74AHC257-Q100; 74AHCT257-Q100 Quad 2-input multiplexer; 3-state

Rev. 1 — 22 July 2013

Product data sheet

1. **General description**

The 74AHC257-Q100; 74AHCT257-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7-A.

The 74AHC257-Q100; 74AHCT257-Q100 has four identical 2-input multiplexers with 3-state outputs. They select 4 bits of data from two sources and a common data select input (S) controls them. The data inputs from source 0 (110 to 410), are selected when input S is LOW. The data inputs from source 1 (111 to 411) are selected when input S is HIGH. Data appears at the outputs (1Y to 4Y) in true (non-inverting) form from the selected inputs. The 74AHC257-Q100; 74AHCT257-Q100 is the logic implementation of a 4-pole 2-position switch. The logic levels applied to input S determine the position of the switch. The outputs are forced to a high-impedance OFF-state when \overline{OE} is HIGH.

The logic equations for the outputs are:

$$1Y = \overline{OE} \times (111 \times S + 110 \times \overline{S})$$

$$2Y = \overline{OE} \times (211 \times S + 210 \times \overline{S})$$

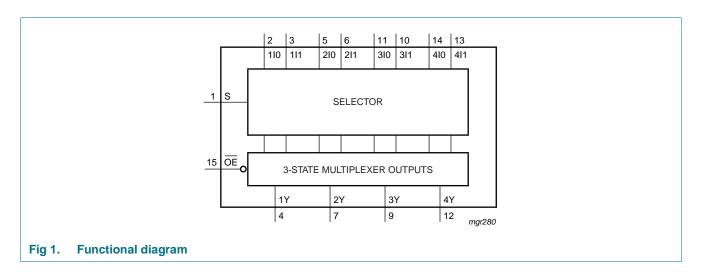
$$3Y = \overline{OE} \times (311 \times S + 310 \times \overline{S})$$

$$4Y = \overline{OE} \times (411 \times S + 410 \times \overline{S})$$

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

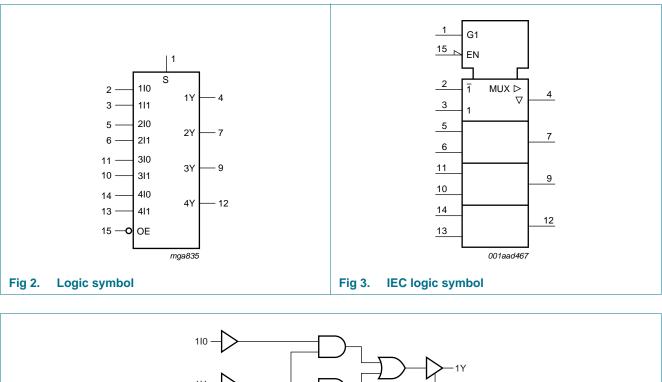
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Balanced propagation delays
- All inputs have Schmitt-trigger actions
- Non-inverting data path
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - For 74AHC257-Q100: CMOS level
 - For 74AHCT257-Q100: TTL level

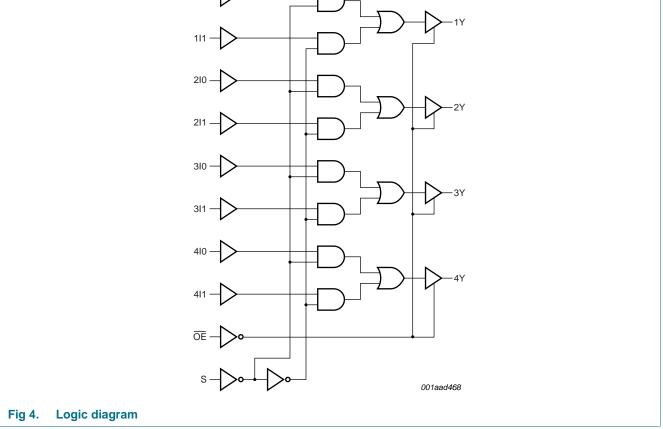

nexperia

- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

3. Ordering information

Table 1. Ordering in	nformation			
Type number	Package			
	Temperature range	Name	Description	Version
74AHC257-Q100				'
74AHC257D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74AHC257PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74AHCT257-Q100				
74AHCT257D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74AHCT257PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1

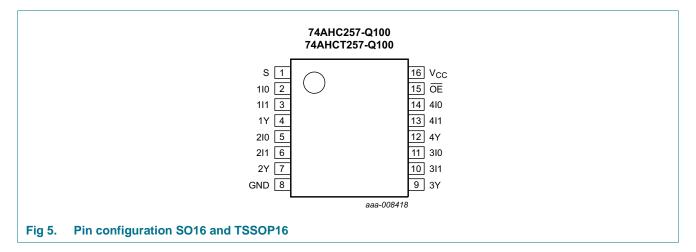

4. Functional diagram



Nexperia

74AHC257-Q100; 74AHCT257-Q100

Quad 2-input multiplexer; 3-state



74AHC_AHCT257_Q100

Quad 2-input multiplexer; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
S	1	common data select input
110	2	data input from source 0
111	3	data input from source 1
1Y	4	multiplexer output
210	5	data input from source 0
211	6	data input from source 1
2Y	7	multiplexer output
GND	8	ground (0 V)
3Y	9	multiplexer output
311	10	data input from source 1
310	11	data input from source 0
4Y	12	multiplexer output
411	13	data input from source 1
410	14	data input from source 0
OE	15	output enable input (active LOW)
V _{CC}	16	supply voltage

Quad 2-input multiplexer; 3-state

6. Functional description

Table 3.	Function table ^[1]				
Control		Input		Output	
OE	S	nl0	nl1	nY	
Н	Х	Х	Х	Z	
L	Н	Х	L	L	
		Х	Н	Н	
	L	L	Х	L	
		Н	Х	Н	

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

				.0	,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> –20	+20	mA
lo	output current	$V_{O} = -0.5 \text{ V}$ to ($V_{CC} + 0.5 \text{ V}$)	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO16 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K.

For TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.

Quad 2-input multiplexer; 3-state

8. Recommended operating conditions

Operating conditions					
Parameter	Conditions	Min	Тур	Max	Unit
7-Q100					
supply voltage		2.0	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V _{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	V_{CC} = 3.0 V to 3.6 V	-	-	100	ns/V
	V_{CC} = 4.5 V to 5.5 V	-	-	20	ns/V
57-Q100					
supply voltage		4.5	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V _{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	20	ns/V
	Parameter 7-Q100 supply voltage input voltage output voltage ambient temperature input transition rise and fall rate 57-Q100 supply voltage input voltage output voltage output voltage ambient temperature	ParameterConditions7-Q100supply voltageinput voltageoutput voltageambient temperatureinput transition rise and fall rate $V_{CC} = 3.0 V \text{ to } 3.6 V$ $V_{CC} = 4.5 V \text{ to } 5.5 V$ 57-Q100supply voltageinput voltageoutput voltageoutput voltageambient temperature	ParameterConditionsMin7-Q100 $3upply voltage$ 2.0 $supply voltage$ 0 $output voltage$ 0 $output voltage$ 0 $ambient temperature$ -40 $input transition rise and fall rateV_{CC} = 3.0 \vee to 3.6 \veeV_{CC} = 4.5 \vee to 5.5 \vee 57-Q1004.5supply voltage4.5input voltage0output voltage0output voltage0output voltage-40$	ParameterConditionsMinTyp7-Q100 3.0×5.0 5.0×5.0 0×5.0 0×5.0 supply voltage 0×5.0 0×5.0 0×5.0 0×5.0 output voltage $0 \times 5.0 \times 5.0$ $0 \times 5.0 \times 5.0$ $-40 \times +25$ input transition rise and fall rate $V_{CC} = 3.0 \vee to 3.6 \vee 0$ $-10 \times 5.0 \times 5.0 \times 5.0$ 57-Q100 $V_{CC} = 4.5 \vee to 5.5 \vee 0$ $-10 \times 5.0 \times 5.0 \times 5.0 \times 5.0$ supply voltage $4.5 \times 5.0 \times 5$	ParameterConditionsMinTypMax7-Q100supply voltage2.05.05.5input voltage0-5.5output voltage0- V_{CC} ambient temperature-40+25+125input transition rise and fall rate $V_{CC} = 3.0 V to 3.6 V$ 100 $V_{CC} = 4.5 V to 5.5 V$ 2057-Q100supply voltage0-5.5supply voltage0-5.5output voltage0-5.5output voltage0-5.5output voltage0-V_{CC}ambient temperature-40+25+125

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC2	57-Q100									
VIH	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = -50 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \ \mu\text{A}; \ V_{CC} = 3.0 \ \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
		I_{O} = -50 μ A; V_{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.36	-	0.44	-	0.55	V
		$I_{O} = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V

74AHC_AHCT257_Q100

All information provided in this document is subject to legal disclaimers.

Quad 2-input multiplexer; 3-state

At recom	mended operati	ng conditions; voltages are refe	renced	to GN	D (groui	nd = 0 V)				
Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
lı	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μA
I _{OZ}	OFF-state output current	$ \begin{array}{l} V_I = V_{IH} \text{ or } V_{IL}; \\ V_O = V_{CC} \text{ or } GND; \\ V_{CC} = 5.5 \text{ V} \end{array} $	-	-	±0.25	-	±2.5	-	±10.0	μΑ
I _{CC}	supply current	$V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A};$ $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μA
Cı	input capacitance	$V_1 = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF
74AHCT	257-Q100									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	V_{I} = V_{IH} or $V_{IL};V_{CC}$ = 4.5 V								
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
I _I	input leakage current	$V_I = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μA
I _{OZ}	OFF-state output current		-	-	±0.25	-	±2.5	-	±10.0	μΑ
I _{CC}	supply current		-	-	4.0	-	40	-	80	μA
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other pins at V_{CC} or GND; $I_O = 0 \text{ A}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	1.35	-	1.5	-	1.5	mA
CI	input capacitance	$V_{I} = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

74AHC_AHCT257_Q100

Quad 2-input multiplexer; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see <u>Figure 8</u>.

Symbol	Parameter	Conditions			25 °C		−40 °C	to +85 °C	–40 °C	to +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC2	57-Q100										
t _{pd}	propagation	nI0, nI1 to nY; see Figure 6	[2]								
	delay	V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	4.2	9.3	1.0	11.0	1.0	12.0	ns
		C _L = 50 pF		-	6.0	12.8	1.0	14.5	1.0	16.0	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	2.9	5.9	1.0	7.0	1.0	7.5	ns
		$C_L = 50 \text{ pF}$		-	4.2	7.9	1.0	9.0	1.0	11.5	ns
		S to nY; see Figure 6	[2]								
		V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	5.2	11.0	1.0	13.0	1.0	14.0	ns
		C _L = 50 pF		-	7.4	14.5	1.0	16.5	1.0	18.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.5	6.8	1.0	8.0	1.0	8.5	ns
		C _L = 50 pF		-	5.0	8.8	1.0	10.0	1.0	12.5	ns
t _{en}	enable time	OE to nY; see Figure 7	[3]								
		V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	4.5	10.5	1.0	12.5	1.0	13.5	ns
		C _L = 50 pF		-	6.4	14.0	1.0	16.0	1.0	17.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.2	6.8	1.0	8.0	1.0	8.5	ns
		C _L = 50 pF		-	4.5	8.8	1.0	10.0	1.0	12.5	ns
t _{dis}	disable time	OE to nY; see Figure 7	[4]								
		V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	5.1	9.5	1.0	11.0	1.0	11.5	ns
		C _L = 50 pF		-	7.2	12.0	1.0	13.5	1.0	14.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.4	6.5	1.0	7.0	1.0	8.5	ns
		C _L = 50 pF		-	4.9	7.9	1.0	9.0	1.0	9.5	ns
C _{PD}	power	$f_i = 1 \text{ MHz}; V_1 = \text{GND to } V_{\text{CC}}$	[5]								
	dissipation capacitance	4 outputs switching via input S		-	45	-	-	-	-	-	pF
		1 output switching via input I		-	15	-	-	-	-	-	pF

Quad 2-input multiplexer; 3-state

Symbol	Parameter	Conditions			25 °C		–40 °C [∙]	to +85 °C	–40 °C t	to +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74AHCT	257-Q100; V _C	_C = 4.5 V to 5.5 V									
t _{pd}	propagation	nI0, nI1 to nY; see Figure 6	[2]								
	delay	C _L = 15 pF		-	3.7	6.5	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	4.9	8.5	1.0	10.0	1.0	11.0	ns
		S to nY; see Figure 6	[2]								
		C _L = 15 pF		-	5.1	9.0	1.0	10.5	1.0	11.5	ns
		C _L = 50 pF		-	6.4	10.5	1.0	12.5	1.0	13.5	ns
t _{en}	enable time	OE to nY; see Figure 7	[3]								
		C _L = 15 pF		-	3.9	8.0	1.0	9.0	1.0	10.0	ns
		C _L = 50 pF		-	5.1	10.0	1.0	11.0	1.0	12.0	ns
t _{dis}	disable time	OE to nY; see Figure 7	[4]								
		C _L = 15 pF		-	4.5	7.5	1.0	8.0	1.0	8.5	ns
		C _L = 50 pF		-	6.5	9.5	1.0	10.5	1.0	11.5	ns
C _{PD}	power	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{\text{CC}}$	[5]								
	dissipation capacitance	4 outputs switching via input S		-	51	-	-	-	-	-	pF
		1 output switching via input I		-	15	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

[1] Typical values are measured at nominal supply voltage ($V_{CC} = 3.3$ V and $V_{CC} = 5.0$ V).

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] t_{en} is the same as t_{PZL} and t_{PZH} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

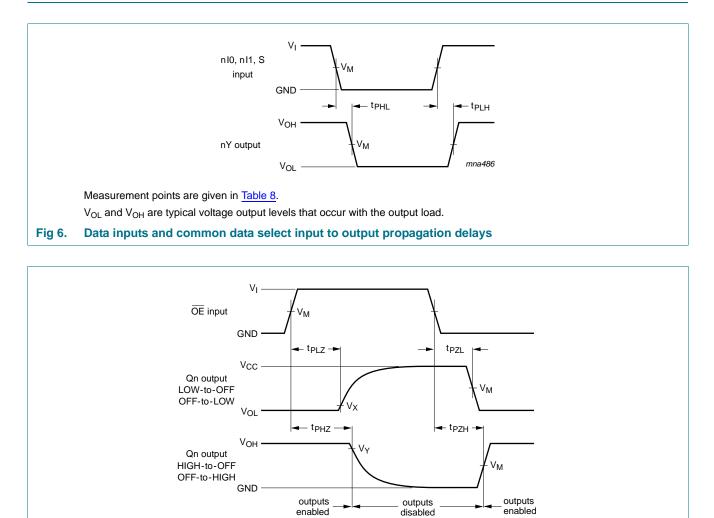
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_o) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

enabled mna813

Quad 2-input multiplexer; 3-state

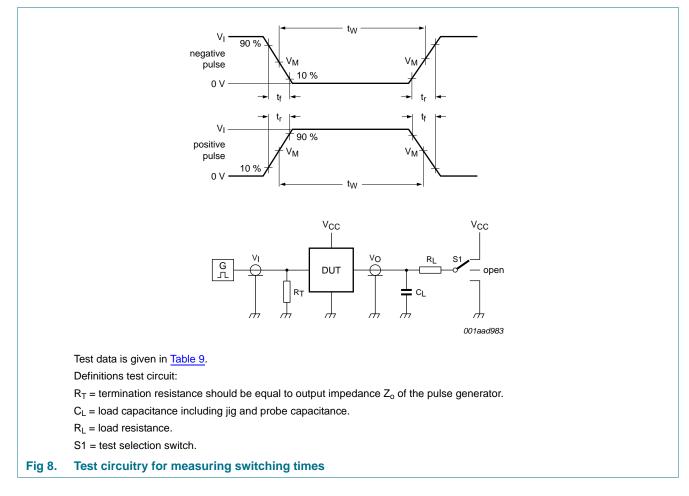
11. Waveforms

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

enabled

Enable and disable times Fig 7.


Table 8. **Measurement points**

Туре	Input	Output			
	V _M	V _M	V _X	V _Y	
74AHC257-Q100	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V	
74AHCT257-Q100	1.5 V	$0.5\times V_{CC}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V	

Nexperia

74AHC257-Q100; 74AHCT257-Q100

Quad 2-input multiplexer; 3-state

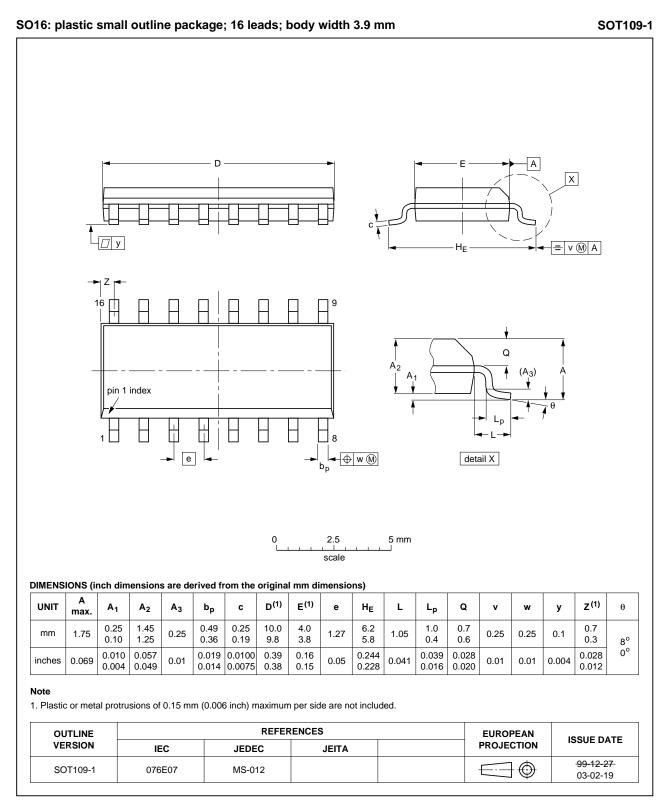


Table 9. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74AHC257-Q100	V _{CC}	\leq 3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74AHCT257-Q100	3.0 V	\leq 3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

Quad 2-input multiplexer; 3-state

12. Package outline

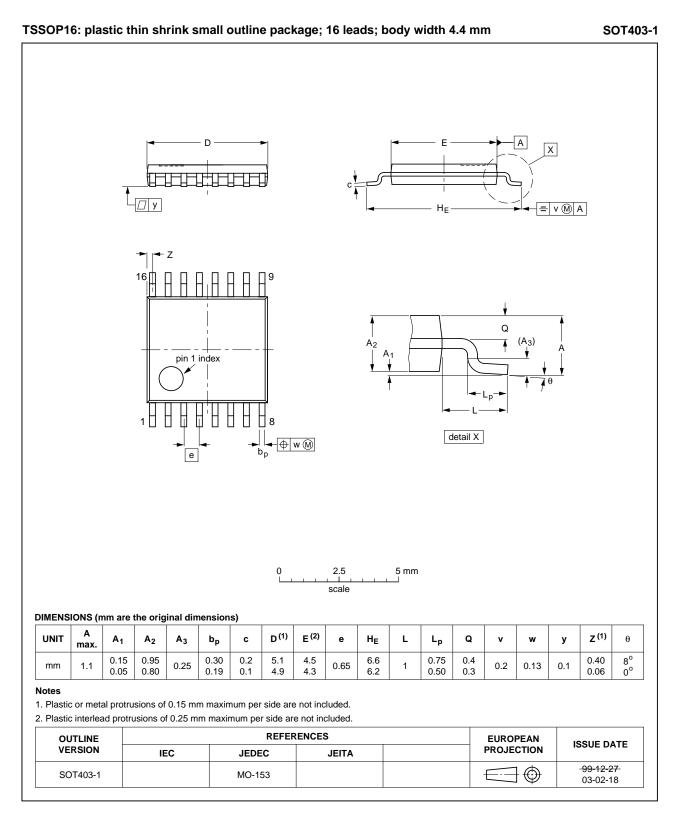


Fig 9. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74AHC AHCT257 Q100

Quad 2-input multiplexer; 3-state

Fig 10. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

74AHC_AHCT257_Q100

Quad 2-input multiplexer; 3-state

13. Abbreviations

Acronym CDM	Description Charged Device Model
CDM	Charged Device Model
	5
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
MIL	Military
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT257_Q100 v.1	20130722	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been gualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

```
74AHC_AHCT257_Q100
```

Quad 2-input multiplexer; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com