San Ace 36 9HV type

High Static Pressure Fan

Features

High Static Pressure and High Airflow

This fan delivers a maximum static pressure of 1,400 Pa and a maximum airflow of $0.72 \, \text{m}^3\text{/min}$.

Compared with the current model,* the maximum static pressure has increased by 1.67 times and maximum airflow has increased by 1.04 times.

Space-saving

This fan provides the same cooling performance as our conventional 40 \times 40 mm fans.**

The reduced fan size enables enhanced design flexibility.

High Energy Efficiency and Low Noise

The PWM control function enables the external control of fan speed, contributing to lowering noise and improving energy efficiency of devices.

- * Current model: San Ace 36 9GX type 36 x 36 x 28 mm (9GX3612P3K001).
- ** Conventional fans: $40 \times 40 \times 28$ mm San Ace 40 9GV type (9HV0412P3K001) and 9GAX type (9GAX0412P3S001).

36×36×28_{mm}

Specifications •

The models listed below have ribs and pulse sensors with PWM control function.

Model no.	Rated voltage [V]	Operating voltage range [V]	PWM duty cycle* [%]	Rated current [A]	Rated input [W]	Rated speed [min ⁻¹]	Max. a [m³/min]	irflow [CFM]	Max. statio	c pressure inchH ₂ O]	SPL [dB(A)]	Operating temperature [°C]	Expected life [h]
9HV3612P3K001	12	10.8 to 13.2	100	1.75	21.0	32500	0.72	25.4	1400	5.62	67	-20 to +60	30000/60°C
			20	0.05	0.6	6000	0.12	4.2	47.2	0.19	26		

^{*} PWM frequency: 25 kHz. Fan does not rotate when PWM duty cycle is 0%.

Models with the following sensor specifications are also available as options: Without sensor Lock sensor

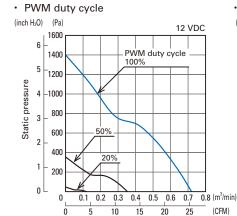
Common Specifications -

☐ Expected life · · · · · Refer to specifications

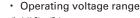
(L10 life: 90% survival rate for continuous operation in free air at 60°C, rated voltage)

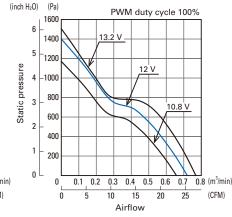
☐ Motor protection system · · · · · · Current blocking function and reverse polarity protection

 \square Dielectric strength $\cdots \cdots 50/60$ Hz, 500 VAC, for 1 minute (between lead wire conductors and frame)

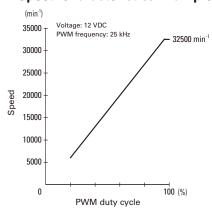

 \square Sound pressure level (SPL) $\cdots\cdots$ At 1 m away from the air inlet

 $\hfill \Box$ Operating temperature $\cdots\cdots\cdots$ Refer to specifications (Non-condensing)

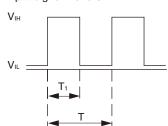

□ Lead wire · · · · · · · · · · ⊕ Red ⊝ Black Sensor Yellow Control Brown


 \square Mass · · · · · Approx. 53 g

Airflow - Static Pressure Characteristics



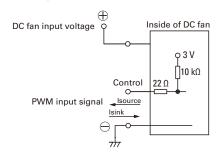
Airflow



PWM Duty -Speed Characteristics Example

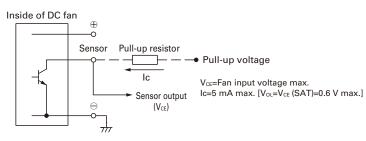
PWM Input Signal Example

Input signal waveform

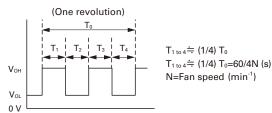

 $V_{IH} = 4.75 \text{ to } 5.25 \text{ V} \quad V_{IL} = 0 \text{ to } 0.4 \text{ V} \\ PWM \text{ duty cycle (\%)} = \frac{T_1}{T} \times 100 \qquad PWM \text{ frequency } 25 \text{ (kHz)} = 0.00 \text{ (kHz)}$ Current source (Isource) = 1 mA max. (when control voltage is 0 V) Current sink (Isink) = 1 mA max. (when control voltage is 5.25 V) Control terminal voltage = 5.25 V max. (when control terminal is open)

When the control terminal is open,

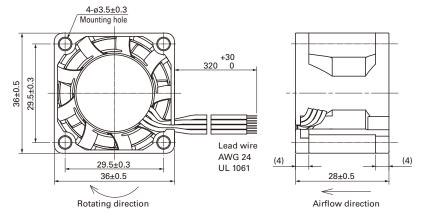
fan speed is the same as when PWM duty cycle is 100%.


Either TTL input, open collector or open drain can be used for PWM control input signal.

Example of Connection Schematic

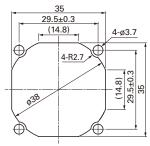

Specifications for Pulse Sensors

Output circuit: Open collector



Output waveform (Need pull-up resistor)

In case of steady running



Dimensions (unit: mm)

Reference Dimensions of Mounting Holes and Vent Opening (unit: mm)

Inlet side, Outlet side

Notice

- ●Please read the "Safety Precautions" on our website before using the product.
- The products shown in this catalog are subject to Japanese Export Control Law. Diversion contrary to the law of exporting country is prohibited.
- For protecting fan bearings against electrolytic corrosion near strong electromagnetic noise sources, we provide effective countermeasures such as Electrolytic Corrosion Proof Fans and EMC guards. Contact us for details.

https://www.sanyodenki.com

SANYO DENKI CO., LTD. 3-33-1, Minami-Otsuka, Toshima-ku, Tokyo 170-8451, Japan TEL: +81 3 5927 1020 The names of companies and/or their products specified in this catalog are the trade names, and/or trademarks and/or registered trademarks of such respective companies. "San Ace" is a trademark of SANYO DENKI CO.,LTD.