8SLVP1212

Low Phase Noise, 1-to-12, 3.3V, 2.5V RENESAS LVPECL Output Fanout Buffer

DATASHEET

Description

The 8SLVP1212 is a high-performance, 12 output differential LVPECL fanout buffer. The device is designed for the fanout of high-frequency, very low additive phase-noise clock and data signals. The 8SLVP1212 is characterized to operate from a 3.3V and 2.5V power supply. Guaranteed output-to-output and part-to-part skew characteristics make the 8SLVP1212 ideal for those clock distribution applications demanding well-defined performance and repeatability. Two selectable differential inputs and twelve low skew outputs are available. The integrated bias voltage generators enables easy interfacing of single-ended signals to the device inputs. The device is optimized for low power consumption and low additive phase noise.

Block Diagram

Features

- **•** Twelve low skew, low additive jitter LVPECL outputs
- **•** Two selectable, differential clock inputs
- **•** Differential pairs can accept the following differential input levels: LVDS, LVPECL, CML
- **•** Maximum input clock frequency: 2GHz
- **•** LVCMOS interface levels for the control input (input select)
- **•** Output skew: 33ps (maximum)
- **•** Propagation delay: 550ps (maximum)
- Low additive phase jitter, RMS at f_{REF} = 156.25MHz, V_{PP} = 1V, 12kHz–20MHz: 60fs (maximum)
- **•** Full 3.3V and 2.5V supply voltage
- Device current consumption (I_{FF}): 131mA (maximum)
- **•** Available in Lead-free (RoHS 6), 40-VFQFPN package
- **•** -40°C to +85°C ambient operating temperature
- **•** Differential PCLK0, nPCLK0 and PCLK1, nPCLK1 pairs can also accept single-ended LVCMOS levels. See Applications section Wiring the Differential Input Levels to Accept Single-ended Levels (Figure 1A and Figure 1B)
- **•** Supports PCI Express Gen1–5

Pin Assignment

Table 1. Pin Descriptions

NOTE: *Pulldown* and *Pullup* refers to an internal input resistors. See Table 2, *Pin Characteristics,* for typical values.

Table 2. Pin Characteristics

Function Table

Table 3. SEL Input Section Function Table

NOTE: SEL is an asynchronous control.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

NOTE 1: According to JEDEC/JESD 22-A114/22-C101. ESD ratings are target specifications.

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°C

Table 4B. Power Supply DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°C

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Table 4D. LVPECL DC Characteristics, $V_{CC} = 3.3V + 5\%$, $V_{CC} = 0V$, $T_A = -40\degree$ C to 85 \degree C.

NOTE: Input and output parameters vary 1:1 with V_{CC} .

NOTE 1: V_{REF} is for 3.3V±5% V_{CC} only. To obtain a bias voltage for V_{CC} = 2.5V±5% application, an external voltage supply is recommended. NOTE 2: Outputs terminated with 50 Ω to V_{CC} – 2V.

Table 4E. LVPECL DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	PCLK0, nPCLK0 PCLK1, nPCLK1	V_{CC} = V_{IN} = 2.625V			150	μA
I_{IL}	Input Low Current	PCLK0, PCLK1	V_{CC} = 2.625V, V_{IN} = 0V	-10			μA
		nPCLK0, nPCLK1	V_{CC} = 2.625V, V_{IN} = 0V	-150			μA
V_{REF}	Reference Voltage for Input Bias: NOTE 1		I_{REF} = 2mA	$V_{\rm CC}$ – 1.6	$V_{\rm CC}$ – 1.26	$V_{\rm CC}$ – 1.1	V
V_{OH}	Output High Voltage; NOTE 2			$V_{\rm CC}$ – 1.26	$V_{\rm CC}$ – 0.84	$V_{\rm CC}$ – 0.6	V
V_{OL}	Output Low Voltage; NOTE 2			$V_{\rm CC}$ – 1.7	$V_{\rm CC}$ – 1.47	$V_{\rm CC}$ – 1.28	V

NOTE: Input and output parameters vary 1:1 with V_{CC} .

NOTE 1: V_{REF} is for 3.3V±5% V_{CC} only. To obtain a bias voltage for V_{CC} = 2.5V±5% application, an external voltage supply is recommended. NOTE 2: Outputs terminated with 50Ω to V_{CC} – 2V.

AC Electrical Characteristics

Table 5. AC Electrical Characteristics, V_{CC} = 3.3V \pm 5% or 2.5V \pm 5%, V_{EE} = 0V, T_A = -40°C to 85°C

NOTES on next page.

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crosspoint to the differential output crosspoint.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoints. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints.

NOTE 5: V_{II} should not be less than -0.3V. V_{IH} should not be higher than V_{CC} .

NOTE 6: Common mode input voltage is defined at the crosspoint.

NOTE 7: For single-ended LVCMOS input applications, please refer to the Applications Information, Wiring the Differential Input to accept single-ended levels, Figures 1A and 1B.

Additive Phase Jitter (3.3V at 122.88MHz)

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise.* This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

Offset from Carrier Frequency (Hz)

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Measured using a Wenzel 122.88MHz Oscillator as the input source.

Additive Phase Jitter (3.3V at 156.25MHz)

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise.* This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Measured using a Wenzel 156.25MHz Oscillator as the input source.

Parameter Measurement Information

3.3V LVPECL Output Load AC Test Circuit

Differential Input Level

Part-to-Part Skew

2.5V LVPECL Output Load AC Test Circuit

Parameter Measurement Information, continued

Propagation Delay

MUX Isolation

Output Voltage Swing

Applications Information

Wiring the Differential Input to Accept Single-Ended Levels

The 8SLVP1212 inputs can be interfaced to LVPECL, LVDS, CML or LVCMOS drivers. *Figure 1A* illustrates how to dc couple a single LVCMOS input to the 8SLVP1212. The value of the series resistance RS is calculated as the difference between the transmission line impedance and the driver output impedance. This resistor should be placed close to the LVCMOS driver. To avoid cross-coupling of single-ended LVCMOS signals, apply the LVCMOS signals to no more than one PCLK input.

A practical method to implement Vth is shown in *Figure 1B* below. The reference voltage Vth = V1 = $V_{CC}/2$, is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible.

The ratio of R1 and R2 might need to be adjusted to position the V1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and V_{CC} = 3.3V, R1 and R2 value should be adjusted to set V1 at 1.25V. The values below apply when both the to set virial 1.25v. The values below apply when bout the
single-ended swing and V_{CC} are at the same voltage.
COLLIDAGE

When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced, particularly if both input references are LVCMOS to minimize cross talk. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{II} cannot be less than -0.3V and V_{H} cannot be more than V_{CC} + 0.3V.

Figure 1B shows a way to attenuate the PCLK input level by a factor of two as well as matching the transmission line between the LVCMOS driver and the IDT8SLVP1212I at both the source and the

8SLVP1212

load. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. R3 and R4 in parallel should equal the transmission line impedance; for most 50Ω applications, R3 and R4 will be 100 Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver.

Though some of the recommended components of Figure 1B might not be used, the pads should be placed in the layout so that they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1B. Alternative DC Coupling a Single LVCMOS Input to the 8SLVP1212

Recommendations for Unused Input and Output Pins

Inputs:

PCLKx/nPCLKx Inputs

For applications not requiring the use of a differential input, both the PCLKx and nPCLKx pins can be left floating. Though not required, but for additional protection, a 1k Ω resistor can be tied from PCLKx to ground. For applications

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

3.3V LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, CML and other differential signals. Both differential outputs must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2E* show interface examples for the PCLK/ nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2A. PCLK/nPCLK Input Driven by a CML Driver

Figure 2C. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

Figure 2B. PCLK/nPCLK Input Driven by a Built-In Pullup CML Driver

Figure 2D. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

2.5V LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, CML and other differential signals. Both differential outputs must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3E* show interface examples for the PCLK/ nPCLK input driven by the most common driver types.

Figure 3A. PCLK/nPCLK Input Driven by a CML Driver

Figure 3C. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver

The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 3B. PCLK/nPCLK Input Driven by a Built-In Pullup CML Driver

Figure 3D. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver with AC Couple

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4.* The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

Figure 5A. 3.3V LVPECL Output Termination Figure 5B. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 5A and 5B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

 $V_{\text{CC}} = 2.5V$

 $V_{\text{CC}} = 2.5V$ 2.5V

50

50

Figure 6C. 2.5V LVPECL Driver Termination Example

Termination for 2.5V LVPECL Outputs

Figure 6A and *Figure 6B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

2.5V

R3 250

R1 250 2.5V

+

–

Figure 6B. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 6B can be eliminated and the termination is shown in *Figure 6C.*

Termination for Q, nQ LVPECL Outputs AC-Coupled into HCSL-Receiver

Figure 7. LVPECL Output AC-Coupled into HCSL Receiver

Table 6. Termination Resistors

Table 7. HCSL Receiver Voltage Bias

Power Considerations

This section provides information on power dissipation and junction temperature for the 8SLVP1212. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8SLVP1212 is the sum of the core power plus the power dissipation in the load(s). The following is the power dissipation for V_{CC} = 3.3V + 5% = 3.465V, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation in the load.

- Power (core)_{MAX} = $V_{\text{CC_MAX}}$ * $I_{\text{EE_MAX}}$ = 3.465V * 131mA = 453.9mW
- Power (outputs)_{MAX} = 35.2mW/Loaded Output pair If all outputs are loaded, the total power is 12 * 35.2mW = **422.4mW**

Total Power_{_MAX} (3.465V, with all outputs switching) = 453.9 mW + 422.4 mW = 876.3 mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 38.1°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

85°C + 0.876W $*$ 38.1°C/W = 118.4°C. This is below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 8. Thermal Resistance θ_{JA} for a 40-Lead VFQFN

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

The LVPECL output driver circuit and termination are shown in *Figure 8.*

Figure 8. LVPECL Driver Circuit and Termination

To calculate power dissipation per output pair due to loading, use the following equations which assume a 50 Ω load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, $V_{\text{OUT}} = V_{\text{OH MAX}} = V_{\text{CC MAX}} 0.6V$ $(V_{\text{CC_MAX}} - V_{\text{OH_MAX}}) = 0.6V$
- For logic low, $V_{\text{OUT}} = V_{\text{OL_MAX}} = V_{\text{CC_MAX}} 1.28V$ $(V_{CC~MAX} - V_{OL~MAX}) = 1.28V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

 $Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L]^* (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L]^* (V_{CC_MAX} - V_{OH_MAX}) =$ $[(2V – 0.6V)/50 Ω] * 0.6V = 16.8mW$

 $Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L]^* (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L]^* (V_{CC_MAX} - V_{OL_MAX}) =$ $[(2V – 1.28V)/50 Ω] * 1.28V = 18.4mW$

Total Power Dissipation per output pair = Pd_H + Pd_L = **35.2mW**

Reliability Information

Table 9. θ_{JA} vs. Air Flow Table for a 40-VFQFPN

Transistor Count

The transistor count for the 8SLVP1212 is: 7748

Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see [Ordering Information](#page-20-0) for POD links). The package information is the most current data available and is subject to change without revision of this document.

Ordering Information

Table 10. Ordering Information

Table 11. Pin 1 Orientation in Tape and Reel Packaging

Revision History Sheet

Package Outline Drawing

Package Code:NLG40P1 40-VFQFPN 6.0 x 6.0 x 0.9 mm Body, 0.5mm Pitch PSC-4115-01, Revision: 01, Date Created: Nov 10, 2022

