74VHC595-Q100; 74VHCT595-Q100

8-bit serial-in/serial-out or parallel-out shift register with output latches

Rev. 1 — 15 November 2013

Product data sheet

1. General description

The 74VHC595-Q100; 74VHCT595-Q100 are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7A.

The 74VHC595-Q100; 74VHCT595-Q100 are 8-stage serial shift registers with a storage register and 3-state outputs. The shift registers have separate clocks.

Data is shifted on the positive-going transitions of the shift register clock input (SHCP). The data in each register is transferred to the storage register on a positive-going transition of the storage register clock input (STCP). If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register.

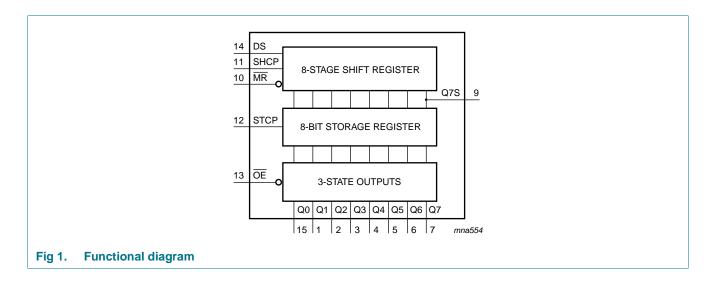
The shift register has a serial input (DS) and a serial standard output (Q7S) for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input $\overline{(OE)}$ is LOW.

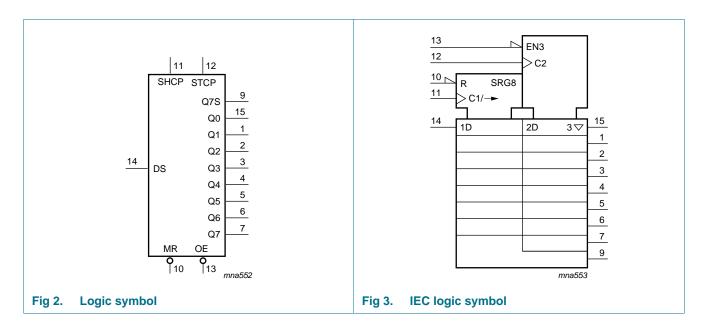
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

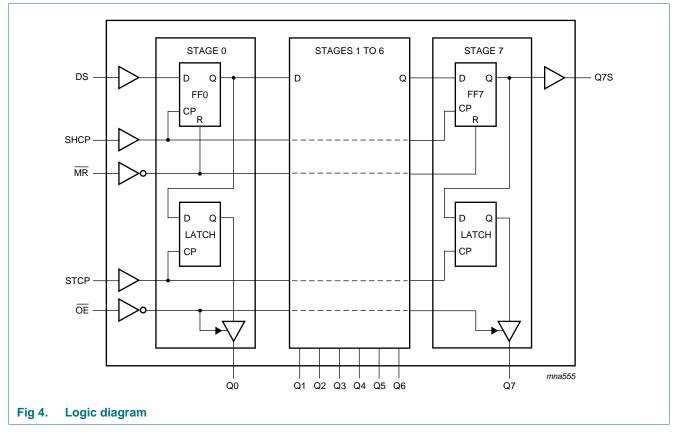
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Balanced propagation delays
- All inputs have Schmitt-trigger action
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - ◆ The 74VHC595-Q100 operates with CMOS input level
 - ◆ The 74VHCT595-Q100 operates with TTL input level
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pf, R = 0 Ω)
- Multiple package options

3. Applications

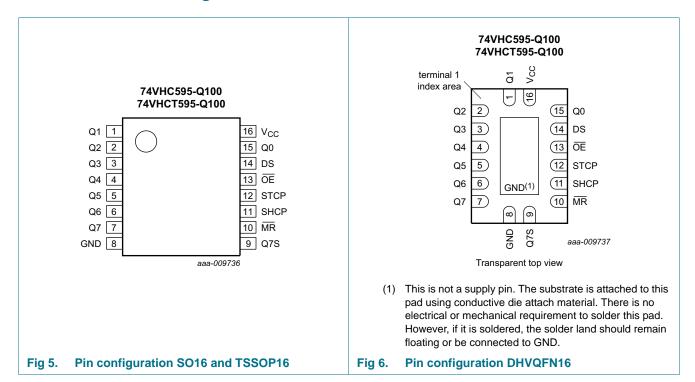

- Serial-to-parallel data conversion
- Remote control holding register


4. Ordering information


Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74VHC595D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body	SOT109-1
74VHCT595D-Q100			width 3.9 mm	
74VHC595PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16	SOT403-1
74VHCT595PW-Q100			leads; body width 4.4 mm	
74VHC595BQ-Q100	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal	SOT763-1
74VHCT595BQ-Q100			enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	

5. Functional diagram



Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q1	1	parallel data output 1
Q2	2	parallel data output 2
Q3	3	parallel data output 3
Q4	4	parallel data output 4
Q5	5	parallel data output 5
Q6	6	parallel data output 6
Q7	7	parallel data output 7
GND	8	ground (0 V)
Q7S	9	serial data output
MR	10	master reset (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
OE	13	output enable input (active LOW)
DS	14	serial data input
Q0	15	parallel data output 0
V _{CC}	16	supply voltage

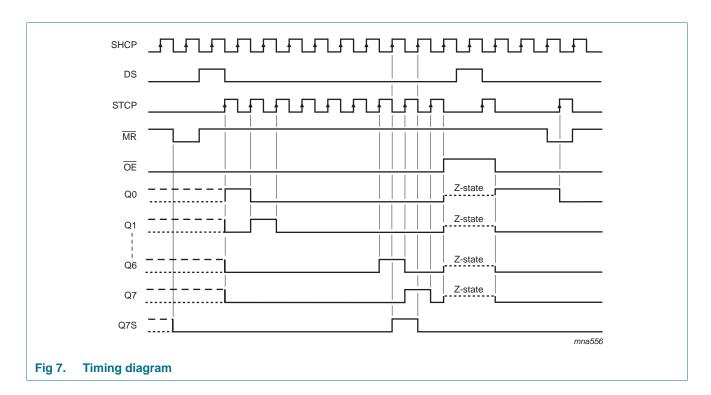
74VHC VHCT595 Q100

7. Functional description

Table 3. Function table[1]

Contro	ol			Input	Outpu	t	Function
SHCP	STCP	OE	MR	DS	Q7S	Qn	
Χ	Χ	L	L	X	L	NC	a LOW-level on MR only affects the shift registers
Χ	↑	L	L	X	L	L	empty shift register loaded into storage register
Χ	Χ	Н	L	X	L	Z	shift register clear; parallel outputs in high-impedance OFF-state
↑	X	L	Н	Н	Q6S	NC	logic HIGH-level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q6S) appears on the serial output (Q7S).
Χ	\uparrow	L	Н	X	NC	QnS	contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages
\uparrow	↑	L	Н	X	Q6S	QnS	contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the parallel output stages

[1] H = HIGH voltage state;


L = LOW voltage state;

↑ = LOW-to-HIGH transition;

X = don't care;

NC = no change;

Z = high-impedance OFF-state.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
V_{I}	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V}$	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	V_O < -0.5 V or V_O > V_{CC} + 0.5 V	<u>[1]</u> –20	+20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I_{GND}	ground current		−75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] -	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 5. Operating conditions

Parameter	Conditions	Min	Тур	Max	Unit
Q100					
supply voltage		2.0	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V_{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V
5-Q100					
supply voltage		4.5	5.0	5.5	V
input voltage		0	-	5.5	V
output voltage		0	-	V_{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	20	ns/V
	supply voltage input voltage output voltage ambient temperature input transition rise and fall rate 5-Q100 supply voltage input voltage output voltage ambient temperature		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q100 supply voltage 2.0 5.0 input voltage 0 - output voltage 0 - ambient temperature -40 +25 input transition rise and fall rate V _{CC} = 3.0 V to 3.6 V - - V _{CC} = 4.5 V to 5.5 V - - 5-Q100 4.5 5.0 input voltage 0 - output voltage 0 - ambient temperature -40 +25	Q100 supply voltage 2.0 5.0 5.5 input voltage 0 - 5.5 output voltage 0 - V_{CC} ambient temperature -40 +25 +125 input transition rise and fall rate $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ - - 100 $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ - - 20 5-Q100 4.5 5.0 5.5 input voltage 4.5 5.0 5.5 output voltage 0 - 5.5 output voltage 0 - V_{CC} ambient temperature -40 +25 +125

^[2] For SO16 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K. For TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K. For DHVQFN16 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C	;	-40 °C	to +85 °C	-40 °C	to +125 °C	Uni
			Min	Тур	Max	Min	Max	Min	Max	
74VHC5	95-Q100	'	·		,					
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_{O} = -50 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \mu A; V_{CC} = 3.0 V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_{O} = -50 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
l _l	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.25	-	±2.5	-	±10	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μА
Cı	input capacitance		-	3	10	-	10	-	10	pF
74VHCT	595-Q100									
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	2.0	-	2.0	-	٧
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
011	output voltage	$I_{O} = -50 \mu\text{A}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -8.0 \text{ mA}$	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
OL.	output voltage	$I_{O} = 50 \mu\text{A}$	-	0	0.1	-	0.1	-	0.1	V
		.0 00 μ		-	J.,		٠		٠	•

74VHC_VHCT595_Q100

All information provided in this document is subject to legal disclaimers.

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C	;	–40 °C t	o +85 °C	-40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
l _l	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μΑ
I _{OZ}	OFF-state output current	$\begin{split} &V_{I}=V_{IH} \text{ or } V_{IL};\\ &V_{O}=V_{CC} \text{ or GND per input pin;}\\ &\text{other inputs at } V_{CC} \text{ or GND;}\\ &I_{O}=0 \text{ A; } V_{CC}=5.5 \text{ V} \end{split}$	-	-	±0.25	-	±2.5	-	±10	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μΑ
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cı	input capacitance		-	3	10	-	10	-	10	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 13.

Symbol	Parameter	Conditions			25 °C		-40 °C 1	to +85 °C	-40 °C 1	Unit	
				Min	Typ[1]	Max	Min	Max	Min	Max	1
74VHC5	95-Q100						'		ı		
t _{pd}	propagation	SHCP to Q7S; see Figure 8	[2]								
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		C _L = 15 pF		-	5.7	13.0	1.0	15.0	1.0	16.5	ns
		C _L = 50 pF		-	7.7	16.5	1.0	18.5	1.0	20.1	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		$C_L = 15 pF$		-	4.0	8.2	1.0	9.4	1.0	10.5	ns
		$C_L = 50 pF$		-	5.4	10.0	1.0	11.4	1.0	12.5	ns
		STCP to Qn; see Figure 9	[2]								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		$C_L = 15 pF$		-	5.9	11.9	1.0	13.5	1.0	15.0	ns
		$C_L = 50 pF$		-	7.7	15.4	1.0	17.0	1.0	18.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		$C_L = 15 pF$		-	4.2	7.4	1.0	8.5	1.0	9.5	ns
		$C_L = 50 pF$		-	5.5	9.0	1.0	10.5	1.0	11.5	ns
		MR to Q7S; see Figure 11	[3]								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		$C_L = 15 pF$		-	5.9	12.8	1.0	13.7	1.0	15.0	ns
		$C_L = 50 pF$		-	7.4	16.3	1.0	17.2	1.0	18.7	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		$C_L = 15 pF$		-	4.4	8.0	1.0	9.1	1.0	10.0	ns
		C _L = 50 pF		-	5.6	10.0	1.0	11.1	1.0	12.0	ns

74VHC_VHCT595_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 13.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
t _{en}	enable time	OE to Qn; see Figure 12	[4]		'						
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		C _L = 15 pF		-	5.6	11.5	1.0	13.5	1.0	15.0	ns
		$C_L = 50 pF$		-	7.4	15.0	1.0	17.0	1.0	18.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		C _L = 15 pF		-	4.0	8.6	1.0	10.0	1.0	11.0	ns
		C _L = 50 pF		-	5.3	10.6	1.0	12.0	1.0	13.0	ns
t _{dis}	disable time	OE to Qn; see Figure 12	[5]								
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$									
		C _L = 15 pF		-	5.4	11.0	1.0	13.0	1.0	14.5	ns
		C _L = 50 pF		-	8.7	15.7	1.0	16.2	1.0	17.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$									
		C _L = 15 pF		-	3.8	8.0	1.0	9.5	1.0	10.5	ns
		C _L = 50 pF		-	5.8	10.3	1.0	11.0	1.0	12.0	ns
f _{max}	maximum frequency	SHCP or STCP; see Figure 8 and 9									
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		80	125	-	60	-	40	-	MHz
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		130	170	-	110	-	90	-	MHz
t _W	pulse width	SHCP HIGH or LOW; see Figure 8									
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
		STCP HIGH or LOW; see Figure 9									
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
		MR LOW; see Figure 11									
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	DS to SHCP; see Figure 9									
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		3.5	-	-	3.5	-	3.5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		3.0	-	-	3.0	-	3.0	-	ns
		SHCP to STCP; see Figure 10									
		V _{CC} = 3.0 V to 3.6 V		8.5	-	-	8.5	-	8.5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		5.0	-	-	5.0	-	5.0	-	ns
t _h	hold time	DS to SHCP; see Figure 10									
		V _{CC} = 3.0 V to 3.6 V		1.5	-	-	1.5	-	1.5	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		2.0	-	-	2.0	-	2.0	-	ns

74VHC_VHCT595_Q100

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 13.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
t_{rec}	recovery	MR to SHCP; see Figure 11					•				
	time	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		3.0	-	-	3.0	-	3.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		2.5	-	-	2.5	-	2.5	-	ns
C_{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$	[6] [7]	-	180	-	-	-	-	-	pF
74VHCT	595-Q100; V _C	_{CC} = 4.5 V to 5.5 V									
t _{pd}		SHCP to Q7S; see Figure 8	[2]								
	delay	C _L = 15 pF		-	3.8	8.2	1.0	9.0	1.0	10.0	ns
		$C_L = 50 pF$		-	5.2	10.0	1.0	11.0	1.0	12.0	ns
		STCP to Qn; see Figure 9	[2]								
		$C_L = 15 pF$		-	4.0	7.4	1.0	8.5	1.0	9.5	ns
		$C_L = 50 pF$		-	5.3	9.0	1.0	10.5	1.0	11.5	ns
		MR to Q7S; see Figure 11	[3]								
		$C_L = 15 pF$		-	4.6	8.2	1.0	9.5	1.0	10.5	ns
		$C_L = 50 pF$		-	5.8	10.5	1.0	11.5	1.0	12.5	ns
t_{en}	enable time	OE to Qn; see Figure 12	<u>[4]</u>								
		C _L = 15 pF		-	4.8	9.0	1.0	11.0	1.0	12.0	ns
		C _L = 50 pF		-	6.2	11.6	1.0	13.0	1.0	14.5	ns
t_{dis}	disable time	OE to Qn; see Figure 12	<u>[5]</u>								
		C _L = 15 pF		-	3.6	6.9	1.0	8.0	1.0	9.0	ns
		$C_L = 50 pF$		-	5.8	10.3	1.0	11.0	1.0	12.0	ns
f _{max}	maximum frequency	SHCP and STCP; see Figure 8 and 9		130	170	-	110	-	90	-	MHz
t_{W}	pulse width	SHCP HIGH or LOW; see Figure 8		5.0	-	-	5.0	-	5.0	-	ns
		STCP HIGH or LOW; see Figure 9		5.0	-	-	5.0	-	5.0	-	ns
		MR LOW; see Figure 11		5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	DS to SHCP; see Figure 9		3.0	-	-	3.0	-	3.0	-	ns
		SHCP to STCP; see Figure 10		5.0	-	-	5.0	-	5.0	-	ns
t _h	hold time	DS to SHCP; see Figure 10		2.0	-	-	2.0	-	2.0	-	ns
t _{rec}	recovery time	MR to SHCP; see Figure 11		3.0	-	-	3.0	-	3.0	-	ns

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit, see Figure 13.

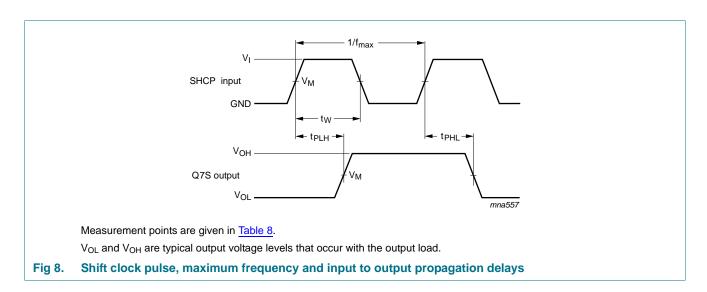
Symbol	Parameter	Conditions		25 °C			-40 °C 1	to +85 °C	-40 °C to +125 °C		Unit
			M	in Typ	<u>[1]</u>	Max	Min	Max	Min	Max	
C_{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}$; $V_i = \text{GND to } V_{CC}$	<u>]</u> -	- 19	00	-	-	-	-	-	pF

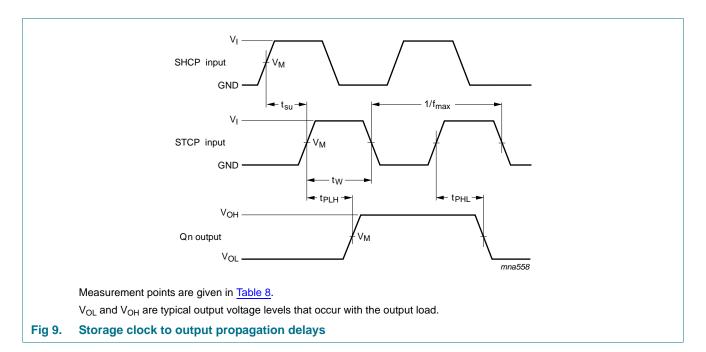
- [1] Typical values are measured at nominal supply voltage.
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [3] t_{pd} is the same as t_{PHL} only.
- [4] t_{en} is the same as t_{PZL} and t_{PZH} .
- [5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [6] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

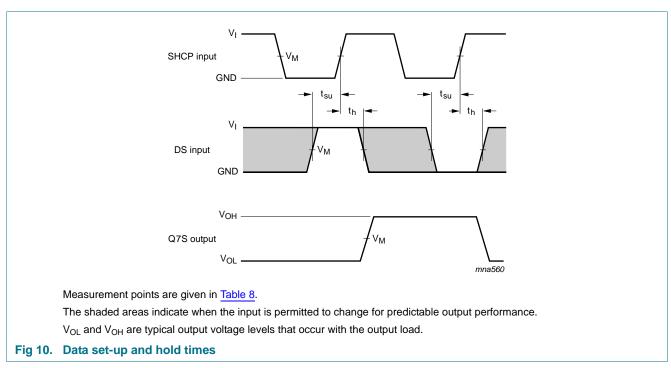
$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

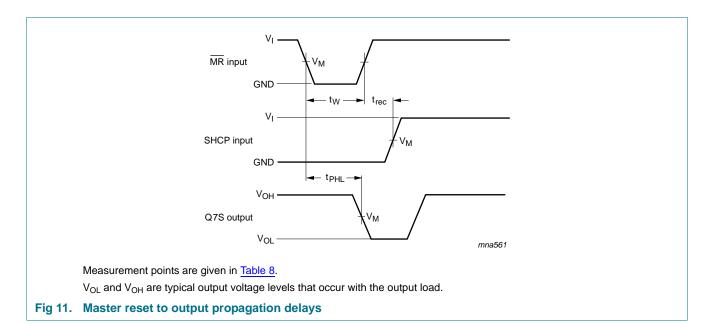
f_i = input frequency in MHz;

f_o = output frequency in MHz;


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;


C_L = output load capacitance in pF;


 V_{CC} = supply voltage in V.


[7] All 9 outputs switching.

12. Waveforms

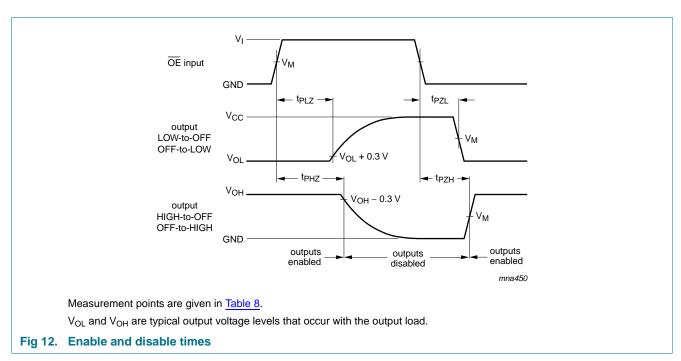
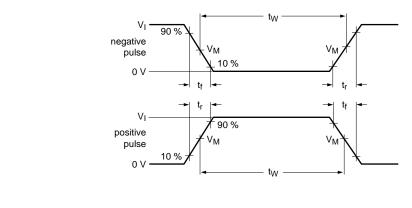
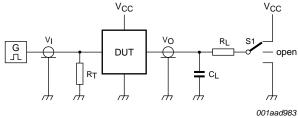




Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74VHC595-Q100	0.5V _{CC}	0.5V _{CC}
74VHCT595-Q100	1.5 V	0.5V _{CC}

Test data is given in Table 9.

Definitions for test circuit:

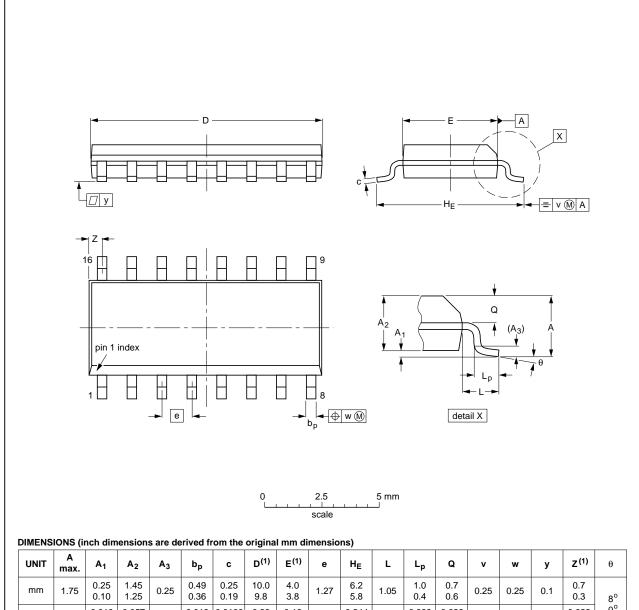
 C_L = load capacitance including jig and probe capacitance.

 R_L = load resistance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

S1 = test selection switch.

Fig 13. Load circuitry for switching times


Table 9. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74VHC595-Q100	V_{CC}	\leq 3.0 ns	15 pF, 50 pF	1 k Ω	open	GND	V_{CC}	
74VHCT595-Q100	3.0 V	\leq 3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

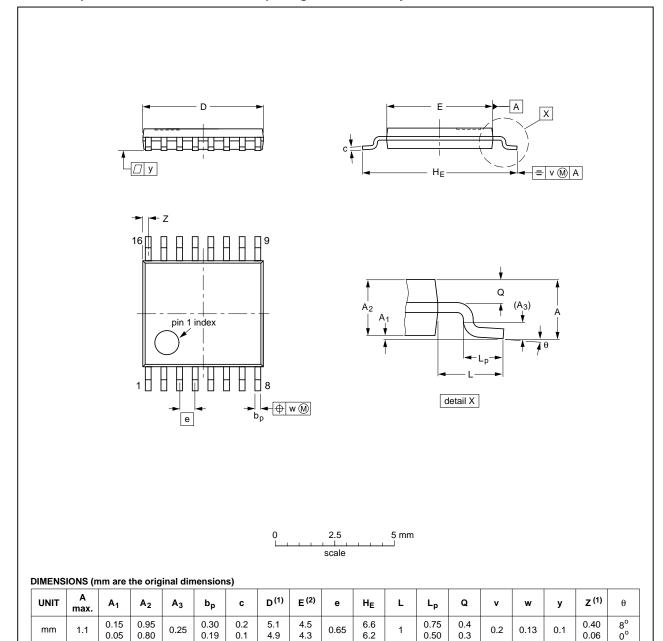
SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	l	0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19
			•			


Fig 14. Package outline SOT109-1 (SO16)

74VHC_VHCT595_Q100

All information provided in this document is subject to legal disclaimers.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE			EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	DEC JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				99-12-27 03-02-18	

Fig 15. Package outline SOT403-1 (TSSOP16)

74VHC_VHCT595_Q100

All information provided in this document is subject to legal disclaimers.

Nexperia B.V. 2017. All rights reserved

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

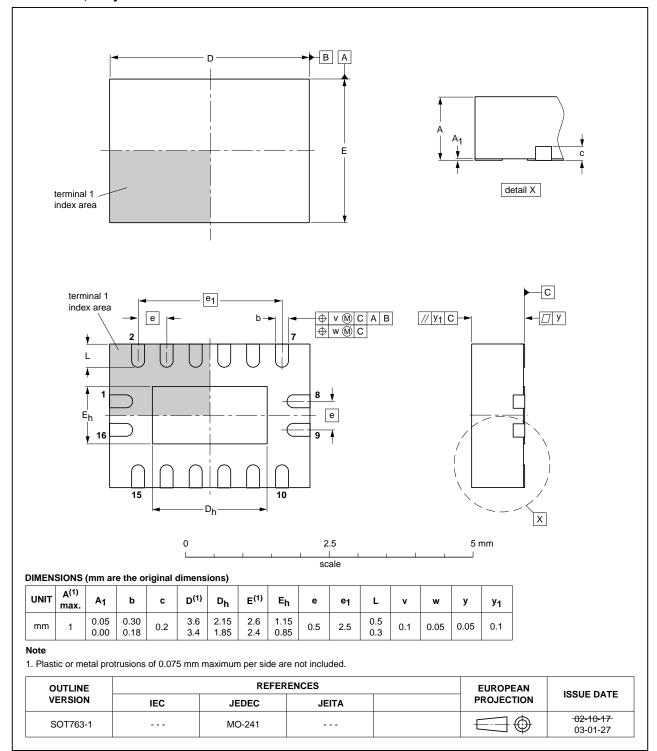


Fig 16. Package outline SOT763-1 (DHVQFN16)

74VHC_VHCT595_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

14. Abbreviations

Table 10. Abbreviations

Acronym	Description				
CMOS	Complementary Metal-Oxide Semiconductor				
ESD	ElectroStatic Discharge				
НВМ	Human Body Model				
MIL	Military				
MM	Machine Model				
TTL	Transistor-Transistor Logic				

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74VHC_VHCT595_Q100 v.1	20131115	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

74VHC_VHCT595_Q100

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com