

MCP4725 12-Bit DAC Tutorial

Created by lady ada

https://learn.adafruit.com/mcp4725-12-bit-dac-tutorial

Last updated on 2022-12-01 01:52:09 PM EST

©Adafruit Industries Page 1 of 21

3

6

7

11

13

19

19

Table of Contents

Overview

Pinouts

• Power Pins

• I2C Logic Pins

• Other Pins

Arduino Wiring

Arduino Code

• Library Installation

• Triangle Wave Example

• Increasing the speed

• Using the library

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of MCP4725 Library

• Python Installation of MCP4725 Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

Downloads

• Files

• Schematic & Fabrication Print STEMMA QT Version

• Schematic & Fabrication Print Original Version

©Adafruit Industries Page 2 of 21

Overview

Your microcontroller probably has an ADC (analog -> digital converter) but does it

have a DAC (digital -> analog converter)??? Now it can! This breakout board features

the easy-to-use MCP4725 12-bit DAC. Control it via I2C and send it the value you want

it to output, and the VOUT pin will have it. Great for audio / analog projects, such as

when you can't use PWM but need a sine wave or adjustable bias point.

We break out the ADDR/A0 pin so you can connect two of these DACs on one I2C

bus, just tie that pin of one high (or close the jumper on the back) to keep it from

conflicting. Also included is a 6-pin header, for use in a breadboard. Works with both

3.3V or 5V logic.

©Adafruit Industries Page 3 of 21

Some nice extras with this chip: for chips that have 3.4Mbps Fast Mode I2C (Arduino's

don't) you can update the Vout at ~200 KHz. There's an EEPROM so if you write the

output voltage, you can 'store it' so if the device is power cycled it will restore that

voltage. The output voltage is rail-to-rail and proportional to the power pin so if you

run it from 3.3V, the output range is 0-3.3V. If you run it from 5V the output range is

0-5V.

We have an easy-to-use Arduino and CircuitPython/Python library and tutorial with a

triangle-wave and sine-wave output example () that can be used with just about any

microcontroller or microcomputer with I2C host.

©Adafruit Industries Page 4 of 21

http://learn.adafruit.com/mcp4725-12-bit-dac-tutorial
http://learn.adafruit.com/mcp4725-12-bit-dac-tutorial

Comes with a bit of 0.1" standard header in case you want to use it with a breadboard

or perfboard. Four mounting holes for easy attachment. There's an optional 3.5mm

terminal block spot on the PCB - we don't include a 3.5mm terminal block but they're

both common and stocked in the shop () - that you can solder in place if you like.

To get you going fast, we spun up a custom-made PCB in the STEMMA QT form

factor (), making it easy to interface with. The STEMMA QT connectors () on either side

are compatible with the SparkFun Qwiic () I2C connectors. This allows you to make

solderless connections between your development board and the MCP4725 or to

chain it with a wide range of other sensors and accessories using a compatible cable (

).

QT Cable is not included, but we have a variety in the shop ().

There are two versions of this board - the STEMMA QT version shown above, and

the original header-only version shown below. Code works the same on both!

©Adafruit Industries Page 5 of 21

https://www.adafruit.com/product/724
https://www.adafruit.com/product/724
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch

Pinouts

The default I2C address is 0x62.

©Adafruit Industries Page 6 of 21

Power Pins

The sensor on the breakout requires between a 2.7V and 5.5V, and can be easily

used with most microcontrollers from an Arduino to a Feather or something else.

VIN - this is the power pin. To power the board, give it the same power as the

logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic Pins

SCL - I2C clock pin, connect to your microcontroller's I2C clock line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

SDA -I2C data pin, connect to your microcontroller's I2C data line. This pin is

level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

STEMMA QT () - These connectors allow you to connect to development boards

with STEMMA QT connectors, or to other things, with various associated

accessories ().

Other Pins

A0 pin / ADDR jumper - Tie A0 high, or close the jumper on the back to change

the I2C address to 0x63, so you can connect two MCP4725 breakouts on the

same I2C bus.

VOUT - This is the output pin for the I2C signal.

Optional terminal block - There is an optional 3.5mm terminal block spot on the

board that breaks out VOUT and GND. You can solder a terminal block on if you

like. The terminal block does not come with the board, but they are common and

you can purchase one from the Adafruit shop ().

Arduino Wiring

Wiring up the MCP4725 breakout PCB is super easy. To start, we'll attach the

breakout headers so we can plug it into a breadboard.

Break off a strip of 6-pins of 0.1" male header and stick the LONG pins down into a

breadboard

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 21

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/product/724

Break off a strip of 6-pins of 0.1" male

header and stick the LONG pins down into

a breadboard

Place the breakout board on top so the

short ends of the header stick up through

the pads

©Adafruit Industries Page 8 of 21

https://learn.adafruit.com//assets/2005
https://learn.adafruit.com//assets/2005
https://learn.adafruit.com//assets/2006
https://learn.adafruit.com//assets/2006

Solder each pin using a soldering iron and

solder, to make solid connection on each

pin.

This part is not optional! You cannot 'press

fit' the header on, it must be attached

permanently

Now that the header is attached, we can wire it up. We'll demonstrate using an

Arduino

©Adafruit Industries Page 9 of 21

https://learn.adafruit.com//assets/2007
https://learn.adafruit.com//assets/2007
https://learn.adafruit.com//assets/2009
https://learn.adafruit.com//assets/2009

Breakout VDD (power) to 5V if your

microcontroller is 5V logic, or to 3V if your

micro is 3V logic (red wire on STEMMA QT

version)

Breakout GND to microcontroller GND

(black wire on STEMMA QT version)

Breakout SDA to microcontroller I2C Data

(blue wire on STEMMA QT version) (on the

Uno, this is A4 on the Mega it is 20 and on

the Leonardo digital 2)

Breakout SCL to microcontroller I2C Clock

(yellow wire on STEMMA QT version) (on

the Uno, this is A5 on the Mega it is 21 and

on the Leonardo digital 3)

There's two other pins remaining.

A0 allow you to change the I2C address. By default (nothing attached to A0) the

address is hex 0x62. If A0 is connected to VDD the address is 0x63. This lets

you have two DAC boards connected to the same SDA/SCL I2C bus pins.

VOUT is the voltage out from the DAC! The voltage will range from 0V (when the

DAC value is 0) to VDD (when the DAC 'value' is the max 12-bit number: 0xFFF)

•

•

©Adafruit Industries Page 10 of 21

https://learn.adafruit.com//assets/108833
https://learn.adafruit.com//assets/108833
https://learn.adafruit.com//assets/108834
https://learn.adafruit.com//assets/108834
https://learn.adafruit.com//assets/108835
https://learn.adafruit.com//assets/108835

Arduino Code

Library Installation

Once wired up, to start using the MCP4725, you'll need to install the Adafruit_MCP47

25 library (). The library is available through the Arduino library manager so we

recommend taking that approach.

From the Arduino IDE, open up the Library Manager:

Click the Manage Libraries ... menu item, search for Adafruit MCP4725, and select

the Adafruit MCP4725 library and click Install:

Next up, download the Adafruit MCP4725 library. This library does all of the

interfacing, so you can just "set and forget" the DAC output. It also has some

examples to get you started

The library is available on GitHub (). You can download it by clicking the button below.

Download Adafruit_MCP4725

Library

©Adafruit Industries Page 11 of 21

https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Adafruit_MCP4725/archive/master.zip

Triangle Wave Example

Open up the File→Examples→Adafruit_MCP4725→trianglewave sketch and upload it

to the Arduino. Then connect your oscilloscope (or an LED + resistor if you don't have

access to an oscilloscope)

We also have a sine wave version showing how to use a lookup table to create a

more complex waveform.

Using the library

The library is very simple, so you can adapt it very quickly.

First, be sure to call begin(addr) where addr is the i2c address (default is 0x62, if A0

is connected to VCC its 0x63). Then call setVoltage(value, storeflag) to set the DAC

output. value should range from 0 to 0x0FFF. storeflag indicates to the DAC whether

it should store the value in EEPROM so that next time it starts, it'll have that same

value output. You shouldn't set the flag to true unless you require it as it will take

longer to do, and you could wear out the EEPROM if you write it over 20,000 times.

Increasing the speed

One thing thats a little annoying about the Arduino Wire library in this case is it is set

for 100KHz transfer speed. In the MCP4725 library we update the speed to 400KHz

by setting the TWBR

©Adafruit Industries Page 12 of 21

TWBR = 12; // 400 khz

You can speed this up a bit more, if you'd like, check the ATmega328 datasheet for

how to calculate the TWBR register.

Python & CircuitPython

It's easy to use the MCP4725 digital to analog converter with Python and

CircuitPython, and the Adafruit CircuitPython MCP4725 () module. This module allows

you to easily write Python code that controls the output voltage from the DAC.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a MCP4725 to your board exactly as shown on the previous pages for

Arduino using an I2C connection. Here's an example of wiring a Feather M0 to the

sensor with I2C:

©Adafruit Industries Page 13 of 21

https://github.com/adafruit/Adafruit_CircuitPython_MCP4725
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to sensor VIN (red wire on

STEMMA QT version)

Board GND to sensor GND (black wire on

STEMMA QT version)

Board SCL to sensor SCL (yellow wire on

STEMMA QT version

Board SDA to sensor SDA (blue wire on

STEMMA QT version

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with I2C:

©Adafruit Industries Page 14 of 21

https://learn.adafruit.com//assets/108836
https://learn.adafruit.com//assets/108836
https://learn.adafruit.com//assets/108837
https://learn.adafruit.com//assets/108837
https://learn.adafruit.com//assets/108838
https://learn.adafruit.com//assets/108838
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor VIN (red wire on STEMMA

QT version)

Pi GND to sensor GND (black wire on

STEMMA QT version)

Pi SCL to sensor SCL (yellow wire on

STEMMA QT version)

Pi SDA to sensor SDA (blue wire on

STEMMA QT version)

CircuitPython Installation of MCP4725

Library

Next you'll need to install the Adafruit CircuitPython MCP4725 () library on your

CircuitPython board. Make sure you are running the latest version of Adafruit

CircuitPython () for your board before starting..

©Adafruit Industries Page 15 of 21

https://learn.adafruit.com//assets/108842
https://learn.adafruit.com//assets/108842
https://learn.adafruit.com//assets/108843
https://learn.adafruit.com//assets/108843
https://learn.adafruit.com//assets/108844
https://learn.adafruit.com//assets/108844
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases

You'll need to install the necessary libraries to use the hardware--carefully follow the

steps to find and install these libraries from Adafruit's CircuitPython library bundle ().

For example the Circuit Playground Express guide has a great page on how to install

the library bundle () for both express and non-express boards.

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries from the bundle:

adafruit_mcp4725.mpy

You can also download the adafruit_mcp4725.mpy from its releases page on

Github ().

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_mcp4725.mpy file copied over.

Next connect to the board's serial REPL ()so you are at the CircuitPython >>> prompt.

Python Installation of MCP4725 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-mcp4725

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the DAC we'll initialize it and set the output voltage from

the board's Python REPL. Run the following code to import the necessary modules

and initialize the I2C connection with the sensor:

•

•

©Adafruit Industries Page 16 of 21

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/adafruit-circuit-playground-express/installing-libraries
file:///home/adafruit-circuit-playground-express/installing-libraries
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725/releases
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725/releases
file:///home/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

import board

import busio

import adafruit_mcp4725

i2c = busio.I2C(board.SCL, board.SDA)

dac = adafruit_mcp4725.MCP4725(i2c)

Now you can set the output voltage just like controlling a DAC with CircuitPython's

built-in AnalogOut class and the value property. Simply set this to any 16-bit value

(0-65535) and the output of the Vout pin will change to a voltage proportional to

0-3.3V. For example to set the output to 1.65V or about halfway within its range:

dac.value = 32767

Hook up a multimeter to the Vout pin of

the board (positive/red lead to Vout,

ground/black lead to board GND) and you

should see about 1.65 volts DC output. Try

setting dac.value to other numbers like 0

or 65535 to see how the voltage changes.

Hook up a multimeter to the Vout pin of the board (positive/red lead to Vout, ground/

black lead to board GND) and you should see about 1.65 volts DC output. Try setting

dac.value to other numbers like 0 or 65535 to see how the voltage changes.

You can use the MCP4725 instance anywhere you might use the AnalogOut class!

However you might prefer a few other simpler properties to change the output

voltage:

normalized_value - Set this to a floating point number between 0 and 1.0. A

value of 0 is ground/0V and 1.0 is Vdd or max voltage/3.3V. Anything in-

between is a proportional voltage. This is handy for scaling the output value

without having to worry about how many bits of resolution it has.

raw_value - Set this to a 12-bit value 0-4095 to control the raw 12-bit output of

the DAC. Unlike the value property this raw_value exposes the true 12-bit

resolution of the DAC and is free from quantization errors. If you need the most

precise output use the raw_output value for setting voltage.

•

•

©Adafruit Industries Page 17 of 21

https://learn.adafruit.com//assets/59022
https://learn.adafruit.com//assets/59022

dac.normalized_value = 0.5 # ~1.65V output

dac.raw_output = 2047 # Also ~1.65V output

That's all there is to using the MCP4725 DAC with CircuitPython!

Below is a complete example that shows changing the DAC voltage to a triangle wave

that goes up and down repeatedly. Save this as code.py on your board and connect

a multimeter to measure the Vout pin voltage to see it oscillate up and down from 0 to

3.3V and back.

Full Example Code

SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries

SPDX-License-Identifier: MIT

Simple demo of setting the DAC value up and down through its entire range

of values.

import board

import busio

import adafruit_mcp4725

Initialize I2C bus.

i2c = busio.I2C(board.SCL, board.SDA)

Initialize MCP4725.

dac = adafruit_mcp4725.MCP4725(i2c)

Optionally you can specify a different addres if you override the A0 pin.

amp = adafruit_max9744.MAX9744(i2c, address=0x63)

There are a three ways to set the DAC output, you can use any of these:

dac.value = 65535 # Use the value property with a 16-bit number just like

the AnalogOut class. Note the MCP4725 is only a 12-bit

DAC so quantization errors will occur. The range of

values is 0 (minimum/ground) to 65535 (maximum/Vout).

dac.raw_value = 4095 # Use the raw_value property to directly read and write

the 12-bit DAC value. The range of values is

0 (minimum/ground) to 4095 (maximum/Vout).

dac.normalized_value = 1.0 # Use the normalized_value property to set the

output with a floating point value in the range

0 to 1.0 where 0 is minimum/ground and 1.0 is

maximum/Vout.

Main loop will go up and down through the range of DAC values forever.

while True:

 # Go up the 12-bit raw range.

 print("Going up 0-3.3V...")

 for i in range(4095):

 dac.raw_value = i

 # Go back down the 12-bit raw range.

 print("Going down 3.3-0V...")

 for i in range(4095, -1, -1):

 dac.raw_value = i

©Adafruit Industries Page 18 of 21

Python Docs

Python Docs ()

Downloads

Files

For more details about the chip, please check out the MCP4725 datasheet ()

MCP4725 Arduino Library is on GitHub ()

Fritzing object in the Adafruit Fritzing library ()

EagleCAD PCB files on GitHub ()

Schematic & Fabrication Print STEMMA QT

Version

•

•

•

•

©Adafruit Industries Page 19 of 21

https://circuitpython.readthedocs.io/projects/mcp4725/en/latest/
http://www.adafruit.com/datasheets/mcp4725.pdf
https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-MCP4725-PCB

Schematic & Fabrication Print Original

Version

©Adafruit Industries Page 20 of 21

