74HC280; 74HCT280

9-bit odd/even parity generator/checker

Rev. 4 — 16 August 2021

Product data sheet

1. General description

The 74HC280; 74HCT280 is a 9-bit parity generator or checker. Both even and odd parity outputs are available. The even parity output (PE) is HIGH when an even number of data inputs (I0 to I8) is HIGH. The odd parity output (PO) is HIGH when an odd number of data inputs are HIGH. Expansion to larger word sizes is accomplished by tying the even outputs (PE) of up to nine parallel devices to the final stage data inputs. Inputs include clamp diodes. It enables the use of current limiting resistors to interface inputs to voltages in excess of $V_{\rm CC}$.

2. Features and benefits

- · Word-length easily expanded by cascading
- · Generates either odd or even parity for nine data bits
- Wide supply voltage range from 2.0 to 6.0 V
- Input levels:
 - For 74HC280: CMOS level
 - For 74HCT280: TTL level
- CMOS low power dissipation
- · High noise immunity
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

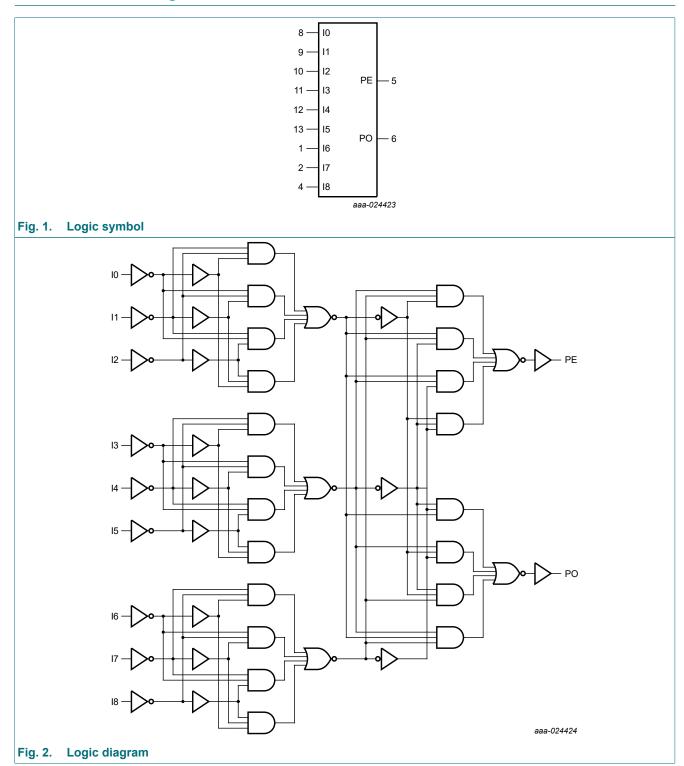
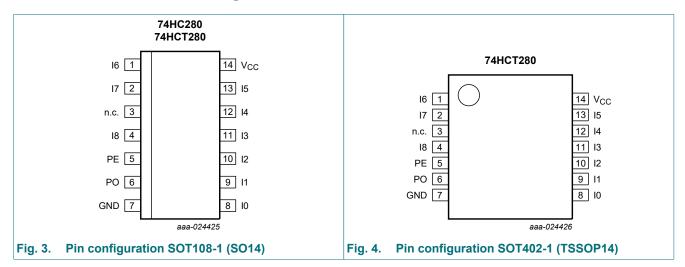

3. Ordering information

Table 1. Ordering information

Table 1. Ordering	<u>,</u>			
Type number	Temperature range	Name	Description	Version
74HC280D	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads;	SOT108-1
74HCT280D			body width 3.9 mm	
74HCT280PW	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1



4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
10, 11, 12, 13, 14, 15, 16, 17, 18	8, 9, 10, 11, 12, 13, 1, 2, 4	data input
GND	7	ground (0 V)
PE	5	even parity output
PO	6	odd parity output
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level

Inputs	Outputs PE PO								
number of HIGH data inputs (I0 to I8)	PE	PO							
even	Н	L							
odd	L	Н							

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
lo	output current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[2]	-	500	mW

The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions		74HC280)	7	74HCT28	0	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V

For SOT108-1 (SO14) package: Ptot derates linearly with 10.1 mW/K above 100 °C. For SOT402-1 (TSSOP14) package: Ptot derates linearly with 7.3 mW/K above 81 °C.

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC28	0									
V _{IH}	HIGH-level	real elements of the stage $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	٧
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _O = -20 μA; V _{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		I _O = -4.0 mA; V _{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
				5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	I _O = 20 μA; V _{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
	$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$ $I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ N}$ $I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ N}$	I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I _I	1 '	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	supply current		-	-	8.0	-	80	-	160	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT2	80									
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	Ι _Ο = 20 μΑ	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $I_{O} = 0 \text{ A}$	-	-	8.0	-	80	-	160	μA

Symbol	Parameter	Conditions	25 °C			-40 °C to	+85 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V ; $I_O = 0 \text{ A}$								
		In inputs	-	100	360	-	450	-	490	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Fig. 6.

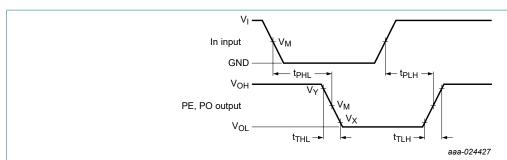
Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC280)									
t _{pd}	propagation	In to PE; see Fig. 5 [1]								
	delay	V _{CC} = 2.0 V	-	55	200	-	250	-	300	ns
		V _{CC} = 4.5 V	-	20	40	-	50	-	60	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	17	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	16	34	-	43	-	51	ns
		In to PO; see Fig. 5								
		V _{CC} = 2.0 V	-	63	200	-	250	-	300	ns
		V _{CC} = 4.5 V	-	23	40	-	50	-	60	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	20	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	18	34	-	43	-	51	ns
t _t	transition	see <u>Fig. 5</u> [2]								
	time	V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
C _{PD}	power dissipation capacitance	per package; V_I = GND to V_{CC} [3]	-	65	-	-	-	-	-	pF

Symbol	Parameter	Conditions			25 °C		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HCT2	80							<u> </u>		'	
t _{pd}	propagation	In to PE; see Fig. 5	[1]								
	delay	V _{CC} = 4.5 V		-	21	42	-	53	-	63	ns
		V _{CC} = 5.0 V; C _L = 15 pF		-	18	-	-	-	-	-	ns
		In to PO; see Fig. 5									
		V _{CC} = 4.5 V		-	26	45	-	56	-	68	ns
		V _{CC} = 5.0 V; C _L = 15 pF		-	22	-	-	-	-	-	ns
t _t	transition	see Fig. 5	[2]								
	time	V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
C _{PD}	power dissipation capacitance	per package; V _I = GND to V _{CC} - 1.5 V	[3]	-	65	-	-	-	-	-	pF

- t_{pd} is the same as t_{PHL} and t_{PLH} .
- t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz}$;

f_o = output frequency in MHz;


C_L = output load capacitance in pF;

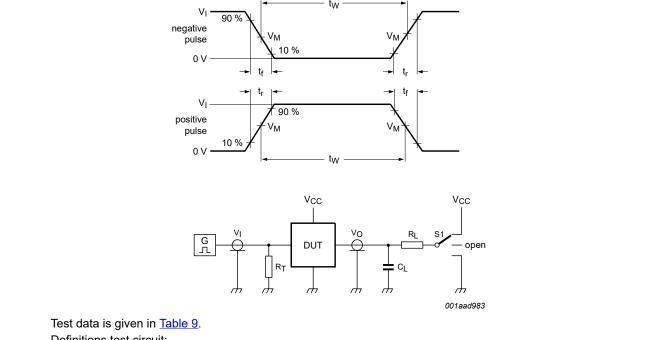
V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

10.1. Waveforms and test circuit

Measurement points are given in Table 8.


 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Input (In) to output (PE, PO) propagation delays and output transition times Fig. 5.

Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74HC280	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}
74HCT280	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}

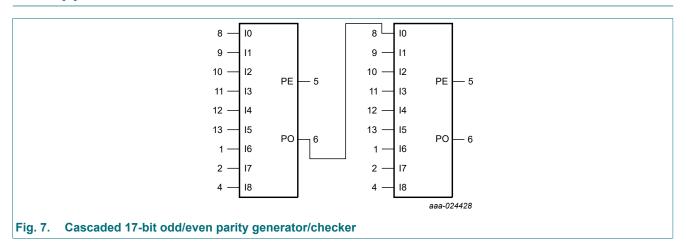
7 / 13

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator

C_L = Load capacitance including jig and probe capacitance

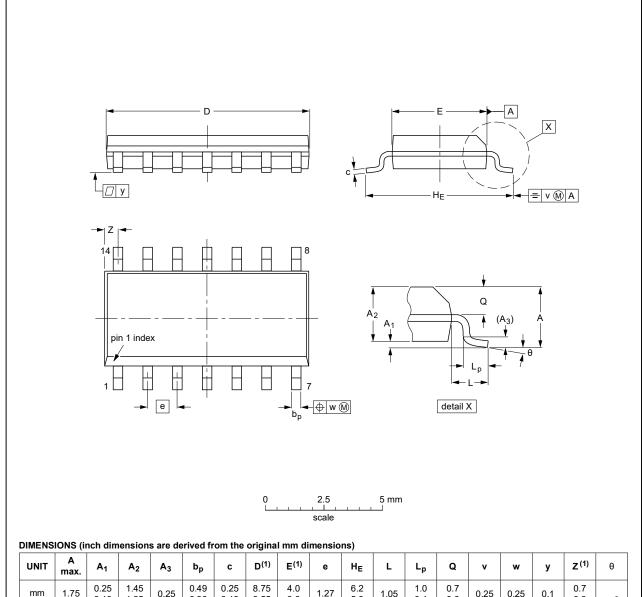
 R_{I} = Load resistance.


S1 = Test selection switch

Test circuit for measuring switching times Fig. 6.

Table 9. Test data

Table of Tool data					
Туре	Input		Load		S1 position
	V _I	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}
74HC280	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT280			15 pF, 50 pF	1 kΩ	open


11. Application information

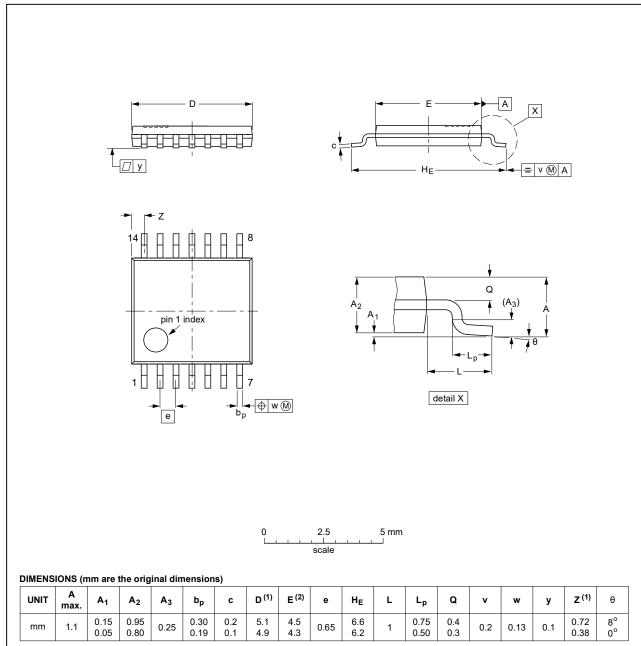
12. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

	UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	q	v	w	у	Z ⁽¹⁾	θ
	mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
iı	nches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note


1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

	OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE	
		IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	SOT108-1	076E06	MS-012				99-12-27 03-02-19

Fig. 8. Package outline SOT108-1 (SO14)

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT402-1		MO-153				99-12-27 03-02-18

Fig. 9. Package outline SOT402-1 (TSSOP14)

10 / 13

13. Abbreviations

Table 10. Abbreviations

Acronym	Description	
CDM	Charged Device Model	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MM	Machine Model	

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT280 v.4	20210816	Product data sheet	-	74HC_HCT280 v.3	
Modifications:	guidelines o Legal texts Type numbe Type numbe	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Type number 74HCT280DB (SOT337-1/SSOP14) removed. Type number 74HCT280PW (SOT402-1/TSSOP14) added. Section 7: Derating values for P_{tot} total power dissipation updated. 			
74HC_HCT280 v.3	20160915	Product data sheet	-	74HC_HCT280 v.2	
Modifications:	guidelines o Legal texts	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. Type numbers 74HC280N, 74HCT280N removed. 			
74HC_HCT280 v.2	19901201	Product specification	-	-	

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12 / 13