74HC4852; 74HCT4852

Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control

Rev. 03 — 2 September 2008

Product data sheet

1. General description

The 74HC4852; 74HCT4852 are high-speed Si-gate CMOS devices and are specified in compliance with JEDEC standard no. 7A.

The 74HC4852; 74HCT4852 are dual 4-channel analog multiplexers/demultiplexers with common select inputs (S0 and S1). Both multiplexers have a common active LOW enable input (\overline{E}) , four independent inputs/outputs (nY0 to nY3) and two common inputs/outputs (1Z, 2Z). The devices feature injection-current effect control, which has excellent value in automotive applications where voltages in excess of the supply voltage are common.

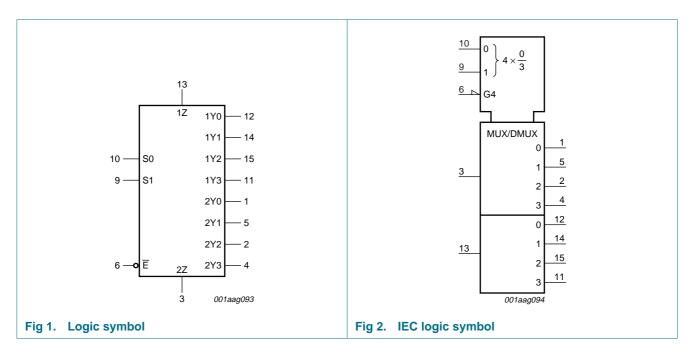
With \overline{E} LOW, two of the eight switches are selected (low impedance ON-state) by S0 and S1. With \overline{E} HIGH, all switches are in the high-impedance OFF-state, independent of S0 and S1.

The injection-current effect control allows signals at disabled analog input channels to exceed the supply voltage without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply-voltage range.

2. Features

- Injection-current cross coupling < 1 mV/mA
- Wide supply voltage range from 2.0 V to 6.0 V for 74HC4852
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - CDM JESD22-C101C exceeds 1000 V
- Latch-up performance exceeds 100 mA per JESD 78 Class II level A
- Low ON-state resistance:
 - 400 Ω (typical) at $V_{CC} = 2.0 \text{ V}$
 - 215 Ω (typical) at $V_{CC} = 3.0 \text{ V}$
 - 120 Ω (typical) at $V_{CC} = 3.3 \text{ V}$
 - 76 Ω (typical) at V_{CC} = 4.5 V
 - 59 Ω (typical) at $V_{CC} = 6.0 \text{ V}$

3. Applications


- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating
- Automotive application

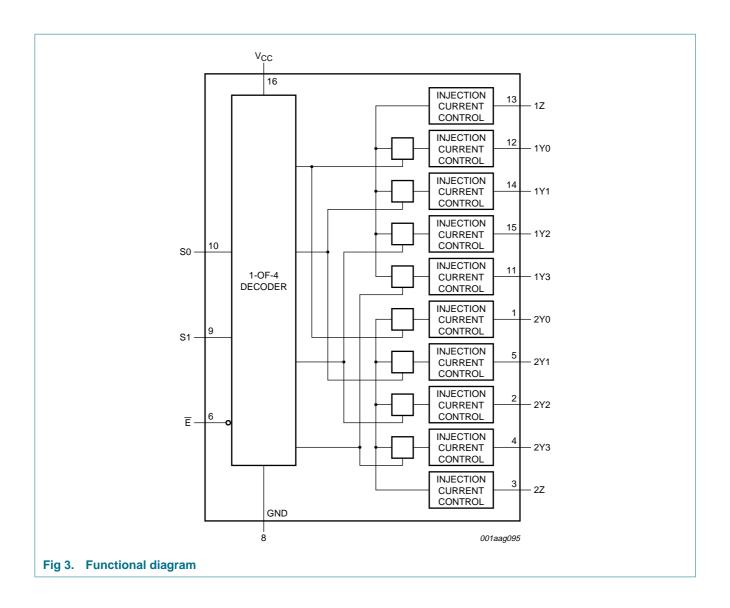
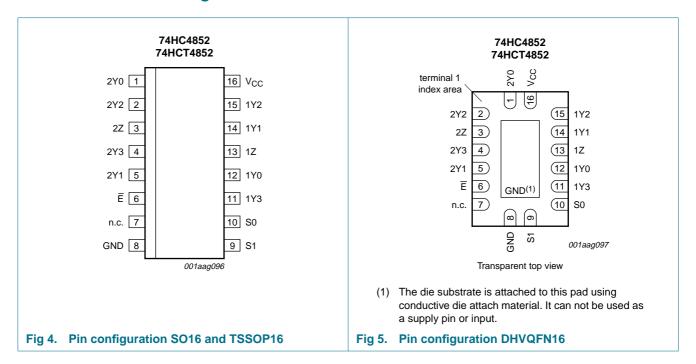

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4852D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4852PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC4852BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1
74HCT4852D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT4852PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT4852BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1


5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

	Din	Description
Symbol	Pin	Description
2Y0	1	independent input/output
2Y2	2	independent input/output
2Z	3	common input/output
2Y3	4	independent input/output
2Y1	5	independent input/output
Ē	6	enable input (active LOW)
n.c.	7	not connected
GND	8	ground (0 V)
S1	9	select input
S0	10	select input
1Y3	11	independent input/output
1Y0	12	independent input/output
1Z	13	common input/output
1Y1	14	independent input/output
1Y2	15	independent input/output
V_{CC}	16	supply voltage

7. Functional description

Table 3. Function table [1]

Input			Channel ON
Ē	S1	S0	
L	L	L	nY0 to nZ
L	L	Н	nY1 to nZ
L	Н	L	nY2 to nZ
L	Н	Н	nY3 to nZ
Н	X	Χ	-

^[1] H = HIGH voltage level;

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Mir	n Max	Unit
V_{CC}	supply voltage		-0.	5 +7.0	V
V _I	input voltage		<u>[1]</u> _0.	$V_{CC} + 0.5$	V
V_{SW}	switch voltage		<u>[2]</u> _0.	$V_{CC} + 0.5$	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I_{SK}	switch clamping current	V_{SW} < -0.5 V or V_{SW} > V_{CC} + 0.5 V	-	±20	mA
I_{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V}$	-	±25	mA
Icc	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T_{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3]	500	mW

^[1] The minimum and maximum input voltage rating may be exceeded if the input clamping current rating is observed.

For TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 60 $^{\circ}\text{C}.$

For DHVQFN16 packages: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

L = LOW voltage level;

X = don't care.

^[2] The minimum and maximum switch voltage rating may be exceeded if the switch clamping current rating is observed.

^[3] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

Recommended operating conditions

Recommended operating conditions Table 5.

Symbol	Parameter	Conditions	7	74HC4852			4HCT48	52	Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	-	6.0	4.5	5.0	5.5	V
V_{I}	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
V_{SW}	switch voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and	$V_{CC} = 2.0 \text{ V}$	-	6.0	1000	-	-	-	ns/V
	fall rate	$V_{CC} = 3.0 \text{ V}$	-	6.0	800	-	-	-	ns/V
		$V_{CC} = 3.3 \text{ V}$	-	6.0	800	-	-	-	ns/V
		$V_{CC} = 4.5 \text{ V}$	-	6.0	500	-	6.0	500	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	6.0	400	-	-	-	ns/V

10. Static characteristics

Table 6. R_{ON resistance}
At recommended operating conditions; voltages are referenced to GND (ground 0 V); For test circuit see <u>Figure 8</u>.

Symbol	Parameter	Conditions		25 °C		–40 °C to	+85 °C	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC485	2	'				'				
R _{ON(peak)}		$V_I = V_{CC}$ to GND; $\overline{E} = V_{IL}$								
	(peak)	$V_{CC} = 2.0 \text{ V}; I_{SW} = 2 \text{ mA}$	-	400	650	-	670	-	700	Ω
		$V_{CC} = 3.0 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	215	330	-	360	-	380	Ω
		V_{CC} = 3.3 V; $I_{SW} \le 2 \text{ mA}$	-	120	270	-	305	-	345	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	76	210	-	240	-	270	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	59	195	-	220	-	250	Ω
ΔR_{ON}	ON resistance	$V_I = 0.5 \times V_{CC}; \overline{E} = V_{IL}$								
	mismatch between	$V_{CC} = 2.0 \text{ V}; I_{SW} = 2 \text{ mA}$	-	4	10	-	15	-	20	Ω
	channels	$V_{CC} = 3.0 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	2	8	-	12	-	16	Ω
		$V_{CC} = 3.3 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	2	8	-	12	-	16	Ω
		V_{CC} = 4.5 V; $I_{SW} \le 2 \text{ mA}$	-	2	8	-	12	-	16	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} \le 2 \text{ mA}$	-	3	9	-	13	-	18	Ω
74HCT48	52									
R _{ON(peak)}		$V_I = V_{CC}$ to GND; $\overline{E} = V_{IL}$								
	(peak)	V_{CC} = 4.5 V; $I_{SW} \le 2 \text{ mA}$	-	76	210	-	240	-	270	Ω
ΔR_{ON}		$V_I = 0.5 \times V_{CC}; \overline{E} = V_{IL}$								
	mismatch between channels	V_{CC} = 4.5 V; $I_{SW} \le 2 \text{ mA}$	-	2	8	-	12	-	16	Ω

Table 7. Injection current coupling

At recommended operating conditions; voltages are referenced to GND (ground 0 V); For test circuit see Figure 9.

	, ,	, 8	10	,,					
Symbol	Parameter	Conditions		74HC4852		7	4HCT485	52	Unit
			Min	Typ[1]	Max	Min	Typ[1]	Max	
$T_{amb} = -4$	0 °C to +125 °C		'		'	•	'		
ΔV_{O}	output voltage	$ I_{SW} \le 1 \text{ mA}; R_S \le 3.9 \text{ k}\Omega$ [2][3	<u> </u>						
	variation	$V_{CC} = 3.3 \text{ V}$	-	0.05	1	-	-	-	mV
		V _{CC} = 5.0 V	-	0.03	1	-	0.03	1	mV
		$ I_{SW} \le 10 \text{ mA}; R_S \le 3.9 \text{ k}\Omega$							
		$V_{CC} = 3.3 \text{ V}$	-	0.55	5	-	-	-	mV
		V _{CC} = 5.0 V	-	0.27	5	-	0.27	5	mV
		$ I_{SW} \le 1 \text{ mA}; R_S \le 20 \text{ k}\Omega$							
		$V_{CC} = 3.3 \text{ V}$	-	0.04	2	-	-	-	mV
		V _{CC} = 5.0 V	-	0.03	2	-	0.03	2	mV
		$ I_{SW} \le 10 \text{ mA}; R_S \le 20 \text{ k}\Omega$							
		V _{CC} = 3.3 V	-	0.56	20	-	-	-	mV
		$V_{CC} = 5.0 \text{ V}$	-	0.48	20	-	0.48	20	mV

^[1] Typical values are measured at $T_{amb} = 25$ °C.

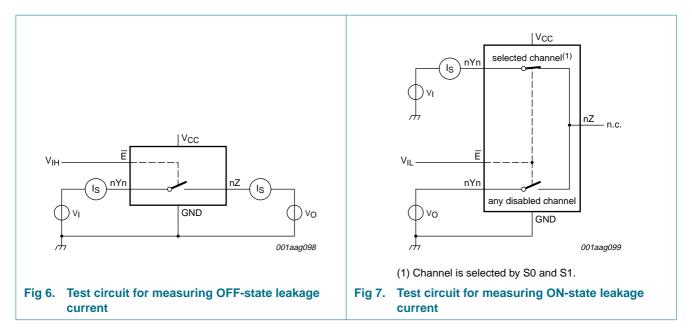
Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

				25 °C		o +85 °C	–40 °C to			
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
74HC48	52		'						•	
V_{IH}	HIGH-level	control inputs								
	input voltage	$V_{CC} = 2.0 \text{ V}$	1.5	-	-	1.5	-	1.5	-	V
		$V_{CC} = 3.0 \text{ V}$	2.1	-	-	2.1	-	2.1	-	V
		$V_{CC} = 3.3 \text{ V}$	2.3	-	-	2.3	-	2.3	-	V
		$V_{CC} = 4.5 \text{ V}$	3.15	-	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	-	-	4.2	-	4.2	-	V
V_{IL}	LOW-level	control inputs								
	input voltage	$V_{CC} = 2.0 \text{ V}$	-	-	0.5	-	0.5	-	0.5	V
	voltage	$V_{CC} = 3.0 \text{ V}$	-	-	0.9	-	0.9	-	0.9	V
		$V_{CC} = 3.3 \text{ V}$	-	-	1.0	-	1.0	-	1.0	V
		$V_{CC} = 4.5 \text{ V}$	-	-	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	-	1.8	-	1.8	-	1.8	V
II	input leakage	control inputs; $V_I = GND \text{ or } V_{CC}$								
	current	$V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±0.1	-	±1.0	μΑ

^[2] ΔV_{O} here is the maximum variation of output voltage of an enabled analog channel when current is injected into any disabled channel.

^[3] I_{SW} = total current injected into all disabled channels.


Product data sheet

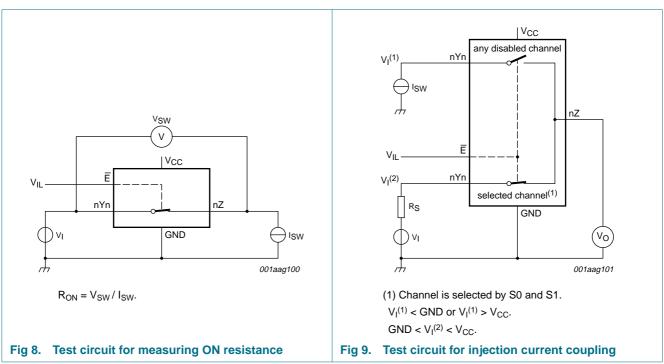

4-channel analog MUX/DEMUX with injection-current effect control

Table 8. Static characteristics ... continued At recommended operating conditions; voltages are referenced to GND (ground 0 V).

				25 °C		–40 °C t	o +85 °C	–40 °C to	+125 °C	
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Max	Min	Max	Unit
S(OFF)	OFF-state leakage current	\overline{E} = V _{IH} ; V _I = GND or V _{CC} ; V _O = V _{CC} or GND; V _{CC} = 6.0 V; see <u>Figure 6</u>								
		nYn; per channel	-	-	±0.1	-	±0.5	-	±1.0	μΑ
		nZ; all channels	-	-	±0.2	-	±2.0	-	±4.0	μΑ
I _{S(ON)}	ON-state leakage current	\overline{E} = V _{IL} ; V _I = GND or V _{CC} ; V _O = V _{CC} or GND; V _{CC} = 6.0 V; see <u>Figure 7</u>	-	-	±0.1	-	±0.5	-	±1.0	μΑ
I _{CC}	supply	$V_I = GND \text{ or } V_{CC}$								
	current	$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	5.0	-	20.0	μΑ
Cı	input capacitance	S0, S1, S2 and \overline{E}	-	2	10	-	10	-	10	pF
C _{sw}	switch	nZ; OFF-state	-	15	40	-	40	-	40	рF
	capacitance	nYn; OFF-state	-	3	15	-	15	-	15	pF
74HCT48	352									
V _{IH}	HIGH-level	control inputs								
	input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	V
V_{IL}	LOW-level	control inputs								
	input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	-	0.8	-	0.8	V
l _l	input leakage	control inputs; $V_I = GND$ or V_{CC}								
	current	$V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±0.1	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	\overline{E} = V _{IH} ; V _I = GND or V _{CC} ; V _O = V _{CC} or GND; V _{CC} = 5.5 V; see <u>Figure 6</u>								
		per channel	-	-	±0.1	-	±0.5	-	±1.0	μΑ
		all channels	-	-	±0.2	-	±2.0	-	±4.0	μΑ
I _{S(ON)}	ON-state leakage current	\overline{E} = V _{IL} ; V _I = GND or V _{CC} ; V _O = V _{CC} or GND; V _{CC} = 5.5 V; see <u>Figure 7</u>	-	-	±0.1	-	±0.5	-	±1.0	μΑ
I _{CC}	supply	$V_I = GND \text{ or } V_{CC}$								
	current	V _{CC} = 5.5 V	-	-	2.0	-	5.0	-	20.0	μΑ
Δl _{CC}	additional supply current	control inputs; $V_I = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$	-	-	300	-	370	-	370	μΑ
Cı	input capacitance	S0, S1, S2 and \overline{E}	-	2	10	-	10	-	10	pF
C _{sw}	switch capacitance	nZ; OFF-state	-	9	40	-	40	-	40	pF
	-	nYn; OFF-state		3	15	-	15	-	15	pF

8 of 20

11. Dynamic characteristics

 Table 9.
 Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for load circuit see Figure 14.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C 1	to +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HC485	52						'				
t _{pd}	propagation delay	nZ, nYn to nYn, nZ; see <u>Figure 10</u>	[1]								
		$V_{CC} = 2.0 \text{ V}$		2.2	9.3	33	2.2	34	2.2	35	ns
		V _{CC} = 3.0 V		2.2	4.9	16.5	1.9	18	1.9	19.5	ns
		$V_{CC} = 3.3 \text{ V}$		2.0	4.4	15.0	1.6	16.5	1.6	18.5	ns
		$V_{CC} = 4.5 \text{ V}$		1.6	3.2	11.6	1.1	12.5	1.1	13.5	ns
		$V_{CC} = 6.0 \text{ V}$		1.5	2.5	10.2	0.9	11	0.9	12	ns
		Sn to nZ, nYn; see Figure 11	[1]								
		$V_{CC} = 2.0 \text{ V}$		7.7	16.8	38	6.3	40	6.3	42	ns
		$V_{CC} = 3.0 \text{ V}$		4.9	8.8	20	3.9	21.5	3.9	23	ns
		$V_{CC} = 3.3 \text{ V}$		4.4	7.9	17.5	3.4	19	3.4	22	ns
		$V_{CC} = 4.5 \text{ V}$		3.2	5.8	14	2.3	15	2.3	17	ns
		$V_{CC} = 6.0 \text{ V}$		2.4	4.8	12.6	1.6	14.5	1.6	16.5	ns
t _{en}	enable time	E to nZ, nYn; see Figure 12	[2]								
		$V_{CC} = 2.0 \text{ V}$		10.5	20.5	47.5	8.5	52.5	8.5	57.5	ns
		$V_{CC} = 3.0 \text{ V}$		6.2	10.6	45	5.2	50	5.2	55	ns
		$V_{CC} = 3.3 \text{ V}$		5.6	9.4	42.5	4.6	47.5	4.6	52.5	ns
		V _{CC} = 4.5 V		4.2	6.9	40	3	45	3	50	ns
		V _{CC} = 6.0 V		3.2	5.6	39	2.2	40	2.2	40	ns
t _{dis}	disable time	E to nZ, nYn; see Figure 12	[3]								
		$V_{CC} = 2.0 \text{ V}$		39.5	75.4	100	39.3	105	39	115	ns
		$V_{CC} = 3.0 \text{ V}$		35.2	69.5	90	35.5	100	35	110	ns
		$V_{CC} = 3.3 \text{ V}$		34.6	68.1	85	34.6	95	34.5	105	ns
		$V_{CC} = 4.5 V$		28.5	63	80	28.2	90	28	100	ns
		$V_{CC} = 6.0 \text{ V}$		14.4	57.9	78	13.5	80	13.0	80	ns
C_{PD}	power dissipation capacitance	per channel; see <u>Figure 13</u>	<u>[4]</u>								
		$V_{CC} = 3.3 \text{ V}$		-	42	-	-	-	-	-	pF
		$V_{CC} = 5.0 \text{ V}$		-	47	-	-	-	-	-	pF

 Table 9.
 Dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for load circuit see Figure 14.

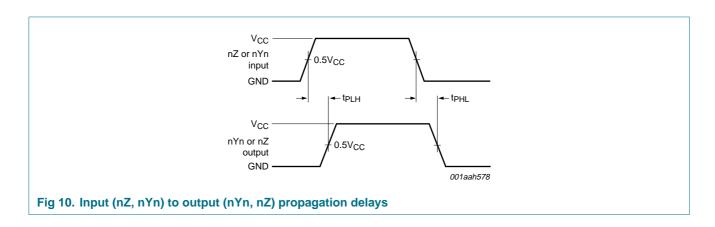
Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HCT48	852										
t _{pd}	propagation delay	nZ, nYn to nYn, nZ; see <u>Figure 10</u>	[1]								
		$V_{CC} = 4.5 \text{ V}$		1.6	3.5	11.5	1.1	12.5	1.1	13.5	ns
		Sn to nZ, nYn; see Figure 11	[1]								
		$V_{CC} = 4.5 \text{ V}$		3.2	7.6	13	2.3	15	1.6	17	ns
t _{en}	enable time	Ē to nZ, nYn; see <u>Figure 12</u>	[2]								
		$V_{CC} = 4.5 \text{ V}$		4.2	8.3	25	3.0	30	3.0	35	ns
t _{dis}	disable time	Ē to nZ, nYn; see <u>Figure 12</u>	[3]								
		$V_{CC} = 4.5 \text{ V}$		28.5	61.8	80	28.2	90	28.0	100	ns
C_{PD}	power dissipation capacitance	per channel; see <u>Figure 13</u>	[4]								
		$V_{CC} = 5.0 \text{ V}$		-	47	-	-	-	-	-	pF

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_{en} is the same as t_{PZH} and t_{PZL} .
- [3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\}$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;


 $\sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$

 C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

12. Waveforms

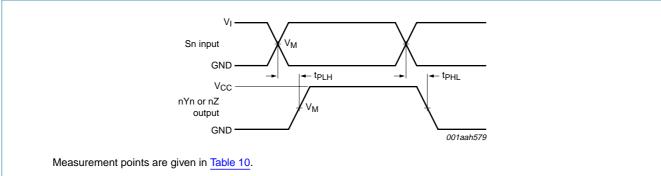
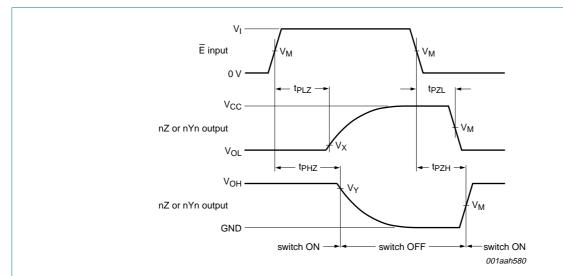
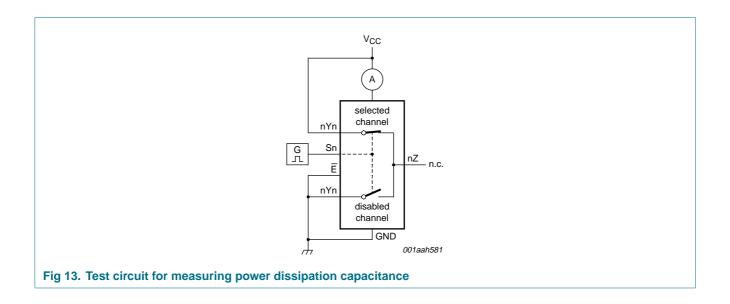



Fig 11. Input (Sn) to output (nYn, nZ) propagation delays


Measurement points are shown in Table 10.

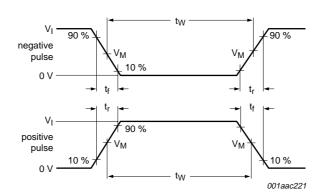
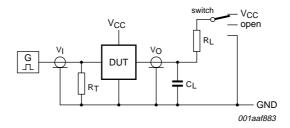

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 12. Enable and disable times


Table 10. Measurement points

Туре	Input		Output						
	V _M	V _I	V _M	V _X	V _Y				
74HC4852	0.5V _{CC}	V _{CC}	0.5V _{CC}	V_{OL} + 0.1(V_{CC} – V_{OL})	0.9V _{OH}				
74HCT4852	1.3 V	3.0 V	0.5V _{CC}	V_{OL} + 0.1(V_{CC} – V_{OL})	0.9V _{OH}				

a. Input pulse definition

Definitions for test circuit:

 R_L = load resistance.

 C_L = load capacitance including jig and probe capacitance.

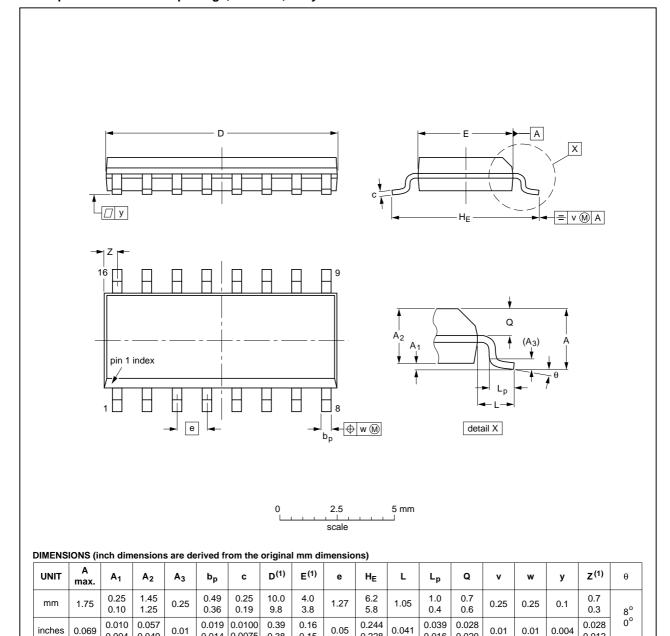
 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

b. Load circuit

Test data is given in Table 11.

Fig 14. Input pulse definition and load circuit

Table 11. Test data


Test	Input	nput			Output	
	Control E, Sn	Switch nYn (nZ)	t _r , t _f	Switch nZ (nYn)		
V <u>I^[1]</u>	V _I [1]	VI		CL	R _L	
t _{PHL} , t _{PLH}	V _{CC}	V _{CC}	6 ns	50 pF	-	open
t_{PHZ} , t_{PZH}	V_{CC}	V_{CC}	6 ns	50 pF	10 kΩ	GND
t_{PLZ},t_{PZL}	V_{CC}	V_{CC}	6 ns	50 pF	10 kΩ	V_{CC}
C_{PD}	V_{CC}	V_{CC}	6 ns	0 pF	-	open

[1] For 74HCT4852: input voltage $V_1 = 3.0 \text{ V}$.

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

0.38

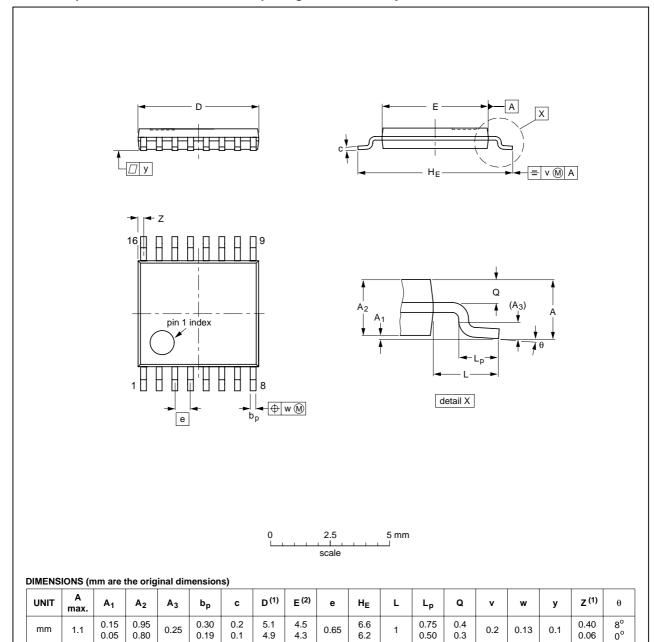
0.15

OUTLINE	REFERENCES			EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19

0.228

0.016

0.020


Fig 15. Package outline SOT109-1 (SO16)

0.004

0.049

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

NI-4--

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		KEIEK	ENCES		EUROPEAN ISSUE DATE			EUROPEAN ISSUE DA	
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE			
SOT403-1		MO-153				-99-12-27 03-02-18			

Fig 16. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

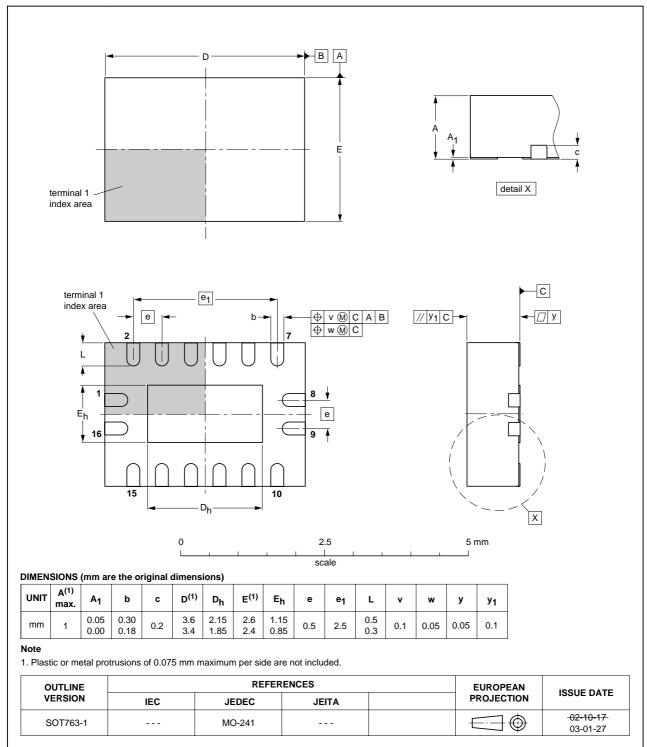


Fig 17. Package outline SOT763-1 (DHVQFN16)

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4852_3	20080902	Product data sheet	-	74HC4852_2
Modifications:	 74HCT4852 	2 device added.		
74HC4852_2	20070530	Product data sheet	-	74HC4852_1
74HC4852_1	20070323	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com