Rev. 1, 05/2021

RF Power GaN Transistor

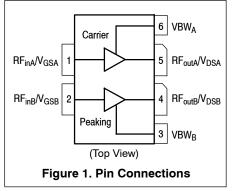
This 80 W asymmetrical Doherty RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2300 to 2400 MHz.

This part is characterized and performance is guaranteed for applications operating in the 2300 to 2400 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

2300 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 48 Vdc, I_{DQA} = 300 mA, V_{GSB} = -5.0 Vdc, P_{out} = 80 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2300 MHz	14.5	53.7	8.4	-30.5
2350 MHz	14.6	52.8	8.3	-30.6
2400 MHz	14.2	53.2	8.1	-31.9


Features

- High terminal impedances for optimal broadband performance
- · Advanced high performance in-package Doherty
- · Improved linearized error vector magnitude with next generation signal
- Able to withstand extremely high output VSWR and broadband operating conditions

A3G23H500W17S

2300-2400 MHz, 80 W Avg., 48 V AIRFAST RF POWER GaN TRANSISTOR

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate-Source Voltage	V _{GS}	-8, 0	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum Forward Gate Current, I _{G (A+B)} , @ T _C = 25°C	I _{GMAX}	66	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Maximum Channel Temperature	T _{CH}	225	°C

Table 2. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Operating Voltage	V_{DD}	48	Vdc

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 90°C, P _D = 84 W	R _{θJC} (IR)	0.53 (1)	°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature 90°C, P _D = 84 W	R _{θCHC} (FEA)	0.96 (2)	°C/W

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1C
Charge Device Model (per JS-002-2014)	C3

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (3)					
('d5 - ' - ', 'D - ' · · · · · · · · · · · · · · · · · ·	v _{(BR)DSS}	150 150	_	_	Vdc
On Characteristics — Side A, Carrier					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 20 mAdc)	V _{GS(th)}	-3.5	-2.8	-2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 48 Vdc, I _{DA} = 300 mAdc, Measured in Functional Test)	V _{GSA(Q)}	-3.2	-2.7	-2.2	Vdc
Gate-Source Leakage Current (V _{DS} = 150 Vdc, V _{GS} = -8 Vdc)	I _{GSS}	-9.9	_	_	mAdc
On Characteristics — Side B, Peaking	·				
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 20 mAdc)	V _{GS(th)}	-3.8	-3.1	-2.3	Vdc
Gate-Source Leakage Current (V _{DS} = 150 Vdc, V _{GS} = -8 Vdc)	I _{GSS}	-9.9	_	_	mAdc

- 1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 2. $R_{\theta CHC}$ (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A + B/(T + 273)]}$, where T is the channel temperature in degrees Celsius, A = -11.1 and B = 8366.
- 3. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests ⁽¹⁾ (In NXP Doherty Production Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 300 mA, V_{GSB} = -5.0 Vdc, P_{out} = 80 W Avg., f = 2300 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. [See note on correct biasing sequence.]

Power Gain	G _{ps}	13.3	14.3	16.5	dB
Drain Efficiency	η_{D}	48.0	52.7	_	%
P _{sat} , Pulsed CW	P _{sat}	55.7	56.4	_	dBm
Adjacent Channel Power Ratio	ACPR	_	-34.2	-31.3	dBc

Wideband Ruggedness (In NXP Doherty Production Test Fixture, 50 ohm system) $I_{DQA} = 300$ mA, $V_{GSB} = -5.0$ Vdc, f = 2350 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

ISBW of 400 MHz at 55 Vdc, 151 W Avg. Modulated Output Power	No Device Degradation
(3 dB Input Overdrive from 80 W Avg. Modulated Output Power)	

Typical Performance (In NXP Doherty Production Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQA} = 300 mA, V_{GSB} = -5.0 Vdc, 2300–2400 MHz Bandwidth

P _{out} @ 3 dB Compression Point (2)	P3dB	_	603	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2300–2400 MHz bandwidth)	Φ	_	-8	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		300		MHz
Gain Flatness in 100 MHz Bandwidth @ Pout = 80 W Avg.	G _F	_	0.25	_	dB
Gain Variation over Temperature (-40°C to +85°C)	ΔG		0.008		dB/°C
Output Power Variation over Temperature (–40°C to +85°C)	ΔP3dB	_	0.003	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A3G23H500W17SR3	R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel	NI-780S-4S2S

- 1. Part internally input matched.
- P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

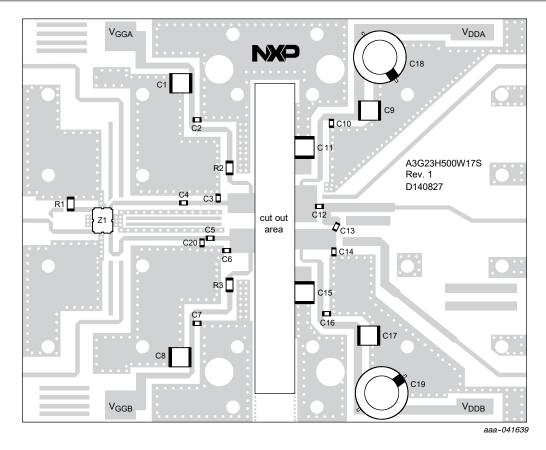
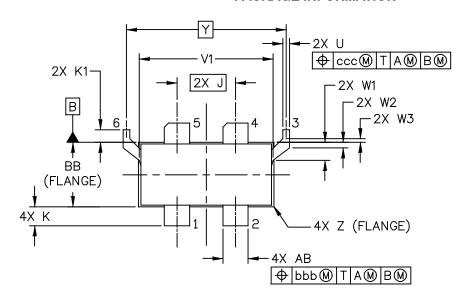
NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors in a Doherty Configuration

Bias ON the device

- 1. Set gate voltage $V_{\mbox{GSA}}$ and $V_{\mbox{GSB}}$ to -5 V.
- 2. Set drain voltage V_{DSA} and V_{DSB} to nominal supply voltage (+48 V).
- 3. Increase V_{GSA} (carrier side) until I_{DQA} current is attained.
- 4. Increase $V_{\mbox{\footnotesize GSB}}$ (peaking side) to target bias voltage.
- 5. Apply RF input power to desired level.

Bias OFF the device

- 1. Disable RF input power.
- 2. Adjust gate voltage $V_{\mbox{\footnotesize GSA}}$ and $V_{\mbox{\footnotesize GSB}}$ to -5 V.
- 3. Adjust drain voltage V_{DSA} and V_{DSB} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Disable V_{GSA} and V_{GSB} .

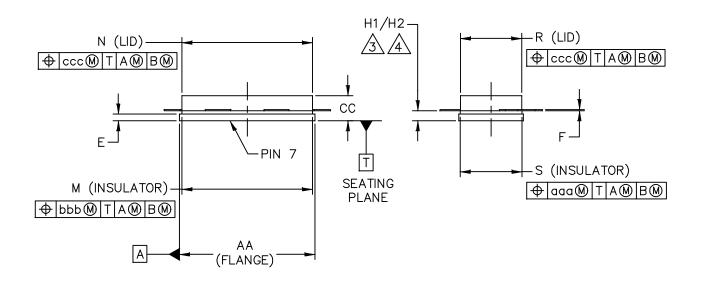

Figure 2. A3G23H500W17S Production Test Circuit Component Layout

Table 7. A3G23H500W17S Production Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C8, C9, C11, C15, C17	10 uF Chip Capacitor	C5750X7S2A106M	TDK
C2, C4, C5, C7, C10, C16	11 pF Chip Capacitor	600F110JT250XT	ATC
C3	1.2 pF Chip Capacitor	600F1R2BT250XT	ATC
C6	0.8 pF Chip Capacitor	600F0R8BT250XT	ATC
C12	3.9 pF Chip Capacitor	600F3R9BT250XT	ATC
C13	6.8 pF Chip Capacitor	600F6R8BT250XT	ATC
C14	0.6 pF Chip Capacitor	600F0R6BT250XT	ATC
C18, C19	220 μF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26-RH	Multicomp
C20	0.3 pF Chip Capacitor	600F0R3BT250XT	ATC
R1	50 Ω , 10 W Termination Chip Resistor	C10A50Z4	Anaren
R2, R3	3.6 Ω, 1/4 W Chip Resistor	CRCW12063R60FKEA	Vishay
Z1	2300–2700 MHz, 90°, 4 dB Hybrid Coupler	X3C25P1-04S	Anaren
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D140827	MTL

PACKAGE INFORMATION

	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE			
TITLE:		DOCUMEN	NT NO: 98ASA01208D	REV: 0		
NI-780S-4S2S			STANDARD: NON-JEDEC			
		S0T1799	9–6 1	4 AUG 2018		

NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

<u>/3.</u>

DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B TO CLEAR EPOXY FLOW OUT. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
ВВ	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Е	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	J .350 BSC		8.89 BSC		Υ	.956 BSC		24.28 BSC	
K	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.005 0.13		3	
Ν	.772	.788	19.61	20.02	bbb	.010 0.25		25	
					ccc	.015		0.3	88

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NC	T TO SCALE		
TITLE:		DOCUMEN	NT NO: 98ASA01208D	REV: 0		
NI-780S-4S2S			STANDARD: NON-JEDEC			
		S0T1799	-6	14 AUG 2018		

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

.s2p File

Development Tools

• Printed Circuit Boards

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description		
0	Apr. 2021	Initial release of data sheet		
1	May 2021	Table 3, ESD Protection Characteristics: added Human Body Model, p. 2		