Quad 2-input NAND gate Rev. 04 — 28 April 2008

Product data sheet

General description 1.

The 74AHC00; 74AHCT00 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. JESD7-A.

The 74AHC00; 74AHCT00 provides the quad 2-input NAND function.

2. **Features**

- Balanced propagation delays
- All inputs have Schmitt-trigger actions
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - For 74AHC00: CMOS level
 - For 74AHCT00: TTL level
- ESD protection:
 - HBM EIA/JESD22-A114E exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
 - CDM EIA/JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

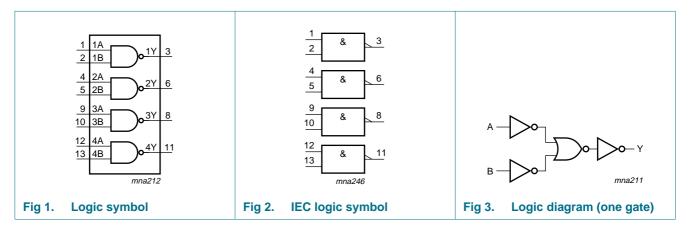
3. **Ordering information**

Ordering information Table 1.

Type number	Package								
	Temperature range	Name	Description	Version					
74AHC00									
74AHC00D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1					
74AHC00PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1					
74AHC00BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1					

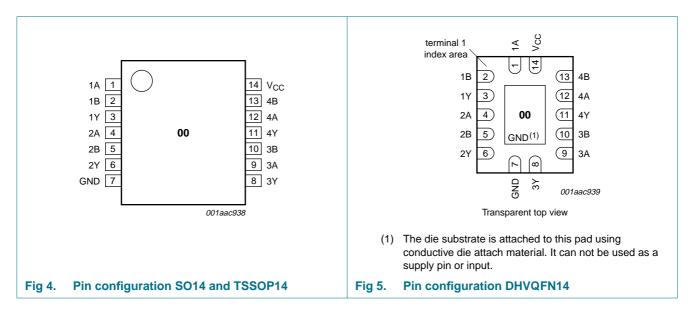
nexperia

Nexperia


74AHC00; 74AHCT00

Quad 2-input NAND gate

Type number	Package	Package								
	Temperature range Name		Description	Version						
74AHCT00										
74AHCT00D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1						
74AHCT00PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1						
74AHCT00BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1						


Table 1. Ordering information ...continued

4. Functional diagram

5. Pinning information

-	D · · ·
5.1	Pinning
U	

Quad 2-input NAND gate

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1A	1	data input
1B	2	data input
1Y	3	data output
2A	4	data input
2B	5	data input
2Y	6	data output
GND	7	ground (0 V)
3Y	8	data output
ЗA	9	data input
3B	10	data input
4Y	11	data output
4A	12	data input
4B	13	data input
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function selection^[1]

Input	Output	
nA	nB	nY
L	X	Н
Х	L	Н
Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 V$	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	V_O < –0.5 V or V_O > V_{CC} + 0.5 V	<u>[1]</u> –20	+20	mA
lo	output current	$V_{O} = -0.5 \text{ V}$ to ($V_{CC} + 0.5 \text{ V}$)	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For SO14 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K.
 For TSSOP14 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.
 For DHVQFN14 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

8. Recommended operating conditions

Table 5.	Operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74AHC00						
V _{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 3.0 V to 3.6 V	-	-	100	ns/V
		V_{CC} = 4.5 V to 5.5 V	-	-	20	ns/V
74AHCT0	0					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 4.5 V to 5.5 V	-	-	20	ns/V
	•	V_{CC} = 4.5 V to 5.5 V	-	-	20	

Quad 2-input NAND gate

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C	;	−40 °C t	o +85 °C	–40 °C to +125 °C		Uni
			Min	Тур	Max	Min	Max	Min	Мах	
74AHC0	0									
VIH	HIGH-level input	$V_{CC} = 2.0 V$	1.5	-	-	1.5	-	1.5	-	V
	voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		$V_{CC} = 5.5 V$	3.85	-	-	3.85	-	3.85	-	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		$V_{CC} = 5.5 V$	-	-	1.65	-	1.65	-	1.65	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_O = -50 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \ \mu\text{A}; \ V_{CC} = 3.0 \ V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	voltage	$I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.36	-	0.44	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V
I	input leakage current	$V_I = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μA
l _{cc}	supply current		-	-	2.0	-	20	-	40	μA
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3.0	10	-	10	-	10	pF
74АНСТ	00									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		l _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μA

Quad 2-input NAND gate

Table 6. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Мах	Min	Max	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	2.0	-	20	-	40	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other pins at V_{CC} or GND; $I_O = 0 \text{ A}; V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cl	input capacitance	$V_I = V_{CC} \text{ or } GND$	-	3.0	10	-	10	-	10	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7.

Symbol	Parameter	Conditions			25 °C		–40 °C t	o +85 °C	–40 °C t	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC0	D										
t _{pd}	propagation	nA, nB to nY; see Figure 6	[2]								
	delay	V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	4.5	7.9	1.0	9.5	1.0	10.0	ns
		C _L = 50 pF		-	6.0	11.4	1.0	13.0	1.0	14.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.2	5.5	1.0	6.5	1.0	7.0	ns
		C _L = 50 pF		-	4.5	7.5	1.0	8.5	1.0	9.5	ns
C _{PD}	power dissipation capacitance	$\begin{array}{l} C_L = 50 \text{ pF}; \text{ f}_i = 1 \text{ MHz}; \\ V_I = \text{GND to } V_{CC} \end{array}$	<u>[3]</u>	-	7.0	-	-	-	-	-	pF
74AHCT	00										
t _{pd}	propagation	nA, nB to nY; see <u>Figure 6</u>	[2]								
	delay	V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.3	6.9	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	4.5	7.9	1.0	9.0	1.0	10.0	ns
C _{PD}	power dissipation capacitance	$\begin{array}{l} C_L = 50 \text{ pF}; \text{ f}_i = 1 \text{ MHz}; \\ V_I = GND \text{ to } V_{CC} \end{array}$	<u>[3]</u>	-	7.0	-	-	-	-	-	pF

[1] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

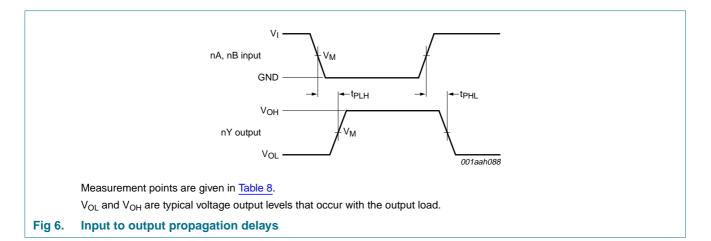
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

$$\begin{split} P_{D} &= C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:} \\ f_{i} &= \text{input frequency in MHz;} \end{split}$$

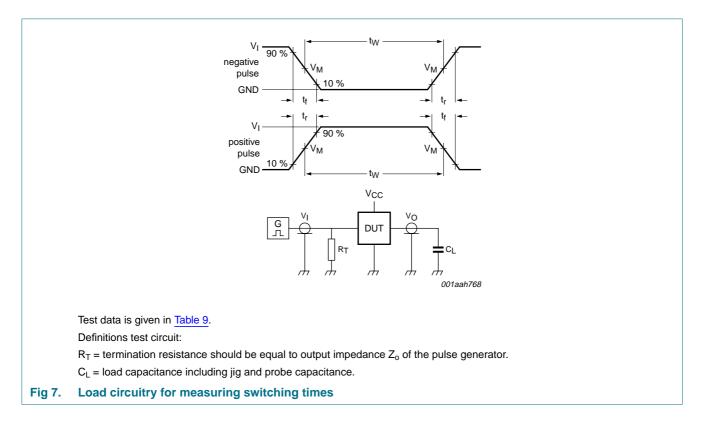
 $f_0 =$ output frequency in MHz;

 C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

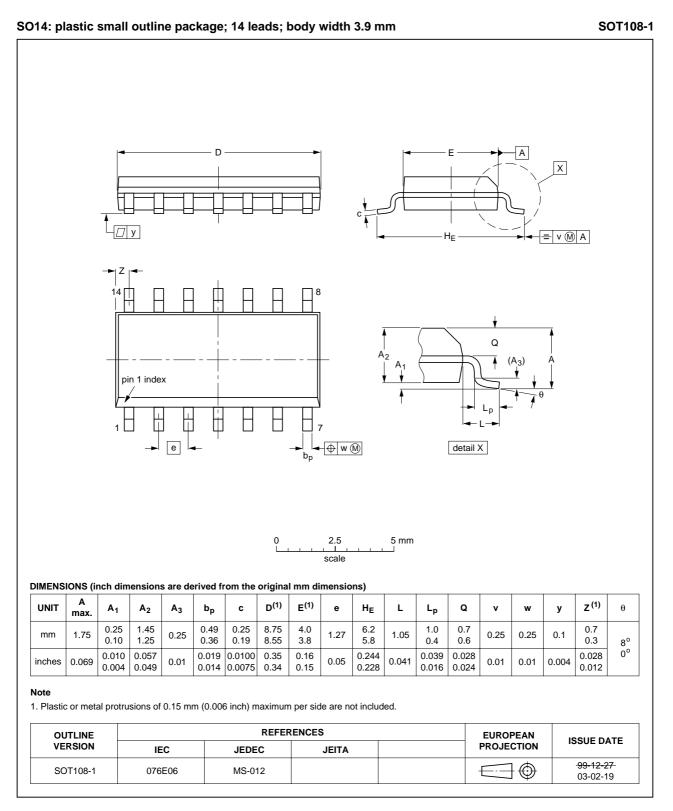

Quad 2-input NAND gate

11. Waveforms

Table 8.Measurement points

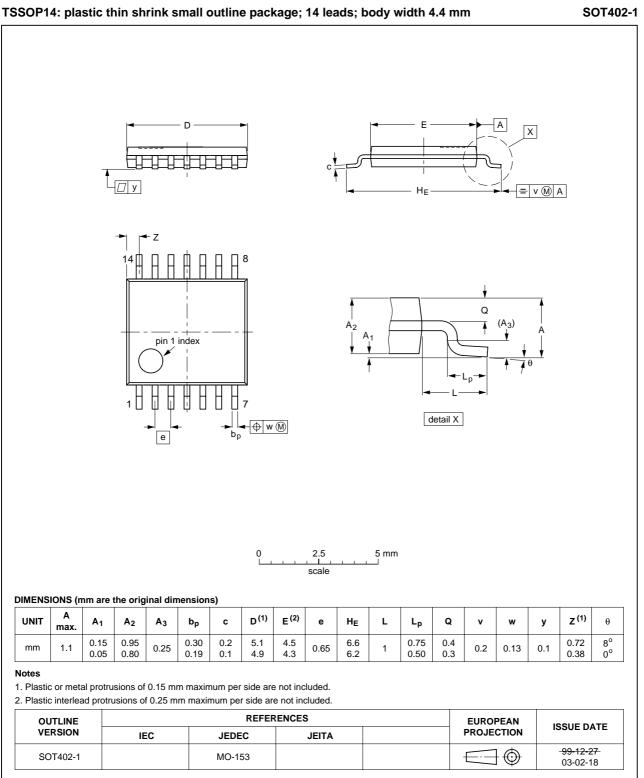
Туре	Input	Output
	V _M	V _M
74AHC00	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74AHCT00	1.5 V	$0.5 \times V_{CC}$

Nexperia

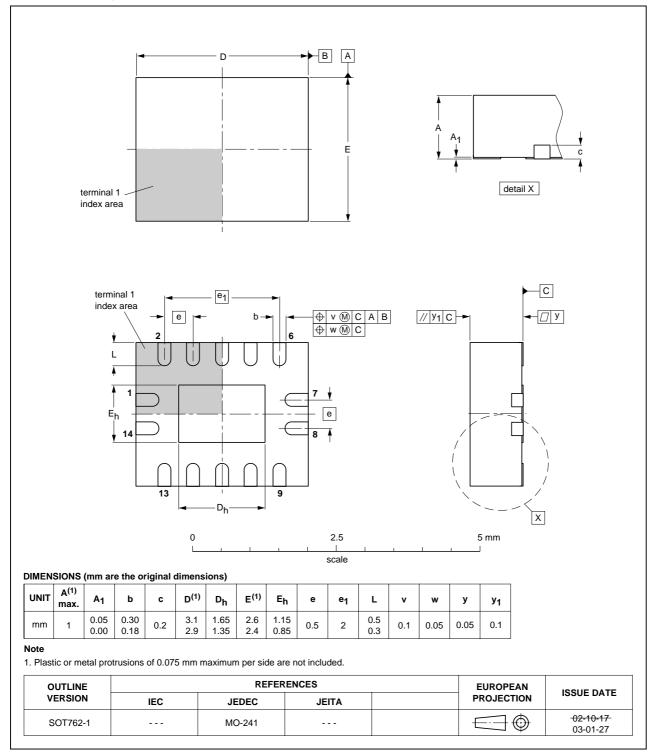

74AHC00; 74AHCT00

Quad 2-input NAND gate

Table 9. Test data	а			
Туре	Input	Input		Test
	VI	t _r , t _f	CL	
74AHC00	V _{CC}	\leq 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74AHCT00	3.0 V	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}


Quad 2-input NAND gate

12. Package outline


Fig 8. Package outline SOT108-1 (SO14)

Quad 2-input NAND gate

Package outline SOT402-1 (TSSOP14) Fig 9.

Quad 2-input NAND gate

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 10. Package outline SOT762-1 (DHVQFN14)

Quad 2-input NAND gate

13. Abbreviations

Table 10.	Table 10. Abbreviations			
Acronym	Description			
CDM	Charge Device Model			
CMOS	Complementary Metal-Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
LSTTL	Low-power Schottky Transistor-Transistor Logic			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74AHC_AHCT00_4	20080428	Product data sheet	-	74AHC_AHCT00_3	
Modifications: <u>Table 6</u> : the conditions for input leakage current have been changed.					
74AHC_AHCT00_3	20080108	Product data sheet	-	74AHC_AHCT00_2	
74AHC_AHCT00_2	19990923	Product specification	-	74AHC_AHCT00_1	
74AHC_AHCT00_1	19981209	Product specification	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com