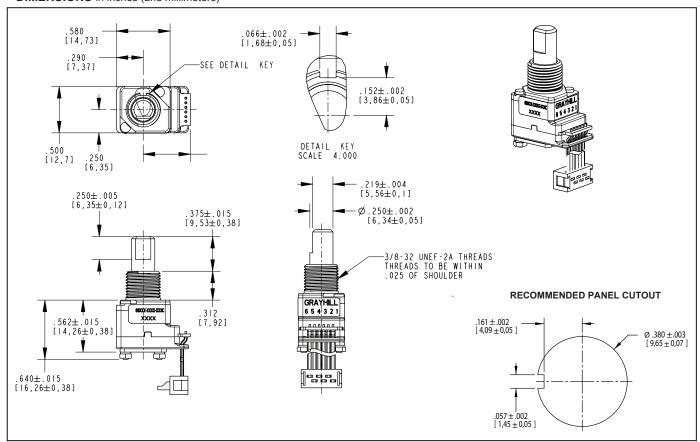


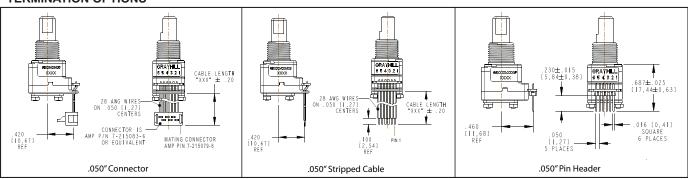
SERIES 68A

Hall Effect Encoder

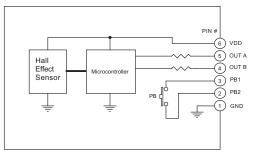
FEATURES

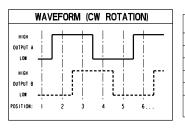

- Quadrature output (push / pull type)
- · Debris resistant hall effect sensor technology
- Over 1 million rotational cycles
- Optional integrated pushbutton
- · Low power consumption
- Reverse voltage protection
- Choice of cable lengths and termination
- Available in 5Vdc and 3.3Vdc
- · High torque version available

APPLICATIONS


- Medical Equipment
- Test & Measurement
- Audio / Visual
- Agriculture & Construction Vehicles

DIMENSIONS in inches (and millimeters)


TERMINATION OPTIONS



Grayhill

SCHEMATICS, WAVEFORM, AND TRUTH TABLE

FIG. 1 - 68A ELECTRICAL CONNECTION DIAGRAM

TRUTH TABLE (CW ROTATION)		
POSITION	OUTPUT A	OUTPUT B
I I		
2	0	
3	0	0
4		0
BLANK = LOGIC LOW O = LOGIC HIGH		
CODE REPEATS EVERY FOUR POSITIONS.		

SPECIFICATIONS

Electrical Specifications

Operating Voltage: Minimum 3.0 V, maximum 3.6 V (3.3V Style); minimum 4.5 V, maximum 5.5 V (5V Style)

Absolute Maximum Voltage* on VDD pin: -4.0 V min., +4.0 V max (3.3V style); -6.5 V min., +6.5 V max (5V style)

Avg Supply Current for 3.3V Style: Typical: 1.2 mA, Maximum: 2.0 mA (at 3.30 V)

Peak Supply Current for 3.3V Style: 12 mA (at

Avg Supply Current for 5V Style: Typical: 1.8 mA, Maximum: 3.0mA (at 5.00 V)

Peak Supply Current for 5.0V Style: 12 mA (at 5.00 V)

Output Low Voltage: 0.6V maximum for IOL = 3mA, VDD = 3.3V and for IOL = 3mA, VDD = 5.0V Output High Voltage: 2.6V minimum for IOH = -1.5mA, VDD = 3.3V, 4.3V minimum for IOH = -2mA, VDD = 5.0V

Power-Up Time: A & B outputs valid 120 ms (max) after VDD reaches 3.0 V (3.3 V Style) or 4.5 V (5V Style).

Soldering Recommendation

Hand solder only per IPC J-STD-001

Mechanical Specifications

Mechanical Life: 1,000,000 cycles of operation. 1 cycle is a rotation through all positions and a full return

Average Rotational Torque:

Low Detent = 2.0±1.4 in-oz initially High = 3.5 ± 1.4 in-oz initially 40% of initial value after 1 million cycles Non-Detented: 1.5 in-oz maximum

Maximum rotational speed: 100 rpm Mounting Torque: 15in-lbs. maximum Shaft Pushout / Pulloutut Force: 45 lbs. / 45 lbs.

minimum Terminal Strength: 15 lbs. minimum. Cable or Header pullout force, MIL-STD-202, Method 211A.

Test Condition A

Solderability: 95% free of pin holes & voids, MIL-

STD-202, Method 208

Environmental Specifications

Operating Temperature: -40°C to 85°C, IEC 68-2-

1, Test Aa and IEC 68-2-2, Test Aa

Storage Temperature: -55°C to 85°C, IEC 68-2-1, Method Aa and IEC 68-2-2, Method Ba

Humidity: 96 hours @ 90-95% humidity @ 40°C, MIL-STD-202. Method 103B

Mechanical Vibration: Harmonic motion with amplitude of 15g within a varied frequency of 10 to 2000 Hz for 12 hours, MIL-

STD-202, Method 204, Test Condition B

Mechanical Shock:

Test 1: 100g for 6 ms half-sine wave with a velocity change of 12.3 ft/s.

Test 2: 100g for 6 ms sawtooth wave with a velocity change of 9.7 ft/s, MIL-STD-202, Method 213. Test Condition C and I

Seal: IP67, Meets IEC 60529

Pushbutton Electrical and Mechanical Specifications

Electrical Ratings: 6.0 V max, 10 mA, Resistive Absolute Maximum Voltage* on Pins 2 & 3: 6.0 V

Contact Resistance: <10.0

Contact Bounce: <4 mS make

<10mS break **Actuation Force:**

Sealed = 1350 ± 300g Unsealed = $1150 \pm 300g$

Pushbutton Travel: .016 ± .008in

Pushbutton Life Expectancy: 1 million actuations

Materials and Finishes

Bushing: Zinc Shaft: Aluminum

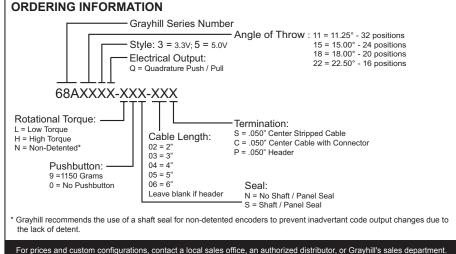
Lockwasher: Spring steel, zinch plate with clear

trivalent chromate finish

Cable: Copper stranded with topcoat in PVC insulation (Cable version only), 28 AWG Header Pins: Tin plated phosphor bronze

Hex Nut: Nickel plated brass

ROHS Compliant.


EMC Ratings

Radiated Immunity: Meets ANSI/ASAE EP455 5.16 (100 V/m, 0. 014-1000 MHz, 3 orientations) Conducted Immunity: Meets IEC 61000-4-6, Level 3 Radiated Emissions: Meets ISO 14982, Sec 6.4 (Broadband), Sec 6.5 (Narrowband) limits Conducted Emissions: Meets CISPR 25, Class 3 Electrostatic Discharge: Meets ANSI/ASAE EP455 5.12, surface: 25KV, connector: 15KV Power Frequency Magnetic Field: Meets IEC 61000-4-8, 100 V/m

* Exceeding the Absolute Maximum Voltage may result in permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied.

MOUNTING PANEL RECOMMENDATIONS FOR PANEL SEAL VERSION:

- 1 Panel thickness should not exceed 0.157"
- 2. Mounting hole diameter to be per recommended dimensions
- 3. 0.470" X 0.020" counter bore required for proper sealing.
- 4. Anti-rotation feature is recommended. Feature should be designed to lock into bushing keyway.

For prices and custom configurations, contact a local sales office, an authorized distributor, or Grayhill's sales department.

^{*}Customized electrical outputs are available. Contact Grayhill for additional details.