onsemi

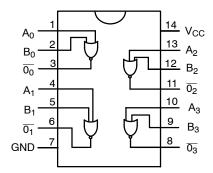
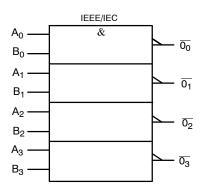
Quad 2-Input NAND Gate 74AC00, 74ACT00

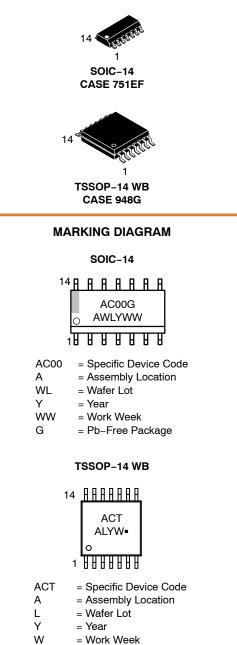
Description

The AC00/ACT00 contains four, 2-input NAND gates.

Features

- ICC Reduced by 50%
- Outputs Source/Sink 24 mA
- ACT00 Has TTL-Compatible Inputs


Figure 1. Connection Diagram

PIN DESCRIPTION

Pin Name	Pin Description
A _n , B _n	Inputs
0 _n	Outputs

= Pb-Free Package

-

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5 V to +7.0 V
I _{IK}	DC Input Diode Current V _I = -0.5 V	–20 mA
	$V_{\rm I} = V_{\rm CC} + 0.5$	+20 mA
VI	DC Input Voltage	–0.5 V to V _{CC} + 0.5 V
I _{OK}	DC Output Diode Current $V_0 = -0.5 V$	–20 mA
	$V_{O} = V_{CC} + 0.5 V$	+20 mA
Vo	DC Output Voltage	–0.5 V to V _{CC} + 0.5 V
Ι _Ο	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
Т _Ј	Junction Temperature	140°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Rating
VCC	Supply Voltage	2.0 V to 6.0 V
	AC	4.5 V to 5.5 V
VI	Input Voltage	0 V to V _{CC}
Vo	Output Voltage	0 V to V _{CC}
T _A	Operating Temperature	−40°C to +85°C
$\Delta V / \Delta t$	Minimum Input Edge Rate, AC Devices: V _{IN} from 30% to 70% of V _{CC} , V _{CC} @ 3.3 V, 4.5 V, 5.5 V	125 mV/ns
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACT Devices: V _{IN} from 0.8 V to 2.0 V, V _{CC} @ 4.5 V, 5.5 V	125 mV/ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

74AC00, 74ACT00

DC ELECTRICAL CHARACTERISTICS FOR AC

				T _A = +	-25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{cc} (V)	Conditions	Тур.	GL	aranteed Limits	Unit
VIH	Minimum HIGH Level	3.0	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	1.5	2.1	2.1	V
	Input Voltage	4.5		2.25	3.15	3.15	1
		5.5		2.75	3.85	3.85	
VIL	Maximum LOW Level	3.0	$V_{OUT}{=}0.1$ V or $V_{CC}{-}0.1$ V	1.5	0.9	0.9	V
	Input Voltage	4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	1
V _{OH}	Minimum HIGH Level	3.0	I _{OUT} = -50 μA	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	-5.4	1
		3.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -12 \text{ mA}$	-	2.56	2.46	
		4.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -24$ mA	-	3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{ mA (Note 1)}$	-	4.86	4.76	
V _{OL}	Maximum LOW Level	3.0	I _{OUT} = 50 μA	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	1
		5.5		0.001	0.1	0.1	
		3.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OL} = 12 \text{ mA}$	-	0.36	0.44	
		4.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OL} = 24$ mA	-	0.36	0.44	
		5.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OL} = 24 \text{ mA}$ (Note 1)	-	0.36	0.44	
I _{IN} (Note 3)	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, GND$	-	±0.1	±1.0	μA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65 V Max.	-	-	75	mA
I _{OHD}	Output Current (Note 2)	5.5	V _{OHD} = 3.85 V Min.	-	-	-75	mA
I _{CC} (Note 3)	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND	-	2.0	20.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. All outputs loaded; thresholds on input associated with output under test.

2. Maximum test duration 2.0 ms, one output loaded at a time. 3. I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

74AC00, 74ACT00

DC ELECTRICAL CHARACTERISTICS FOR ACT

				T _A = -	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	35°C
Symbol	Parameter	V _{cc} (V)	Conditions	Тур.	Gu	uaranteed Limits	Unit
VIH	Minimum HIGH Level Input Voltage	4.5	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	1
VIL	Maximum LOW Level Input Voltage	4.5	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	1
V _{OH}	Minimum HIGH Level Output Voltage	4.5	I _{OUT} = -50 μA	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	1
		4.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -24$ mA	-	3.86	3.76	1
		5.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = 24 \text{ mA}$ (Note 4)	-	4.86	4.76	1
V _{OL}	Maximum LOW Level Output Voltage	4.5	I _{OUT} = 50 μA	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	1
		4.5	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OL} = 24 \text{ mA}$	-	0.36	0.44	1
		5.5	$V_{IN} = V_{IL}$ or V_{IH} , I_{OL} = 24 mA (Note 4)	-	0.36	0.44]
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, GND$	-	±0.1	±1.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	V _I = V _{CC} - 2.1 V	0.6	-	1.5	mA
I _{OLD}	Minimum Dynamic Output Current	5.5	V _{OLD} = 1.65 V Max.	-	-	75	mA
I _{OHD}	(Note 5)	5.5	V _{OHD} = 3.85 V Min.	-	-	-75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	V _{IN} = V _{CC} or GND	-	2.0	20.0	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. All outputs loaded; thresholds on input associated with output under test.

5. Maximum test duration 2.0 ms, one output loaded at a time.

AC ELECTRICAL CHARACTERISTICS FOR AC

		V _{cc} (V)	T _A = +25°C C _L = 50 pF		T _A = -40°C C _L =	C to +85°C 50 pF		
Symbol	Parameter	(Note 6)	Min.	Тур.	Max.	Min.	Max.	Unit
t _{PLH}	Propagation Delay	3.3	2.0	7.0	9.5	2.0	10.0	ns
		5.0	1.5	6.0	8.0	1.5	8.5	
t _{PHL}	Propagation Delay	3.3	1.5	5.5	8.0	1.0	8.5	ns
		5.0	1.5	4.5	6.5	1.0	7.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Voltage range 3.3 is 3.3 V \pm 0.3 V. Voltage range 5.0 is 5.0 V \pm 0.5 V.

AC ELECTRICAL CHARACTERISTICS FOR ACT

		V _{cc} (V)	T _A = +25°C C _L = 50 pF		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$			
Symbol	Parameter	(Note 7)	Min.	Тур.	Max.	Min.	Max.	Unit
t _{PLH}	Propagation Delay	5.0	1.5	5.5	9.0	1.0	9.5	ns
t _{PHL}	Propagation Delay	5.0	1.5	4.0	7.0	1.0	8.0	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Voltage Range 5.0 is 5.0 V ± 0.5 V.

74AC00, 74ACT00

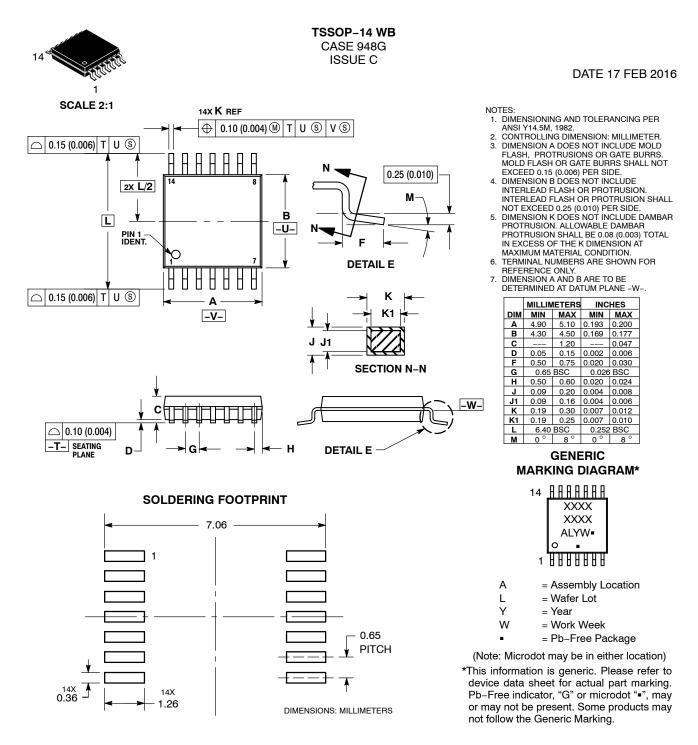
CAPATICANCE

Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0 V	30.0	pF

ORDERING INFORMATION

Order Number	Package	Shipping (Qty / Packing) †
74AC00MTCX	74AC00MTCX TSSOP-14 (Pb-Free/Halogen Free)	
74ACT00MTCX	TSSOP-14 (Pb-Free/Halogen Free)	2500 / Tape & Reel
74AC00SCX	SOIC-14 (Pb-Free/Halogen Free)	2500 / Tape & Reel
74ACT00SCX	SOIC-14 (Pb-Free/Halogen Free)	2500 / Tape & Reel

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 8.50 Α 0.65 7.62 14 8 14 8 В 4.00 6.00 5.60 3.80 ╞ 1.70 7 **PIN #1** 1,27 7 0.51 **IDENT.** 1.270.35 (0.33) \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 С 0.19 0.10 С 1.50 0.25 0.10 1.25 SIDE VIEW **FRONT VIEW** NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS LAND PATTERN STANDARD: R0.10 GAGE D. SOIC127P600X145-14M PLANE R0.10 E. CONFORMS TO ASME Y14.5M, 2009 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)DETAIL A SCALE 16 : 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13739G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC14 PAGE 1 OF 1

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1			
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019