DATASHEET

General Description

The 9DMV0441 is a member of IDT's SOC-Friendly 1.8V Very-Low-Power (VLP) PCIe Gen1-2-3 family. It has integrated output terminations providing Zo=100 Ω for direct connection to 100Ω transmission lines. Each of the 4 outputs has its own dedicated OE# pin for optimal system control and power management. The part provides asynchronous and glitch-free switching modes.

Recommended Application

2:4 PCIe Gen1-2-3 Clock Multiplexer

Output Features

4 -Low-Power (LP) HCSL DIF pairs w/Zo=100Ω

Key Specifications

- DIF additive cycle-to-cycle jitter <5ps
- DIF phase jitter is PCIe Gen1-2-3 compliant
- Additive phase jitter @ 125MHz: 420fs rms typical (12kHz) to 20MHz)
- DIF output-to-output skew <50ps

Features/Benefits

- LP-HCSL outputs w/integrated terminations; saves 16 resistors compared to standard HCSL outputs
- 1.8V operation; 36mW typical power consumption
- Selectable asynchronous or glitch-free switching; allows the mux to be selected at power up even if both inputs are not running, then transition to glitch-free switching mode
- Spread Spectrum Compatible; supports EMI reduction
- OE# pins; support DIF power management
- HCSL differential inputs; can be driven by common clock sources
- 1MHz to 200MHz operating frequency
- Space saving 24-pin 4x4mm VFQFPN; minimal board space

Block Diagram

Pin Configuration

24 VFQFPN, 4x4 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor v prefix indicates internal 120KOhm pull down resistor

Power Management Table

OEx# Pin	DIF IN	DI	Fx		
OLX#1 III	Dii _iiv	True O/P Comp. (
0	Running	Running	Running		
1	Running	Low Low			

Power Connections

Pin N	umber	Description				
VDD	GND	Description				
3	24	Input A receiver analog				
4	7	Input B receiver analog				
16	15	DIF outputs				

Pin Descriptions

Pin#	Pin Name	Type	Pin Description				
1	DIF_INA	IN	HCSL Differential True input				
2	DIF_INA#	IN	HCSL Differential Complement Input				
3	B VDDR1.8 PWR 1.8V power for differential input clock (receiver). This VDD should be treated						
	VDDITI.0	1 4411	power rail and filtered appropriately.				
4	VDDR1.8	PWR	1.8V power for differential input clock (receiver). This VDD should be treated as an Analog				
_		1 7711	power rail and filtered appropriately.				
5	DIF_INB	IN	HCSL Differential True input				
6	DIF_INB#	IN	HCSL Differential Complement Input				
7	GNDR	GND	Analog Ground pin for the differential input (receiver)				
8	vSW_MODE	IN	Switch Mode. This pin selects either asynchronous or glitch-free switching of the mux. Use asynchronous mode if 0 or 1 of the input clocks is running. Use glitch-free mode if both input clocks are running. This pin has an internal pull down resistor of ~120kohms. 0 = asynchronous mode 1 = glitch-free mode				
9	^OE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-up resistor. 1 =disable outputs, 0 = enable outputs				
10	DIF0	OUT	Differential true clock output				
11	DIF0#	OUT	Differential Complementary clock output				
12	^OE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-up resistor. 1 =disable outputs, 0 = enable outputs				
13	DIF1	OUT	Differential true clock output				
14	DIF1#	OUT	Differential Complementary clock output				
15	GND	GND	Ground pin.				

Pin Descriptions (cont.)

Pin#	Pin Name	Type	Pin Description
16	VDD1.8	PWR	Power supply, nominal 1.8V
17	DIF2	OUT	Differential true clock output
18	DIF2#	OUT	Differential Complementary clock output
19	^OE2#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-up resistor.
	OLLII		1 =disable outputs, 0 = enable outputs
20	DIF3	OUT	Differential true clock output
21	DIF3#	OUT	Differential Complementary clock output
22	^OE3#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-up resistor.
22	OL3#	111	1 =disable outputs, 0 = enable outputs
			Input to select differential input clock A or differential input clock B. This input has an internal
23	^SEL_A_B#	IN	pull-up resistor.
			0 = Input B selected, 1 = Input A selected.
24	GNDR	GND	Analog Ground pin for the differential input (receiver)
25	EPAD	GND	Connect to Ground.

Test Loads

Driving LVDS

Driving LVDS inputs

	,	Value	
	Receiver has Receiver does not		
Component	termination	have termination	Note
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Cc	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

Electrical Characteristics-Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Applies to all VDD	-0.5		2.5	V	1,2
Input Voltage	V_{IN}		-0.5		$V_{DD} + 0.5V$	V	1, 3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.6V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	ç	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Applies to all VDD	1.7	1.8	1.9	V	1
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	0.75 V _{DD}		$V_{DD} + 0.3$	V	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	V	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200		200	uA	1
Input Frequency	F _{ibyp}		1		200	MHz	1
Pin Inductance	L_{pin}				7	nΗ	1
	C_{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C _{OUT}	Output pin capacitance			6	pF	1
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	0	31.5	66	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t _R	Rise time of single-ended control inputs			5	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

		personal contamination, and a contamination and and and					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	300	750	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V_{COM}	Common Mode Input Voltage	200		725	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.35		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	50	55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-DIF Low-Power HCSL Outputs

TA = T_{AMB} Supply Voltages per normal operation conditions. See Test Loads for Loading Conditions

The TAIMB, Cupply Tollages	per merman eper	determined to the condition of the condi	1110110				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	2.0	3.0	4.4	V/ns	1,2,3
Slew rate matching	∆Trf	Slew rate matching, Scope averaging on		3	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	783	850	mV	
Voltage Low	V_{LOW}	averaging on)	-150	26	150	1110	
Max Voltage	Vmax	Measurement on single ended signal using		790	1150	mV	
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	9] ''''	
Vswing	Vswing	Scope averaging off	300	1514		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	393	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		12	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDOP}	VDD rails, All outputs active @100MHz		20	28	mA	
Disable Current	I _{DDDIS}	VDD rails, All outputs disabled Low/Low		1.5	2.5	mA	2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through +/-75mV window centered around differential zero

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ -Vcross to be smaller than Vcross absolute.

² Input clock stopped after outputs have parked Low/Low.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-1	-0.12	1	%	1,3
Skew, Input to Output	t _{pdBYP}	V _T = 50%	1850	2409	3150	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		12	50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Phase Jitter Parameters

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTR Y LIMIT	UNITS	Notes
FANAIVILIEN	t _{iphPCleG1}	PCIe Gen 1	IVIIIN	1.3	5	N/A	ps (p-p)	1,2,3,5
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.3	N/A	ps (rms)	1,2,3,4,5
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.1	0.2	N/A	ps (rms)	1,2,3,4
Additive Phase Jitter, Bypass Mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.065	0.1	N/A	ps (rms)	1,2,3,4
	t _{jph125M0}	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		285	300	N/A	fs (rms)	1,6
	t _{jph125M1}	125MHz, 12KHz to 20MHz, -20dB/decade rollover < 12kHz, -40db/decade rolloff > 20MHz		420	450	N/A	fs (rms)	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock .

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]

⁵ Driven by 9FGV0831 or equivalent

⁶ Driven by Rohde& Schartz SMA100

Marking Diagram

Notes:

- 1. "LOT" denotes the lot number.
- 2. "YYWW" is the last two digits of the year and week that the part was assembled.
- 3. Line 2: truncated part number
- 4. "L" denotes RoHS compliant package.
- 5. "I" denotes industrial temperature grade.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ_{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base		2.4	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air	NLG24	39	°C/W	1
Theiliai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	INLG24	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow	28		°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board

Package Outline and Package Dimensions (NLG24)

BOTTOM VIEW

\Box	Ш		\times	Φ	A3	\geq	\supset	-٥	∞≤≺	S
0.				0		0.00	0.80	<u> </u>	DI	
0.15 mm MAX	4.0 BSC	4.0 BSC	0.20 MIN.		0.20 REF.	0.02	0.90	NOM.	DIMENSIONS	
AX				12		0.05	1.0	MAX.	NS.	
\triangleright				2				m T	oZ	

SEATING PLANE ○ 0.05 C 0.20 DIA 2X 0.10 C 2X 0.10 C ₹ ≥. L_A3 • SIDE VIEW TOP SEW \triangleright $\overline{\bigcirc}$ - 0

EVEN TERMINAL/SIDE

TERMINAL

Ħ

0

11/11

1

DATUM A

유

의 8 문

ADD LAND PATTERN INITIAL RELEASE DESCRIPTION

11/19/10 10/15/08 DATE

DETAIL "A" <u>000</u> TERMINAL/SIDE

DIMENSIONING AND TOLERANCING CONFORME TO ASME Y14.5M - ALL DIMENSIONS ARE IN MILLIMETERS, $\boldsymbol{\theta}$ IS IN DEGREES.

1994.

HAS

3. N IS THE TOTAL NUMBER OF TERMINAL AND IS MEASURED AND DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL THE. IF THE TERMINAL THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND NE REFER TO THE NUMBER D TERMINALS ON EACH D AND NE REFER TO THE NUMBER D TERMINALS ON EACH D AND NE REFER TO THE NUMBER D TERMINALS ON EACH D AND NE REFER TO THE NUMBER D TERMINALS ON EACH D AND NE REFER TO THE NUMBER D TERMINALS D TER TERMINALS ON EACH D AND

6. MAX. PACKAGE WARPAGE IS 0.05 mm.

7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.

(28) PIN #1 ID ON TOP WILL BE LASER MARKED.

(29) BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220

AD PULLBACK DESIGN OPTION IS FOR 0.50mm NOMINAL LANDLENGTH ONLY PULLBACK (L1) MAYBE PRESENT DEPENDING ON THE METHOD OF LEAD TERMINATION AT THE EDGE OF THE PACKAGE,

DECIMAL XX± UNLESS SPECIFIED RAC DATE www.IDT.com 4.0 × 4.0 mm

Package Outline and Package Dimensions, cont. (NLG24)

NL24 RECOMMENDED FOOTPRINT 2.45 mm mm 0.50 mm 0.30 mm 2.50 mm 0.60 mm 3.10 mm EPAD

CHECKED	DRAWN J.B 11/19/10	APPROVALS DATE TITLE	TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR XXX± ± XXXX± XXXX± XXXX± XXXX
0.5 mm PITCH VFQFPN	4.0 x 4.0 mm BODY	NL/NLG24 PACKAGE OUTLINE	6024 Silver Creek Valley Son Jose, CA 95138 Son PHONE: (408) 284-8500 WWW.IDT.com FAX: (408) 284-8591

F				
ნ 3	_	11/19/10	ADD LAND PATTERN	9
ි 01/	_	11/19/10	NITIAL RELEASE	8
APPROVE 26	APP	DATE	EV DESCRIPTION	REV
/15			REVISIONS	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DMV0441AKILF	Tubes	24-pin VFQFPN	-40 to +85° C
9DMV0441AKILFT	Tape and Reel	24-pin VFQFPN	-40 to +85° C

[&]quot;LF" to the suffix denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Initiator	Issue Date	Description	Page #
			Updated Electrical Tables with Char data	
Α	RDW	9/24/2014	Updated General Description	Various
			3. Move to final	
В	RDW	1/26/2015	Updated package drawing and dimensions	9

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).