the ArduinoSketchDirectory/libraries

folder. You may need to make the libraries sub-folder the first time. However, the good

thing about this is you wont have to move & reinstall your libraries every time you

upgrade the software.

For example, here is how it looks when NewSoftSerial is installed in Windows (of

course your username will be different).

On a Mac, your arduino sketch folder is likely going to be called Documents/arduino

so create a NEW FOLDER inside that called libraries and place the uncompressed

library folder inside of that.

Check that the Documents/arduino/libraries/MyNewLibary folder contains the .cpp

and .h files.

After you're done, restart the Arduino IDE.

Bootloader

Bootloader for the Atmega328

Here is the package for a 'fixed up' ATmega328 bootloader (https://adafru.it/cnD). To

program it you may need to change the Makefile's ISPTOOL, etc definitions. The

commands are make adaboot328; make TARGET=adaboot328 isp328 (I couldn't get

the default 'isp' target to work so I made a new one).

This is some advanced bootloader tweaks - 99% of Arduino users should not

mess with their bootloader! Only for the wild at heart!

©Adafruit Industries Page 18 of 35

http://learn.adafruit.com/system/assets/assets/000/010/292/original/Adaboot328.zip

This version has a few fixes: first it integrates the 'no-wait' and 'no-hang' fixes below. It

also fixes the annoying "missing signature bytes" bug that freaks out avrdude when

programming without the IDE. I also repaired the EEPROM code so that now you can

upload and download the EEPROM memory as well as flash. Finally, theres a 'upload

feedback' using the LED, for arduino clones that don't have TX/RX leds.

Please note that the fuses are different for this chip because of the extended memory!

"No-Wait" Bootloader

Here's a bootloader hack that will automatically start the sketch after it has been

uploaded and will also only start the bootloader when the reset button is pressed (so

when you plug in power it will go straight to the sketch).

Copy the following lines:

ch = MCUSR;

 MCUSR = 0;

 WDTCSR |= _BV(WDCE) | _BV(WDE);

 WDTCSR = 0;

 // Check if the WDT was used to reset, in which case we dont bootload and skip

straight to the code. woot.

 if (! (ch & _BV(EXTRF))) // if its a not an external reset...

 app_start(); // skip bootloader

And paste them as shown:

/* main program starts here */

int main(void)

{

 uint8_t ch,ch2;

 uint16_t w;

 ch = MCUSR;

 MCUSR = 0;

 WDTCSR |= _BV(WDCE) | _BV(WDE);

 WDTCSR = 0;

 // Check if the WDT was used to reset, in which case we dont bootload and skip

straight to the code. woot.

 if (! (ch & _BV(EXTRF))) // if its a not an external reset...

 app_start(); // skip bootloader

 /* set pin direction for bootloader pin and enable pullup */

 /* for ATmega128, two pins need to be initialized */

Now, in the same way, copy the following code:

// autoreset via watchdog (sneaky!)

� WDTCSR = _BV(WDE);

� while (1); // 16 ms

©Adafruit Industries Page 19 of 35

And paste it here:

/* Leave programming mode */

� else if(ch=='Q') {

� nothing_response();

� // autoreset via watchdog (sneaky!)

� WDTCSR = _BV(WDE);

� while (1); // 16 ms

� }

� /* Erase device, don't care as we will erase one page at a time anyway. */

� else if(ch=='R') {

� nothing_response();

� }

You can also just grab the source code (https://adafru.it/cnE) and compiled hex file

here (https://adafru.it/cnF).

It will work in NG or Diecimila Arduinos.

No-Hang Bootloader

If you are using a Diecimila with auto-reset you may be frustrated when your

communications program accidentally triggers the bootloader. Here is a quick hack to

make the bootloader quit if it doesn't receive a '0' character first (which would

indicate the Arduino software is trying to talk to it.

Copy the following line:

uint8_t firstchar = 0;

And paste:

/* main program starts here */

int main(void)

{

 uint8_t ch,ch2;

 uint16_t w;

 uint8_t firstchar = 0;

Copy:

firstchar = 1; // we got an appropriate bootloader instruction

Paste:

/* Hello is anyone home ? */

� if(ch=='0') {

� firstchar = 1; // we got an appropriate bootloader instruction

� nothing_response();

©Adafruit Industries Page 20 of 35

http://learn.adafruit.com/system/assets/assets/000/010/293/original/ATmegaBOOT_168.c
http://learn.adafruit.com/system/assets/assets/000/010/294/original/ATmegaBOOT_168_ng.hex.txt
http://learn.adafruit.com/system/assets/assets/000/010/294/original/ATmegaBOOT_168_ng.hex.txt

Then paste this below the above code:

} else if (firstchar == 0) {

� // the first character we got is not '0', lets bail!

� // autoreset via watchdog (sneaky!)

� WDTCSR = _BV(WDE);

� while (1); // 16 ms

� }

You can also just replace the last two lines with app_start()

Upload Sketches with AVRDUDE

The bootloader is an 'stk500'-compatible, which means you can use good ol'

AVRDUDE to program the arduino.

Just plug in the USB cable, then press the reset just before you start avrdude. If you

need an avrdude tutorial, check out this page (https://adafru.it/aVy).

Use -b 19200 to set the baud rate to 19200

The device signature reads dont seem to work so you'll want to use -F

The programmer type is avrisp

The device type is -p m168

The port is whatever the FTDI chip shows up as

•

•

•

•

•

©Adafruit Industries Page 21 of 35

http://ladyada.net/learn/avr/index.html
http://ladyada.net/learn/avr/index.html

Upgrade

Introduction

The 'brains' of the Arduino is a microcontroller called an ATmega. It is a product line

from ATMEL (https://adafru.it/aVz) (a Norweigen chip company). Just like Intel & AMD

release new & better chips each year, so does Atmel. The first versions of the Arduino

(up to the NG) used an ATmega8 - a chip with 8K of flash memory and 1K of RAM.

Then Atmel released the ATmega168 (https://adafru.it/aIH), a drop-in replacement with

16K of flash and 1K of RAM - a really big improvement! Now there is the ATmega328 (h

ttps://adafru.it/aIH) with 32K of flash and 2K of RAM.

Updating and replacing your Arduino is easy and painless and costs only a few

dollars. Your sketches will work just as before but with a little more breathing room.

In order to perform this upgrade you will have to either purchase a preprogrammed

chip (https://adafru.it/aIH) or program it yourself with a AVR programmer (https://

adafru.it/aIH) or by 'bitbanging' it.

Replace the Chip

First, gently pry the Arduino microcontroller from its socket using a small flat

screwdriver or similar. Try to make sure the pins dont get bent. Put it in a safe place.

Preferably in an anti-static bag.

©Adafruit Industries Page 22 of 35

http://www.atmel.com/
http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=56
http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=123
http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=123
http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=123
http://www.adafruit.com/index.php?main_page=product_info&cPath=16&products_id=46

Next, prepare the new chip. The pins of ICs are a little skewed when they come from

the factory, so they need to be bent in just a tiny bit, to be parallel. Grip the chip from

the ends and use a table.

Finally, replace the old chip, lining up all the pins and making sure that the notch in

the chip matches the notch in the socket!

Download an Arduino IDE with ATmega328 compatibility

Version 13 and up of the Arduino software supports the 328! (https://adafru.it/aVB)

If you purchased a chip from Adafruit that shipped before Feb 5, 2009 the chip will

have the baudrate set at 19200 (same as the older Arduinos). After Feb 5 the upgrade

chips were changed to 57600 baud rate (3 times faster!) in order to be compatible

with new Arduinos. If you have a 19200 baud rate chip you will have difficulty

uploading. Simply quit the Arduino application and edit the file in the hardware folder

named boards.txt and change the line from:

atmega328.upload.speed=57600

to:

atmega328.upload.speed=19200

If you're having problems please try BOTH just in case!

©Adafruit Industries Page 23 of 35

http://code.google.com/p/arduino/downloads/list

3.3V Conversion

Introduction

All official Arduinos run on 5 volts, which for a long time was the 'standard' voltage for

hobbyist electronics and microcontrollers. But now the coolest new sensors, displays

and chips are 3.3V and are not 5V compatible. For example, XBee radios, and SD

cards and acellerometers all run on 3.3V logic and power. If you tried to connect to

them with 5V you could damage the internals of the accessory.

We use chips like the CD4050 to do level conversion (https://adafru.it/Cc7) but if you

are using a lot of 3.3V devices, maybe you're just better off upgrading the entire

Arduino to run from 3.3V!

To do that, we will replace the regulator so that the DC barrel jack goes to a 3.3v type

regulator, not a 5V. And then reconfigure the 5V usb power line so it goes through the

regulator as well.

Replace the Regulator

The default regulator is a 5.0V type, but we want 3.3V out, so we'll need to replace it.

We'll use a 1117-3.3V (there are a few manufacturers of 1117 regulators, just like the

7805 is made by many factories) regulator in a TO-252-3 package. It looks like this:

©Adafruit Industries Page 24 of 35

http://www.adafruit.com/partfinder/ic?s%5B%5D=cd4050#logic

You can get these from any electronics component shop, for example here is the

digikey link (https://adafru.it/aLu).

To start, we'll need to remove the old regulator. The easiest way to do that is to first

clip the two legs.

Then you'll need to heat the tab up to get it liquid so you can lift off the old part.

Although it may seem counter intuitive, its best to add some solder to the tab, melt it

on with your iron, this will improve the heat conduction since the tab is so large.

©Adafruit Industries Page 25 of 35

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=NCP1117DT33GOS-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=NCP1117DT33GOS-ND

Clean up the tabs and remove any clipped parts still stuck on.

Now line up the new 3.3V regulator, and solder the tab first, use plenty of solder and

be patient, the tab acts like a heat sink.

©Adafruit Industries Page 26 of 35

Then do the two legs.

Replacing the Fuse

The next part is a little tricky, the USB jack gives us exactly 5V already, and normally

that is tied to the output of the voltage regulator (essentially, its got a little circuitry

that connects it when the DC jack is not powered).

The easiest way to make the USB 5V also go through the regulator is to remove the

fuse and solder a diode from the USB output to the regulator input.

©Adafruit Industries Page 27 of 35

You can use any power diode, a 1N4001 is perfect (https://adafru.it/cuU) and only a

few pennies.

The trade off is now there is no 500 mA fuse for the USB jack. The good news is that

computers will have their own fuses on the USB connector (inside the computer) so its

not likely you will destroy your PC. But be aware that you're losing a little safety.

Heat the fuse with your soldering iron, again adding solder may help thermal

conductivity. Since the fuse is very conductive you can probably just heat one side for

a while and both ends will melt.

Clip the diode short and bend the leads over. Solder the side without a stripe (anode)

to the old fuse pad, nearest the board edge. Solder the striped end (cathode) to the

right hand leg of the regulator.

The Arduino will still automatically select whichever power plug is giving you more

power.

©Adafruit Industries Page 28 of 35

http://www.adafruit.com/partfinder/diodes#power_blocking

That's it! You are now 3.3V powered. This is a little lower than the power/frequency

specification for the AVR chips since they ought to have about 3.6V to run 16Mhz but

its probably not going to be an issue since AVRs can be overclocked a little.

Arduino Hacks

Bumpers

Having the conductive traces touch your table is not so great, you can protect your

Arduino by adding bumpers to the bottom.

You can buy these from McMaster Carr part no. 95495K66 (https://adafru.it/aVH) (in

large quantities) or Adafruit (http://adafru.it/550)

Free up some RAM

If you're working on a project that needs a lot of memory, you can free up 100 more

bytes (10% of the RAM on an ATmega168!) by lessening the serial receive buffer. By

©Adafruit Industries Page 29 of 35

http://www.mcmaster.com/nav/enter.asp?partnum=95495K66&pagenum=3612
http://www.adafruit.com/products/550

default its 128 bytes, which is quite a bit!

Open up hardware/cores/arduino (or cores/arduino) directory, and edit the file named

wiring_serial.c or HardwareSerial.cpp

Near the top is a #define RX_BUFFER_SIZE 128, which means 128 bytes are used for

the buffer. You can change this to 32 (or even 16!). If you have almost no serial input,

make it as low as you'd like as long as its > 0.

You can also save another 2 bytes by changing rx_buffer_head and rx_buffer_tail

from int to uint8_t

ArduinoISP

Introduction

A lot of people start learning about microcontrollers with an Arduino but then want to

build their own projects without having to sacrifice their dev board. Or maybe they

want to make their own Arduino variant, that is compatible with the IDE. Either way, a

common problem is how to burn the bootloader onto the fresh AVR chip. Since AVRs

come blank, they need to be set up to be Arduino IDE compatible but to do that you

need an AVR programmer (like the USBtinyISP).

The good news is that you can burn bootloader using your existing Arduino with only

a little bit of work. There's even a minitutorial on the arduino.cc site (https://adafru.it/

aVI).

This tutorial is an extention of that tutorial. First we'll show how you can make a

permanent bootloader-burner by soldering a 28-pin ZIF socket (http://adafru.it/382) to

a proto shield (http://adafru.it/51)and use the PWM output line of the Arduino to

generate a clock. This will let you 'rescue' many chips that have been set to the

©Adafruit Industries Page 30 of 35

http://arduino.cc/en/Tutorial/ArduinoISP
http://arduino.cc/en/Tutorial/ArduinoISP
https://www.adafruit.com/products/382
https://www.adafruit.com/products/51

wrong type of oscillator, or change ones that are set from external oscillator (most

Arduino bootloaders) to internal (such as the lilypad).

Parts

You will need…

An Arduino (http://adafru.it/50)

A proto shield kit (http://adafru.it/51)

28-pin ZIF (zero-insertion force) socket (http://adafru.it/382) (you can use a plain

socket but ZIF is ideal)

Some wire (http://adafru.it/289)

Blank ATmega328P (https://adafru.it/Cc8)

If you bought the kit from Adafruit, you'll have an extra few items such as a Piezo

beeper, LEDs, buttons, etc. that you can use for the Standalone version of this project

(https://adafru.it/clC), just ignore them for now!

Assemble

First up, place the ZIF socket on the proto shield like so:

Solder all 28 pins for a solid connection!

•

•

•

•

•

©Adafruit Industries Page 31 of 35

http://www.adafruit.com/products/50
https://www.adafruit.com/products/51
https://www.adafruit.com/products/382
https://www.adafruit.com/products/289
http://www.adafruit.com/partfinder/microcontroller?s%5B%5D=atmega328p
http://learn.adafruit.com/standalone-avr-chip-programmer

Solder the following wires to the ZIF socket

Pin 1 to digital 10 - Blue Don't forget to bend the wire over underneath to

connect to the ZIF socket pin when soldering!!!

Pin 7 to 5V - Red

Pin 8 to Ground - Black

Pin 9 to digital 9 - Gray

Pin 17 to digital 11 - Brown

Pin 18 to digital 12 - Orange

Pin 19 to digital 13 - Yellow

Pin 20 to +5V - Red

Pin 22 to Ground - Black

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 32 of 35

Follow the protoshield tutorial to solder in the Red LED into LED1 position, Green LED

into LED2 position. Also solder in the two 1.0K resistors next to the LEDs. We'll use the

LEDs as indicators. Then solder a wire from the LED2 breakout (white) to analog 0

and a wire from LED1 breakout (white) to digital 8.

Finally, you'll need to solder on the header to allow the shield to be placed on, break

the 0.1" male header and place it into the Arduino sockets. Then place the shield

above on top to solder it in place.

©Adafruit Industries Page 33 of 35

Load the Code

Time to load the sketch! Grab the code from our Github repository and paste it into a

new sketch (https://adafru.it/ECM). Then upload it to the Arduino.

Plug the shield on top, lift the latch, pop in the chip and then lower the latch. Make

sure the chip orientation is like so (so with the lever on the left side you can read the

text):

With the USB cable still plugged in (and the same Serial port selected as before)

Select Tools→Burn Bootloader→w/Arduino as ISP

We have a report that this procedure does not work with Arduino 1.5.2. Use the

latest mainstream Arduino release instead!

©Adafruit Industries Page 34 of 35

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/ArduinoISP/ArduinoISP/ArduinoISP.ino
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/ArduinoISP/ArduinoISP/ArduinoISP.ino

