RENESAS 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI

9ZX21901C

DATASHEET

General Description

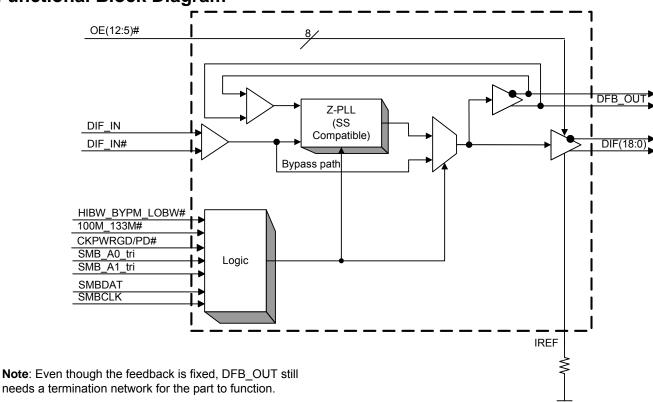
The 9ZX21901 is Intel DB1900Z Differential Buffer suitable for PCI-Express Gen3 or QPI applications. The part is backwards compatible to PCIe Gen1 and Gen2. A fixed external feedback maintains low drift for critical QPI applications. In bypass mode, the 9ZX21901 can provide outputs up to 400MHz.

Recommended Application

• 19-output PCIe Gen3/QPI buffer with fixed feedback for Romley platforms

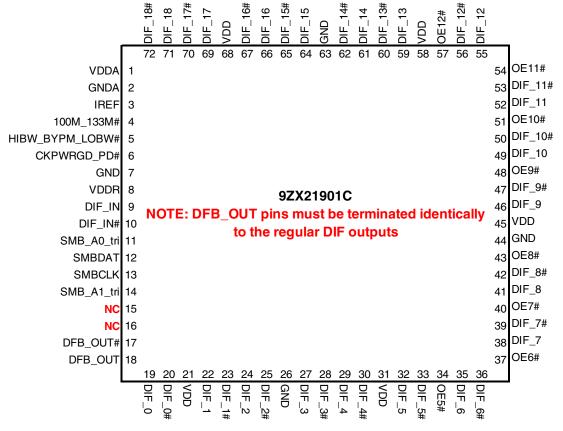
Output Features

19 – 0.7V current mode differential HCSL output pairs


Key Specifications

- Cycle-to-cycle jitter: < 50ps
- Output-to-output skew: <65ps
- Input-to-output delay: Fixed at 0 ps
- Input-to-output delay variation: <50ps
- Phase jitter: PCIe Gen3 < 1ps rms
- Phase jitter: QPI 9.6GB/s < 0.2ps rms

Functional Block Diagram


Features/Benefits

- Fixed feedback path/ 0ps input-to-output delay
- 9 Selectable SMBus addresses; Multiple devices can share same SMBus segment
- 8 dedicated OE# pins; hardware control of outputs
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL BW; minimizes jitter peaking in downstream PLL's
- Spread spectrum compatible; tracks spreading input clock for EMI reduction
- SMBus Interface; unused outputs can be disabled
- 100MHz & 133.33MHz PLL mode; legacy QPI support
- Undriven differential outputs in Power Down mode for maximum power savings

Pin Configuration

72-pin VFQFPN

Functionality at Power Up (PLL Mode)

100M_133M#	DIF_IN (MHz)	DIF_x (MHz)		
1	100.00	DIF_IN		
0	133.33	DIF_IN		

PLL Operating Mode Readback Table

HiBW_BypM_LoBW#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

PLL Operating Mode

HiBW_BypM_LoBW#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode

Tri-level Input Thresholds

Level	Voltage
Low	<0.8V
Mid	1.2 <vin<1.8v< td=""></vin<1.8v<>
High	Vin > 2.2V

Power Connections

Pin Nu	umber	
VDD	GND	Description
1	2	Analog PLL
8	7	Analog Input
21, 31, 45, 58, 68	26, 44, 63	DIF clocks

9ZX21901 SMBus Addressing

Pi	n	SMBus Address
SMB_A1_tri	SMB_A0_tri	(Rd/Wrt bit = 0)
0	0	D8
0	М	DA
0	1	DE
М	0	C2
М	М	C4
М	1	C6
1	0	CA
1	М	CC
1	1	CE

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V power for the PLL core.
2	GNDA	GND	Ground pin for the PLL core.
3	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750hm is the standard value for 1000hm differential impedance. Other impedances require different values. See data sheet.
4	100M_133M#	IN	Input to select operating frequency 1 = 100MHz, 0 = 133.33MHz
5	HIBW_BYPM_LOBW#	IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
6	CKPWRGD_PD#	IN	3.3V Input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
7	GND	GND	Ground pin.
8	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
9	DIF_IN	IN	0.7 V Differential True input
10	DIF_IN#	IN	0.7 V Differential Complementary Input
11	SMB_A0_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A1 to decode 1 of 9 SMBus Addresses.
12	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
13	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
14	SMB_A1_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A0 to decode 1 of 9 SMBus Addresses.
15	NC	N/A	No Connection.
16	NC	N/A	No Connection.
17	DFB_OUT#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization with input clock to eliminate phase error.
18	DFB_OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error.
19	DIF_0	OUT	0.7V differential true clock output
20	DIF_0#	OUT	0.7V differential Complementary clock output
21	VDD	PWR	Power supply, nominal 3.3V
22	DIF_1	OUT	0.7V differential true clock output
23	DIF_1#	OUT	0.7V differential Complementary clock output
24	DIF_2	OUT	0.7V differential true clock output
25	DIF_2#	OUT	0.7V differential Complementary clock output
26	GND	GND	Ground pin.
27	DIF_3	OUT	0.7V differential true clock output
28	DIF_3#	OUT	0.7V differential Complementary clock output
29	DIF_4	OUT	0.7V differential true clock output
30	DIF_4#	OUT	0.7V differential Complementary clock output
31	VDD	PWR	Power supply, nominal 3.3V
32	DIF_5	OUT	0.7V differential true clock output
33	DIF_5#	OUT	0.7V differential Complementary clock output
34	OE5#	IN	Active low input for enabling DIF pair 5. 1 =disable outputs, 0 = enable outputs
35	DIF_6	OUT	0.7V differential true clock output
36	DIF_6#	OUT	0.7V differential Complementary clock output

Pin Descriptions (cont.)

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
37	OE6#	IN	Active low input for enabling DIF pair 6.
37	OE0#	IIN	1 =disable outputs, 0 = enable outputs
38	DIF_7	OUT	0.7V differential true clock output
39	DIF_7#	OUT	0.7V differential Complementary clock output
40	OE7#	IN	Active low input for enabling DIF pair 7.
40			1 =disable outputs, 0 = enable outputs
41	DIF_8	OUT	0.7V differential true clock output
42	DIF_8#	OUT	0.7V differential Complementary clock output
43	OE8#	IN	Active low input for enabling DIF pair 8.
			1 =disable outputs, 0 = enable outputs
44	GND	GND	Ground pin.
45	VDD	PWR	Power supply, nominal 3.3V
46	DIF_9	OUT	0.7V differential true clock output
47	DIF_9#	OUT	0.7V differential Complementary clock output
48	OE9#	IN	Active low input for enabling DIF pair 9.
			1 =disable outputs, 0 = enable outputs
49	DIF_10	OUT	0.7V differential true clock output
50	DIF_10#	OUT	0.7V differential Complementary clock output
51	OE10#	IN	Active low input for enabling DIF pair 10.
50			1 =disable outputs, 0 = enable outputs
52	DIF_11	OUT	0.7V differential true clock output
53	DIF_11#	OUT	0.7V differential Complementary clock output
54	OE11#	IN	Active low input for enabling DIF pair 11.
		OUT	1 =disable outputs, 0 = enable outputs
55	DIF_12	OUT	0.7V differential true clock output
56	DIF_12#	OUT	0.7V differential Complementary clock output
57	OE12#	IN	Active low input for enabling DIF pair 12.
50	VDD	PWR	1 =disable outputs, 0 = enable outputs
58 59	DIF_13	OUT	Power supply, nominal 3.3V 0.7V differential true clock output
- 59 - 60	DIF_13#	OUT	0.7V differential Complementary clock output
61	DIF_14	OUT	0.7V differential complementaly clock output
62	DIF_14#	OUT	0.7V differential Complementary clock output
63		GND	Ground pin.
64	DIF_15	OUT	0.7V differential true clock output
65	 DIF_15#	OUT	0.7V differential Complementary clock output
66	DIF_16	OUT	0.7V differential true clock output
67	 DIF_16#	OUT	0.7V differential Complementary clock output
68	VDD	PWR	Power supply, nominal 3.3V
69	DIF_17	OUT	0.7V differential true clock output
70	DIF_17#	OUT	0.7V differential Complementary clock output
71	DIF_18	OUT	0.7V differential true clock output
72	DIF_18#	OUT	0.7V differential Complementary clock output

Electrical Characteristics – Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V_{DD} +0.5V	V	1
Input High Voltage	VIHSMB	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Case Temperature	Тс				110	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics – DIF_IN Clock Input Parameters

T_{AMB}=T_{COM} unless otherwise indicated, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Crossover Voltage - DIF_IN	V _{CROSS}	Cross Over Voltage	150		900	mV	1
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics – Current Consumption

TA = T_{COM:} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, $C_L = Full load;$		407	500	mA	1
Powerdown Current	I _{DD3.3PDZ}	All differential pairs tri-stated		12	36	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics – Input/Supply/Common Parameters

TA = T_{COM} ; Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	T _{COM}	Commmercial range	0		70	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	v	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	v	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200		200	uA	1
	F _{ibyp}	$V_{DD} = 3.3 V$, Bypass mode	33		400	MHz	2
Input Frequency	F _{ipll}	$V_{DD} = 3.3 V$, 100MHz PLL mode	90	100.00	105	MHz	2
	F _{ipll}	V _{DD} = 3.3 V, 133.33MHz PLL mode	120	133.33	140	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	CIN	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C_{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	VILSMB				0.8	V	1
SMBus Input High Voltage	VIHSMB		2.1		V _{DDSMB}	V	1
SMBus Output Low Voltage	VOLSMB	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴ DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics – DIF 0.7V Current Mode Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX		NOTES
TANAMETER			IVIIIN		WIAA		
Slew rate	dV/dt	Scope averaging on	1	2.5	4	V/ns	1, 2, 3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Rise/Fall Time Matching	ΔTrf	Rise/fall matching, Scope averaging off			125	ps	1, 7, 8
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	750	850	mV	1
Voltage Low	VLow	averaging on)	-150		150		1
Max Voltage	Vmax	Measurement on single ended signal using			1150		1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300			mV	1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250		550	mV	1, 5
Crossing Voltage (var)	∆-Vcross	Scope averaging off			140	mV	1, 6

TA = T_{COM} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/($3xR_R$). For $R_R = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7V$ @ $Z_O = 50\Omega$ (100 Ω differential impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

⁷ Measured from single-ended waveform

⁸ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

Electrical Characteristics – Skew and Differential Jitter Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
CLK_IN, DIF[x:0]	t _{SPO_PLL}	Input-to-Output Skew in PLL mode nominal value @ 25°C, 3.3V	-100	0	100	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3V	2.5	3.5	4.5	ns	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_PLL}	Input-to-Output Skew Varation in PLL mode across voltage and temperature		0	50	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_BYP}	Input-to-Output Skew Varation in Bypass mode across voltage and temperature	-250		250	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DTE}	Random Differential Tracking error beween two 9ZX devices in Hi BW Mode		3	5	ps (rms)	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSSTE}	Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode		15	75	ps	1,2,3,5,8
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		37	65	ps	1,2,3,8
PLL Jitter Peaking	j _{peak-hibw}	LOBW#_BYPASS_HIBW = 1	0	1.3	2.5	dB	7,8
PLL Jitter Peaking	j _{peak-lobw}	LOBW#_BYPASS_HIBW = 0	0	0.8	2	dB	7,8
PLL Bandwidth	pll _{HIBW}	LOBW#_BYPASS_HIBW = 1	2	3	4	MHz	8,9
PLL Bandwidth	pll _{LOBW}	LOBW#_BYPASS_HIBW = 0	0.7	1.1	1.4	MHz	8,9
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	0	2	%	1,10
Jitter, Cycle to cycle	t _{icyc-cyc}	PLL mode		41	50	ps	1,11
, , ,	J0,0-0,0	Additive Jitter in Bypass Mode		20	50	ps	1,11

TA = T_{COM}. Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

Notes for preceding table:

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

³ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁴ This parameter is deterministic for a given device

⁵ Measured with scope averaging on to find mean value. DIF_IN slew rate must be matched to DIF output slew rate.

⁶.t is the period of the input clock

⁷ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

^{8.} Guaranteed by design and characterization, not 100% tested in production.

⁹ Measured at 3 db down or half power point.

¹⁰ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

¹¹ Measured from differential waveform

Electrical Characteristics – Phase Jitter Parameters

TA = T_{COM}: Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		39	86	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.1	3	ps (rms)	1,2
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.6	3.1	ps (rms)	1,2
Jitter, Phase	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.6	1	ps (rms)	1,2,4
		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.36	0.5	ps (rms)	1,5
	t _{jphQPI_SMI}	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.23	0.3	ps (rms)	1,5
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.18	0.2	ps (rms)	1,5
	t _{jphPCleG1}	PCIe Gen 1		4	10	ps (p-p)	1,2,3
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.25	0.3	ps (rms)	1,2,6
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.57	0.7	ps (rms)	1,2,6
<i>Additive</i> Phase Jitter, Bypass mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.20	0.3	ps (rms)	1,2,4,6
		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.22	0.3	ps (rms)	1,5,6
	t _{jphQPI_SMI}	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.08	0.1	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.08	0.1	ps (rms)	1,5,6

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² = (total jitter)² - (input jitter)²

Power Management Table

Inputs		Control Bit	s/Pins		Outputs		
CKPWRGD_PD#	DIF_IN/ DIF_IN#	SMBus EN bit	OE# Pin	DIF(5:12)/ DIF(5:12)#	Other DIF/ DIF#	DFB_OUT/ DFB_OUT#	PLL State
0	Х	Х	Х	Hi-Z ¹	Hi-Z ¹	Hi-Z ¹	OFF
		0	Х	Hi-Z ¹	Hi-Z ¹	Running	ON
1	Running	1	0	Running	Running	Running	ON
		1	1	Hi-Z ¹	Running	Running	ON

NOTE: 1. Due to external pull down resistors, HI-Z results in Low/Low on the True/Complement outputs

Clock Periods – Differential Outputs with Spread Spectrum Disabled

		Quarter		Measurement Window							
			1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes	
	DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3
	DIF	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2,4

Clock Periods – Differential Outputs with Spread Spectrum Enabled

			Measurement Window							
SSC ON	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2,4

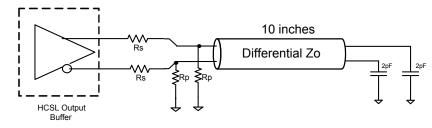
Notes:

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 96Z61027 itself does not contribute to ppm error.

³ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

⁴ Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode


Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Ambient	θJA	Still air		26.2		°C/W
	θJA	1 m/s air flow		23.1		°C/W
	θJA	3 m/s air flow		19.6		°C/W
Thermal Resistance Junction to Case	θJC			10.4		°C/W
Thermal Resistance Junction to Board	θJB			0.3		°C/W

Differential Output Termination Table

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	42.2 or 43.2

9ZX21901 Differential Test Loads

General SMBus Serial Interface Information (see also 9ZX21901 SMBus Addressing on page 2)

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address XX_(H)
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Bl	ock \	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	ig Byte N		
			ACK
0		×	
0		X Byte	0
0		e	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: XX_(H) is defined by SMBus Address select pins.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address XX_(H)
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address YY_(H)
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read O	peration
Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
S	lave Address		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
RT	Repeat starT		
S	lave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		e	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
Ν	Not acknowledge		
Р	stoP bit		

Byte	e 0 Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	5	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode		Latch	
Bit 6	5	PLL Mode 0	PLL Operating Mode Rd back 0	R Readback Table		ck Table	Latch	
Bit 5	72/71	DIF_18_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1	
Bit 4	70/69	DIF_17_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1	
Bit 3	67/66	DIF_16_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1	
Bit 2			Reserved				0	
Bit 1		Reserved						
Bit 0	4	100M_133M#	Frequency Select Readback	R	133MHz	100MHz	Latch	

SMBusTable: PLL Mode, and Frequency Select Register

SMBusTable: Output Control Register

		eenaernogietei			-	-	
Byte [·]	1 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	39/38	DIF_7_En	Output Control overrides OE# pin	RW			1
Bit 6	35/36	DIF_6_En	Output Control overrides OE# pin	RW			1
Bit 5	32/33	DIF_5_En	Output Control overrides OE# pin	RW]		1
Bit 4	29/30	DIF_4_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 3	27/28	DIF_3_En	Output Control overrides OE# pin	RW			1
Bit 2	24/25	DIF_2_En	Output Control overrides OE# pin	RW]		1
Bit 1	22/23	DIF_1_En	Output Control overrides OE# pin	RW]		1
Bit 0	19/20	DIF_0_En	Output Control overrides OE# pin	RW	Ţ		1

SMBusTable: Output Control Register

Byte 2	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	65/64	DIF_15_En	Output Control overrides OE# pin	RW			1
Bit 6	62/61	DIF_14_En	Output Control overrides OE# pin	RW]		1
Bit 5	60/59	DIF_13_En	Output Control overrides OE# pin	RW]		1
Bit 4	56/55	DIF_12_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 3	53/52	DIF_11_En	Output Control overrides OE# pin	RW		LIIADIE	1
Bit 2	50/49	DIF_10_En	Output Control overrides OE# pin	RW]		1
Bit 1	47/46	DIF_9_En	Output Control overrides OE# pin	RW]		1
Bit 0	42/41	DIF_8_En	Output Control overrides OE# pin	RW]		1

SMBusTable: Output Enable Pin Status Readback Register

Byte	3 Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7	57	OE_RB12	Real Time readback of OE#12	R			Real time		
Bit 6	54	OE_RB11	Real Time readback of OE#11	R			Real time		
Bit 5	51	OE_RB10	Real Time readback of OE#10	R			Real time		
Bit 4	48	OE_RB9	Real Time readback of OE#9	R		OE# Pin High	Real time		
Bit 3	43	OE_RB8	Real Time readback of OE#8	R			Real time		
Bit 2	40	OE_RB7	Real Time readback of OE#7	R			Real time		
Bit 1	37	OE_RB6	Real Time readback of OE#6	R			Real time		
Bit 0	34	OE_RB5	Real Time readback of OE#5	R	1		Real time		

SMBusTable: Reserved Register

Byte	e 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7				Reserved				0
Bit 6			Reserved					
Bit 5			Reserved					
Bit 4			Reserved					0
Bit 3			Reserved					0
Bit 2			Reserved					
Bit 1			Reserved					
Bit 0			Reserved					

SMBusTable: Vendor & Revision ID Register

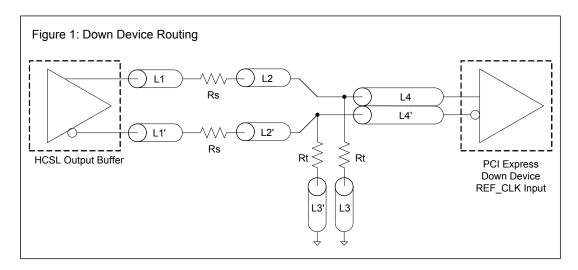
Byte 5	5 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R			Х
Bit 6	-	RID2	REVISION ID	R	B rev	Х	
Bit 5	-	RID1		R	C Rev	= 0010	Х
Bit 4	-	RID0		R			Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VID0		R	-	-	1

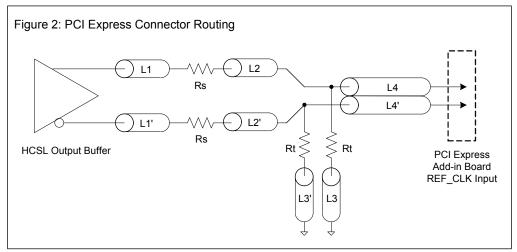
SMBusTable: DEVICE ID

Byte 6			Туре	0	1	Default	
Bit 7	-	De	evice ID 7 (MSB)	R			1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R		0	
Bit 4	-		Device ID 4	R	Device ID is 2	1	
Bit 3	-		Device ID 3	R	DB	hex.	1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R		1	

SMBusTable: Byte Count Register

Byte	e 7	7 Pin # Name		Control Function	Туре	0	1	Default
Bit 7			Reserved					
Bit 6				Reserved				0
Bit 5			Reserved					0
Bit 4		-	BC4		RW			0
Bit 3		-	BC3	Writing to this register configures how	RW	Default value	is 8 hex, so 9	1
Bit 2		-	BC2	v	RW	bytes (0 to 8) w	ill be read back	0
Bit 1		-	BC1	many bytes will be read back.	RW	by de	by default.	
Bit 0		-	BC0		RW			0

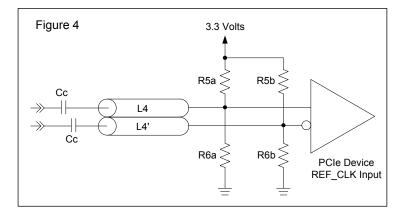

SMBusTable: Reserved Register


Byte	e 8	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7				Reserved				0		
Bit 6				Reserved						
Bit 5			Reserved							
Bit 4			Reserved							
Bit 3				Reserved				0		
Bit 2			Reserved					0		
Bit 1			Reserved							
Bit 0			Reserved							

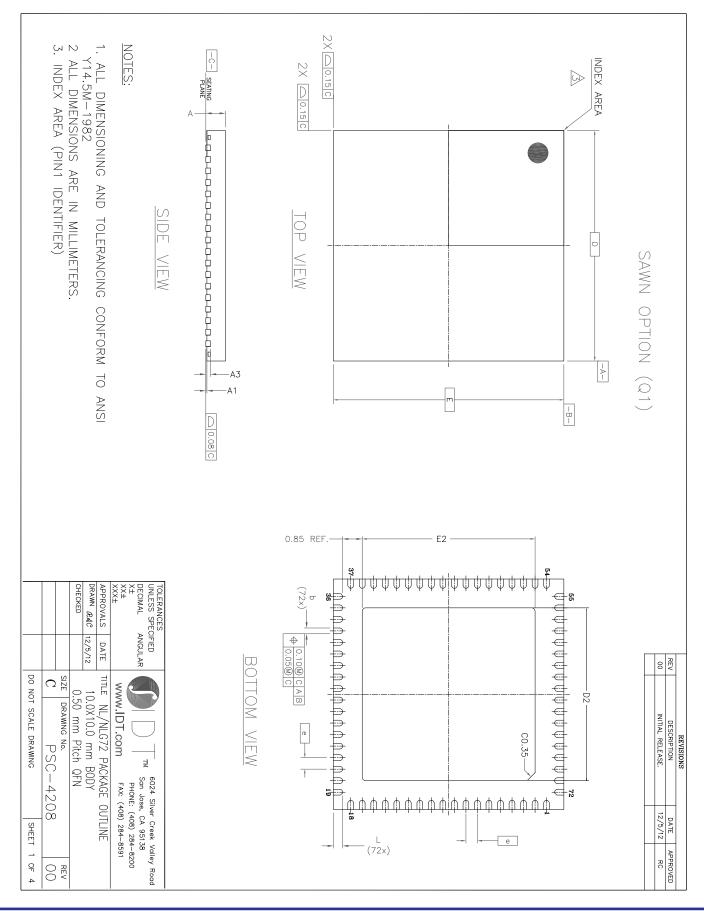
DIF Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1				
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
Rs	33	ohm	1				
Rt	49.9	ohm	1				

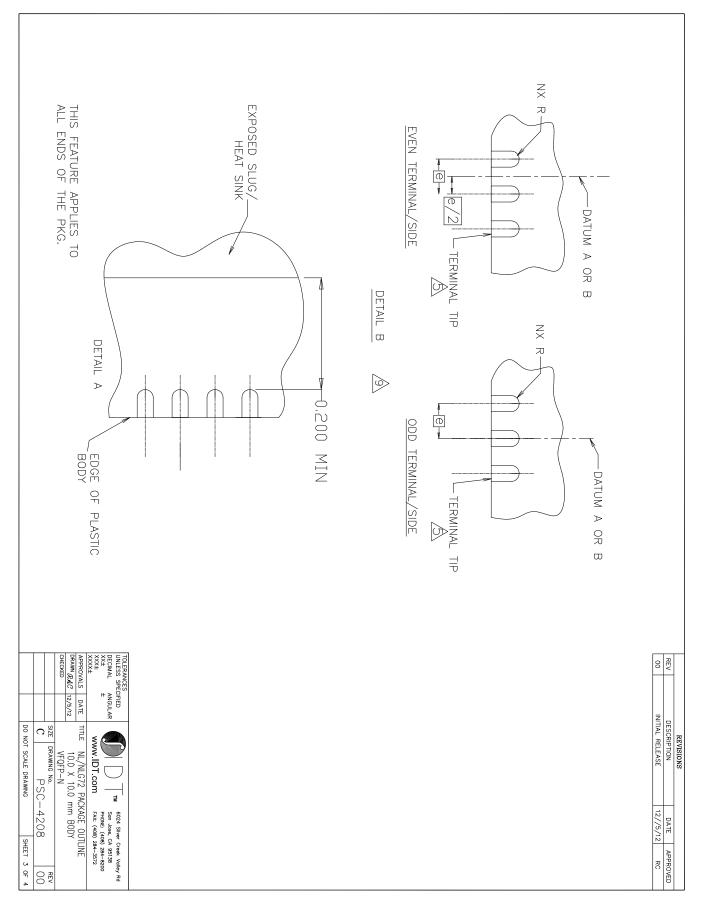
Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-р	Vcm	R1	R2	R3	R4	Note	
0.45v	0.22v	1.08	33	150	100	100		
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	
$R_{12} = R$	1h = R1	•	•	-				


R1a = R1b = R1R2a = R2b = R2


Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Cc	0.1 µF						
Vcm	0.350 volts						

Package Outline and Dimensions (NL72)

Package Outline and Dimensions (NL72), cont.

Package Outline and Dimensions (NL72) cont. – use EPAD Option P3 and Lead Option Z2

Image: ToleFrance of Form & Position MIN. NOM. SYMBOL 0.40mm 0.50mm $inclean 0.10 0.10 inclean in$	0.20	MIN. NOM. MAX.	SAW VERSION:
A. AND E AND E NOM. 0.50	LEAD OPTION	7 MIN. 7 NOM.	EPAD OPTION:
AAX. MIN. NOM. NOM. MIN. 55 0.30 0.40 0.5 55 0.30 0.40 0.5 COMMON DIMENSION MIN NOM AA 0.80 0.90 0.00 AA 0.80 0.90 0.20 AA 0.80 0.20 ref. B 0.18 0.20 ref. R ref. - 0.45 B 0.18 0.20 ref. NOTES 0.18 0.20 ref. B 0.18 0.20 ref. DIMENSION 10.00 BSC 10.00 B 0.50 BSC 10.00 Nd 72 NAX. 9.75 Nd 18 10.00 18 A2 0 0.65 1.00	7.60 5.90 6.00 6.10 7.60 5.90 6.00 6.10 Z2	. MIN. P2	
TOLERANCES TOLERA	5.80 5.90 6.00 6.00	MIN. P3	REV DESCRIPTION 00 INITAL RELEASE
Image: Single Creek Valley Rd Sin Josen CA Strat Creek Valley Rd Sin Josen CA Strat State Drawing SHEET 4 OF		<u> </u>	DATE APPROVED 12/5/12 RC

Marking Diagram

Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. "YYWW" is the last two digits of the year and week that the part was assembled.
- 4. "LF" denotes RoHS compliant package.

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature
9ZX21901CKLF	Trays	72-pin VFQFPN	0 to +70°C
9ZX21901CKLFT	Tape and Reel	72-pin VFQFPN	0 to +70°C

Revision History

Rev.	Issue Date	Who	Description	Page #
к	4/15/2013		1. Corrected typo in OE# Latency parameter; changed 1 min. to 3 max. cycles to 4 min. to 12 max. clocks.	5
L	1/30/2015		Updated package dimensions and outline drawing with NL72 SAWN version.	Various
М	4/23/2015	RDW	 Added marking diagram and associated notes. Re-created datasheet in latesrt IDT template. 	Various
Ν	11/19/2015	RDW	Update Input Clock spec with new standardized table matching PCIe SIG input specs.	5

