RF Power LDMOS Transistor

N- Channel Enhancement- Mode Lateral MOSFET

This 18 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 2110 to 2170 MHz.

2100 MHz

• Typical Doherty Single- Carrier W- CDMA Performance: $V_{DD} = 28$ Vdc, $I_{DQA} = 250$ mA, $V_{GSB} = 0.2$ Vdc, $P_{out} = 18$ W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2110 MHz	17.3	52.1	8.2	-32.4
2140 MHz	17.4	51.0	8.0	-33.1
2170 MHz	17.4	50.5	8.0	-35.0

Features

- Advanced High Performance In-Package Doherty
- Greater Negative Gate- Source Voltage Range for Improved Class C Operation
- Designed for Digital Predistortion Error Correction Systems

^{1.} Device cannot operate with the V_{DD} current supplied through pin 5 and pin 8.

NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate- Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	193 2.9	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 72°C, 18 W Avg., W- CDMA, 28 Vdc, I _{DQA} = 250 mA, V _{GSB} = 0.2 Vdc, 2140 MHz	$R_{\theta JC}$	0.76	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Zero Gate Voltage Drain Leakage Current ($V_{DS} = 65$ Vdc, $V_{GS} = 0$ Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}		_	1	μAdc
Gate- Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}		_	1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 40 \mu \text{Adc})$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DA} = 250 mAdc, Measured in Functional Test)	V _{GSA(Q)}	1.5	1.8	2.3	Vdc
Drain- Source On- Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 0.4 \text{ Adc})$	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics - Side B, Peaking	·			•	•
Onto The state of the state		0.0	4.0	4.0	141

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 60 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain- Source On- Voltage (V _{GS} = 10 Vdc, I _D = 0.6 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Each side of device measured separately.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests ^(1,2) (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQA} = 250$ mA, $V_{GSB} = 0.2$ Vdc, $P_{out} = 18$ W Avg., f = 2170 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	16.5	17.4	19.5	dB
Drain Efficiency	ηD	47.3	50.5	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.3	8.0	—	dB
Adjacent Channel Power Ratio	ACPR		-35.0	-29.8	dBc

Load Mismatch ⁽²⁾ (In NXP Doherty Test Fixture, 50 chm system) I_{DQA} = 250 mA, V_{GSB} = 0.2 Vdc, f = 2140 MHz, 12 μ sec(on), 12% Duty Cycle

VSWR 10:1 at 32 Vdc, 126 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 78 W Pulsed CW Rated Power)	

Typical Performance ⁽²⁾ (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 250 mA, V_{GSB} = 0.2 Vdc, 2110–2170 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	—	75	—	W
P _{out} @ 3 dB Compression Point (3)	P3dB	—	112	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2110–2170 MHz frequency range)	Φ	—	-21.9	—	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	—	120	—	MHz
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 18 W Avg.	G _F	—	0.17	—	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG		0.01	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) (4)	∆P1dB	—	0.006	—	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
A2T21H100-25SR3	R3 Suffix = 250 Units, 44 mm Tape Width, 13- inch Reel	NI-780S-4L4S

1. Part internally matched both on input and output.

2. Measurements made with device in an asymmetrical Doherty configuration.

3. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W- CDMA single- carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

4. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

Figure 2. A2T21H100-25SR3 Test Circuit Component Layout

	Table 6.	A2T21H100-	25SR3 Tes	t Circuit	Componer	nt Designatio	ons and Values
--	----------	------------	-----------	-----------	----------	---------------	----------------

Part	Description	Part Number	Manufacturer
C1, C8, C10, C11, C16, C18	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C2, C4, C5, C7, C12, C13, C14, C17	10 pF Chip Capacitors	ATC600F100JT250XT	ATC
C3, C6, C15	0.5 pF Chip Capacitors	ATC600F0R5BT250XT	ATC
C9, C19	220 μ F, 50 V Electrolytic Capacitors	227CKS050M	Illinois Capacitor
R1	50 Ω, 10 W Chip Resistor	C10A50Z4	Anaren
R2, R5	10 KΩ, 1/4 W Chip Resistors	CRCW120610K0JNEA	Vishay
R3, R4	5.6 Ω , 1/4 W Chip Resistors	CRCW12065R60FKEA	Vishay
Z1	2000–2300 MHz Band, 90°, 5 dB Directional Coupler	X3C21P1-05S	Anaren
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D60961	MTL

TYPICAL CHARACTERISTICS — 2110–2170 MHz

Figure 3. Single- Carrier Output Peak- to- Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 18 Watts Avg.

Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

TYPICAL CHARACTERISTICS - 2110-2170 MHz

Figure 7. Broadband Frequency Response

Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 237 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power								
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
2110	16.2 – j20.6	14.5 + j19.4	13.0 – j11.6	19.9	46.6	45	57.2	-15			
2140	22.6 – j22.0	18.4 + j19.4	11.3 – j8.94	19.7	46.6	46	57.7	-16			
2170	30.0 – j15.0	25.1 + j17.0	12.1 – j10.2	19.6	46.7	47	58.1	-15			

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	16.2 – j20.6	16.6 + j21.3	12.8 – j12.8	17.7	47.4	55	58.3	-21		
2140	22.6 – j22.0	22.3 + j20.9	12.2 – j11.4	17.5	47.4	55	58.5	-22		
2170	30.0 – j15.0	30.4 + j16.9	12.7 – j12.3	17.4	47.5	56	58.8	-20		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 237 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Drain Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	16.2 – j20.6	11.6 + j22.0	15.5 + j2.97	22.7	44.8	30	68.7	-28		
2140	22.6 – j22.0	16.6 + j23.8	13.6 + j2.89	22.4	44.8	30	68.6	-30		
2170	30.0 – j15.0	24.7 + j23.1	13.3 + j1.92	22.2	45.0	31	68.8	-27		

			Max Drain Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	16.2 – j20.6	13.0 + j23.6	14.4 + j1.73	20.3	45.6	36	69.0	-37		
2140	22.6 – j22.0	18.9 + j25.5	12.6 + j1.63	20.1	45.5	36	68.7	-39		
2170	30.0 – j15.0	29.3 + j24.0	13.3 + j0.91	20.0	45.7	37	69.0	-35		

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning

V_{DD} = 28 Vdc, V_{GSB} = 0.2 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle

Max Output Power										
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	9.12 – j16.9	10.8 + j19.0	6.94 – j11.9	14.2	48.6	72	61.8	-31		
2140	12.3 – j17.6	15.2 + j19.5	7.25 – j12.4	14.1	48.5	70	60.8	-32		
2170	17.3 – j16.3	21.2 + j18.5	7.13 – j12.8	14.0	48.4	70	60.3	-31		

			Max Output Power									
				P3dB								
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)				
2110	9.12 – j16.9	12.8 + j20.5	7.33 – j13.3	12.2	49.2	83	62.3	-38				
2140	12.3 – j17.6	18.7 + j20.4	7.57 – j13.9	12.0	49.1	82	61.1	-39				
2170	17.3 – j16.3	26.4 + j17.2	7.78 – j15.1	11.9	49.1	81	60.0	-38				

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning

V_{DD} = 28 Vdc, V_{GSB} = 0.2 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle

			Max Drain Efficiency								
				P1dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
2110	9.12 – j16.9	7.84 + j19.6	13.9 – j3.44	15.6	46.2	42	73.9	-40			
2140	12.3 – j17.6	11.4 + j21.4	13.0 – j3.73	15.5	46.3	42	73.1	-40			
2170	17.3 – j16.3	16.4 + j23.3	12.0 – j1.88	15.2	45.7	37	72.8	-43			

			Max Drain Efficiency								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
2110	9.12 – j16.9	9.75 + j21.2	12.6 – j3.97	13.6	46.9	49	74.0	-54			
2140	12.3 – j17.6	15.7 + j22.5	12.1 – j6.94	13.4	47.6	57	72.9	-49			
2170	17.3 – j16.3	23.6 + j22.1	11.2 – j6.81	13.2	47.5	57	72.7	50			

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 8. P1dB Load Pull Output Power Contours (dBm)

Figure 9. P1dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 12. P3dB Load Pull Output Power Contours (dBm)

Figure 13. P3dB Load Pull Efficiency Contours (%)

Figure 14. P3dB Load Pull Gain Contours (dB)

 Gain
 Drain Efficiency
 Linearity
 Output Power

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 16. P1dB Load Pull Output Power Contours (dBm)

Figure 17. P1dB Load Pull Efficiency Contours (%)

Figure 18. P1dB Load Pull Gain Contours (dB)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 2140 MHz

Figure 20. P3dB Load Pull Output Power Contours (dBm)

Figure 21. P3dB Load Pull Efficiency Contours (%)

Figure 22. P3dB Load Pull Gain Contours (dB)

PACKAGE INFORMATION

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00406D	REV: A
NI-780-4S4		STANDAF	RD: NON-JEDEC	
		S0T1797	7-1	05 FEB 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 2, 3, 6 & 7. H2 APPLIES TO PINS 1, 4, 5 & 8.

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE AND COULD CHANGE ONCE SUFFICIENT MANUFACTURING DATA IS AVAILABLE.

		INCH	МІ	LLIME	TER			INCH	MILLIN	IETER
DIM	MIN	MAX	MIN		MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	815	20.4	5 —	20.70	R	.365	375	9.27	- 9.53
BB	.380	390	9.65	5 —	9.91	S	.365	375	9.27	- 9.53
сс	.125	170	3.18	_	4.32	U	.035	045	0.89	- 1.14
Е	.035	045	0.89) _	1.14	V1	.795	805	20.19	- 20.45
F	.004	007	0.10		0.18	W1	.165	175	4.19	- 4.45
H1	.057	067	1.45	5 _	1.70	W2	.315	325	8.00	- 8.26
H2	.054	070	1.37	7 _	1.78	W3	.425	435	10.80	- 11.05
J	.17	5 BSC	4	.45 E	BSC	Y	.9	56 BSC	24.2	8 BSC
ĸ	.170	210	4.32	2 _	5.33	Z	R.000	– R.040	R0.00	– R1.02
K1	.070	090	1.78	_	2.29	AB	.145	155	3.68	- 3.94
м	.774	786	19.66	S _	19.96	aaa	-	.005 —	- 0.1	13 —
N	.772	788	19.61	_	20.02	bbb	_	.010 —	- 0.	25 —
						ccc	-	.015 —	- 0.	38 –
C	NXP SEM	ICONDUCTORS N.V. GHTS RESERVED		M	ECHANICA	L OUT	LINE	PRINT VERS	SION NOT TO) SCALE
TITLE:							DOCUME	NT NO: 98ASAC	0406D	REV: A
NI-780-4S4						Ī	STANDARD: NON-JEDEC			
							SOT1797	-1	05	FEB 2016

Note: Output leads (pin 6 and 7) have a small square hole that is used as a reference location in the manufacturing process.

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	June 2015	Initial release of data sheet
1	Jan. 2022	 Package Outline Drawing: 98ASA00406D package outline updated to Rev. A, pp. 13–14 (Rev. A updated the company name to NXP Semiconductors, N.V.). Added a note describing package feature used for manufacturing process, p. 14.