

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

9ELx Primary Protector Series

Ion-Implanted Breakdown Region - Precise and Stable Voltage

- Low Voltage Overshoot under Surge

Device	V _(BR) Minimum V	V _(BO) Minimum V	V _(BO) Maximum V
9EL2	±245	±265	±400
9EL3		±200	±265

Rated for International Surge Wave Shapes

Device	ITU-T K28 (10/700) I _{TSP} A	GR-974-CORE (10/1000) I _{TSP} A
9EL2	±200	±150
9EL3	±125	±100

Gas Discharge Tube (GDT) Replacement

Planar Passivated Junctions in a Protected Cell Construction

- Low Off-State Current

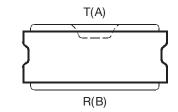
-Extended Service Life

Soldered Copper Electrodes

- High Current Capability

- Cell Construction Short Circuits Under Excessive Current Conditions

W UL Recognized Components


Description

These devices are primary protector components for semiconductor arrester assemblies intended to meet the generic requirements of Telcordia GR-974-CORE or ITU-T Recommendation K28 (03/93). To conform to the specified environmental requirements, the 9ELx must be installed in a housing which maintains a stable microclimate during these tests (e.g. FIGURE I.1/K28).

The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. In usual applications, the high crowbar holding current prevents d.c. latchup as the diverted current subsides. This 9ELx range consists of two voltage variants to meet various maximum system voltage levels. They are designed to voltage limit and withstand the listed international lightning surges in both polarities.

These monolithic protection devices are constructed using two nickel plated copper electrodes soldered to each side of the silicon chip. This packaging approach allows heat to be removed from both sides of the silicon, resulting in the doubling of the devices thermal capacity, enabling a power line cross current capability of 10 A rms for 1 second. One of the 9ELx's copper electrodes is specially shaped to promote a progressive shorting action (at 50/60 Hz currents greater than 60 A). The assembly must hold the 9ELx in compression, so that the cell electrodes can be forced together during overstress testing. Under excessive power line cross conditions the 9ELx will fail short circuit, providing maximum protection to the equipment.

Cell Package (Side View)

MD4XACAa

Device Symbol

SD4XAA

Terminals T and R correspond to the alternative line designators of A and B

9ELx Primary Protector Series

BOURNS®

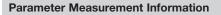
Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating			Value	Unit	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)					
5/310 μs (ITU-T K28, 10/700 μs voltage wave shape)	9EL2 -20 °C to 65 °C		200		
	9EL3 0 °C to 65 °C		125	A	
10/1000 μs (GR-974-CORE, 10/1000 μs voltage wave shape)	9EL2 -20 °C to 65 °C	ITSP	150		
	9EL3 0 °C to 65 °C		100		
Non-repetitive peak on-state current (see Note 1)					
	9EL2 -40 °C to 65 °C		10	A	
full sine wave, 50/60 Hz, 1 s	9EL3 0 °C to 65 °C	ITSM	10	A rms	
Junction temperature		Т _Ј	-40 to +150	°C	
Storage temperature range		T _{stg}	-40 to +150	°C	

NOTES: 1. The surge may be repeated after the device has returned to thermal equilibrium.

2. Most PTTs quote an unloaded voltage waveform. In operation the 9ELx essentially shorts the generator output The resulting loaded current waveform is specified.

Parameter Test Conditions			Min	Тур	Max	Unit		
V _(BR)	Breakdown Voltage	I _(BR) = ±20 mA, (see Note 3)	9EL2	-40 °C to 65 °C	±245			V
V _(BO) Bri	Breakover voltage	dv/dt = ± 0.2 V/s, R _{SOURCE} > 200	9EL2	+15 °C to 25 °C	±265			
				-40 °C to 65 °C			±400	V
			9EL3	+15 °C to 25 °C	±200			V
				0 °C to 65 °C			±265	
V _(BO)	Impulse breakover	100 V/ μ s \leq dv/dt \leq \pm 1000 V/ μ s,	9EL2	-40 °C to 65 °C			±400	V
	voltage	di/dt ≤ 10 A/µs	9EL3	0 °C to 65 °C			±350	
Impulse reset		Sources are 52.5 V O.C., 260 mA S.C. and	9EL2	-40 °C to 65 °C			20	
	Impulse reset	135 V O.C., 200 mA S.C.	9EL3	0 °C to 65 °C			20	ms
	on-state current 25 A, 10/1000 μ s impulse	9EL3	0 0 10 05 0			20		
ID	Off-state current	$V_D = \pm 50 V \text{ (see Note 4)}$	9EL2	-40 °C to 65 °C			±0.5	
			9EL3	0 °C to 65 °C			±0.5	μA
		$V_D = \pm 200 V$	9EL2	-40 °C to 65 °C			±10	μΑ
			9EL3	+15 °C to 25 °C			±1	
C _{off}	Off-state capacitance	$f = 1 \text{ MHz}$, $V_{rd} = 1 \text{ Vrms}$, $V_{rd} = 0$.	9EL2	-40 °C to 65 °C			150	pF
			9EL3	0 °C to 65 °C			150	P


Electrical Characteristics for the R and T Terminals, T_A = 25 °C (Unless Otherwise Noted)

NOTES: 3. Meets Telcordia GR-974-CORE Issue 2, December 1999 - Rated Voltage Test (4.7).

4. This device is sensitive to light. Suggest that this parameter be measured in a dark environment.

9ELx Primary Protector Series

BOURNS®

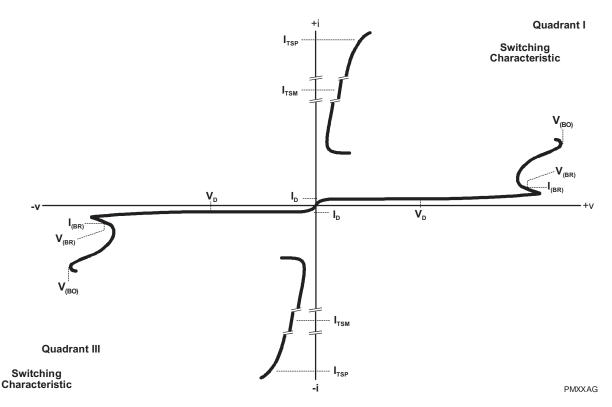
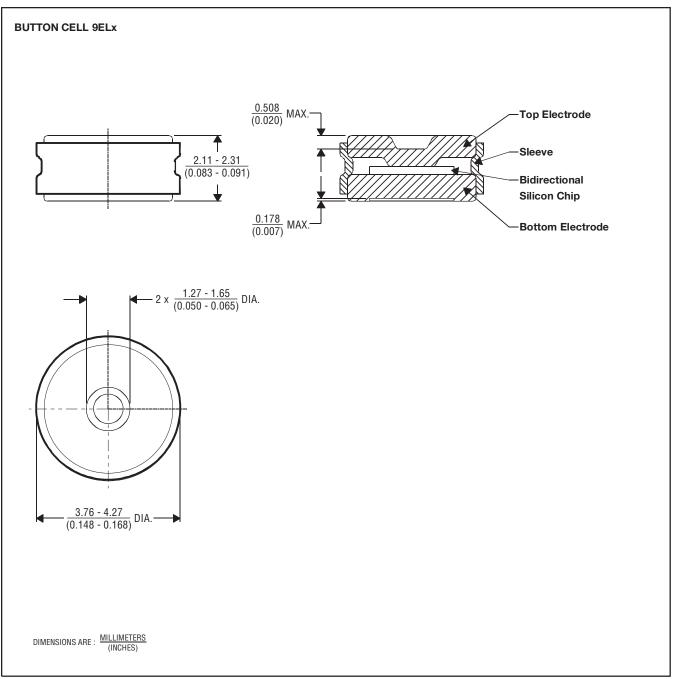



Figure 1. Voltage-Current Characteristic for the T and R Terminals All Measurements are Referenced to the R Terminal

9ELx Primary Protector Series

BOURNS®

Cell Package

MDXXAVAa