Document Number: A3T18H360W23S Rev. 1, 06/2017

VROHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

This 63 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 MHz.

1800 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 28$ Vdc, $I_{DQA} = 700$ mA, $V_{GSB} = 0.6$ Vdc, $P_{out} = 63$ W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1805 MHz	16.3	52.8	7.7	-30.3
1840 MHz	16.6	52.3	7.6	-31.7
1880 MHz	16.6	51.6	7.5	-32.8

Features

- · Advanced high performance in-package Doherty
- Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- Designed for digital predistortion error correction systems

1805–1880 MHz, 63 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR

- 1. Pin connections 4 and 5 are DC coupled and RF independent.
- Device can operate with V_{DD} current supplied through pin 3 and pin 6.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T _C = 25°C when DC current is fed through pin 3 and pin 6 Derate above 25°C	CW	104 0.48	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 74°C, 63 W Avg., W-CDMA, 28 Vdc, I _{DQA} = 700 mA, V _{GSB} = 0.6 Vdc, 1840 MHz	$R_{\theta JC}$	0.22	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Charge Device Model (per JESD22-C101)	C3

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	—	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	—	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		—	1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 120 μAdc)	V _{GS(th)}	1.4	1.8	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DA} = 700 mAdc, Measured in Functional Test)	V _{GSA(Q)}	2.3	2.7	3.1	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.2 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics - Side B, Peaking					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 240 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.4 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Side A and Side B are tied together for these measurements.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Мах	Unit

Functional Tests (1,2,3) (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQA} = 700$ mA, $V_{GSB} = 0.6$ Vdc, $P_{out} = 63$ W Avg., f = 1880 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ± 5 MHz Offset.

Power Gain	G _{ps}	16.0	16.6	19.0	dB
Drain Efficiency	η _D	49.0	51.6	_	%
Pout @ 3 dB Compression Point, CW	P3dB	54.0	54.7	_	dBm
Adjacent Channel Power Ratio	ACPR	—	-32.8	-29.0	dBc

Load Mismatch ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) I_{DQA} = 700 mA, V_{GSB} = 0.6 Vdc, f = 1840 MHz, 12 µsec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 372 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 199 W Pulsed CW Rated Power)	

Typical Performance ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 700 mA, V_{GSB} = 0.6 Vdc, 1805–1880 MHz Bandwidth

Pout @ 3 dB Compression Point (4)	P3dB	—	375	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz bandwidth)	Φ		-23	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		130		MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 63 W Avg.	G _F	—	0.3	—	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.003	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	_	0.04	_	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
A3T18H360W23SR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	ACP-1230S-4L2S

1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurements made with device in an asymmetrical Doherty configuration.

4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Note: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

Figure 2. A3T18H360W23SR6 Test Circuit Component Layout

Table 6.	A3T18H360W23SI	R6 Test Circui	t Componer	nt Designation	s and Values

Part	Description	Part Number	Manufacturer
C1, C5, C6, C9	20 pF Chip Capacitor	GQM2195C2E200GB12D	Murata
C2, C4	12 pF Chip Capacitor	GQM2195C2E120FB12D	Murata
C3, C18, C19	0.6 pF Chip Capacitor	GQM2195C2ER60BB12D	Murata
C7, C8	5 pF Chip Capacitor	GQM2195C2E5R0BB12D	Murata
C10	2.2 μF Chip Capacitor	HMK432B7225KM-T	Taiyo Yuden
C11, C12, C13, C14, C15	15 μF Chip Capacitor	C5750X7S2A156M230KB	TDK
C16, C17	220 µF, 100 V Electrolytic Capacitor	MCGPR100V227M16X26-RH	Multicomp
R1, R2	2.2 Ω, 1/8 W Chip Resistor	CRCW08052R20JNEA	Vishay
R3	50 Ω, 8 W Termination Chip Resistor	C8A50Z4A	Anaren
Z1	1700-2000 MHz Band, 90°, 5 dB Directional Coupler	X3C19P1-05S	Anaren
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D84100	MTL

TYPICAL CHARACTERISTICS — 1805–1880 MHz

Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 63 Watts Avg.

TWO-TONE SPACING (MHz)

Figure 4. Intermodulation Distortion Products versus Two-Tone Spacing

Compression (PARC) versus Output Power

Figure 7. Broadband Frequency Response

Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 726 mA, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

				Ма	x Output Pov	wer				
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1805	0.99 – j5.03	1.16 + j5.13	1.70 – j3.99	17.9	51.7	148	58.8	-11		
1840	1.08 – j5.40	1.33 + j5.44	1.63 – j4.13	17.7	51.7	148	57.7	-12		
1880	1.31 – j5.86	1.62 + j5.86	1.61 – j4.34	17.7	51.5	141	55.9	-12		

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1805	0.99 – j5.03	1.02 + j5.28	1.67 – j4.35	15.7	52.5	177	59.9	-17		
1840	1.08 – j5.40	1.18 + j5.64	1.65 – j4.43	15.6	52.4	175	59.2	-18		
1880	1.31 – j5.86	1.44 + j6.13	1.67 – j4.66	15.6	52.2	168	57.5	-18		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 8. Carrier Side Load Pull Performance — Maximum Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 726 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

				Мах	Drain Efficie	ency			
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(V)	η _D (%)	АМ/РМ (°)	
1805	0.99 – j5.03	1.07 + j5.07	3.12 – j2.79	20.2	50.2	105	67.6	-14	
1840	1.08 – j5.40	1.27 + j5.38	2.96 – j3.21	20.0	50.3	108	66.1	-14	
1880	1.31 – j5.86	1.50 + j5.77	2.44 – j2.83	19.7	50.1	101	63.2	-15	

				Max	Drain Efficie	ency				
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
1805	0.99 – j5.03	0.94 + j5.23	3.49 – j2.86	18.5	50.8	120	70.6	-23		
1840	1.08 – j5.40	1.09 + j5.57	3.35 – j2.88	18.4	50.8	120	70.3	-24		
1880	1.31 – j5.86	1.31 + j6.04	3.22 – j2.88	18.4	50.7	117	69.1	-23		

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 1840 MHz

Figure 8. P1dB Load Pull Output Power Contours (dBm)

Figure 9. P1dB Load Pull Efficiency Contours (%)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

- Gain
 Drain Efficiency
- _____ Linearity
- Output Power

P3dB - TYPICAL CARRIER SIDE LOAD PULL CONTOURS - 1840 MHz

Figure 13. P3dB Load Pull Efficiency Contours (%)

Gain
 Drain Efficiency
 Linearity
 Output Power

Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, V_{GSB} = 0.7 Vdc, Pulsed CW, 10 μ sec(on), 10% Duty Cycle

			Max Output Power							
					P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
1805	1.11 – j4.67	1.06 + j4.94	2.06 – j4.24	15.6	54.9	310	58.8	-31		
1840	1.29 – j5.10	1.34 + j5.39	2.16 – j4.38	15.7	54.9	309	59.2	-33		
1880	1.74 – j5.74	1.81 + j6.07	2.23 – j4.45	15.8	54.9	308	59.4	-34		

			Max Output Power								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
1805	1.11 – j4.67	1.05 + j5.16	2.16 – j4.63	13.4	55.6	367	60.2	-39			
1840	1.29 – j5.10	1.35 + j5.68	2.23 – j4.65	13.5	55.7	369	60.9	-41			
1880	1.74 – j5.74	1.87 + j6.48	2.38 – j4.82	13.5	55.6	362	60.3	-42			

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 10. Peaking Side Load Pull Performance — Maximum Efficiency Tuning

V_{DD} = 28 Vdc, V_{GSB} = 0.7 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle

Max Drain Efficiency									
				P1dB					
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
1805	1.11 – j4.67	0.89 + j4.82	4.60 – j1.84	17.1	53.0	199	71.0	-35	
1840	1.29 – j5.10	1.13 + j5.25	3.97 – j1.98	17.2	53.3	213	71.9	-37	
1880	1.74 – j5.74	1.54 + j5.89	3.49 – j2.09	17.1	53.4	217	71.9	-38	

			Max Drain Efficiency								
				P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)			
1805	1.11 – j4.67	0.93 + j5.09	4.75 – j2.97	14.9	54.1	258	69.7	-43			
1840	1.29 – j5.10	1.19 + j5.58	4.34 – j2.64	15.0	54.2	262	70.5	-45			
1880	1.74 – j5.74	1.65 + j6.34	4.06 – j2.49	14.9	54.1	258	70.1	-47			

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

P1dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 1840 MHz

Figure 16. P1dB Load Pull Output Power Contours (dBm)

NOTE: (P) = Maximum Output Power (E) = Maximum Drain Efficiency

Gain
 Drain Efficiency
 Linearity
 Output Power

P3dB - TYPICAL PEAKING SIDE LOAD PULL CONTOURS - 1840 MHz

Figure 20. P3dB Load Pull Output Power Contours (dBm)

Figure 21. P3dB Load Pull Efficiency Contours (%)

- Gain
 Drain Efficiency
 Linearity
- _____ Output Power

PACKAGE DIMENSIONS

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

A DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE.

- 5. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.

	INC	HES	MIL	LIMETERS		1	NCHES	MILLI	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	S	.365	.375	9.27	9.53	
BB	.395	.405	10.03	10.29	U	.035	.045	0.89	1.14	
CC	.160	.190	4.06	4.83	V1	.640	.655	16.26	16.64	
D	.455	.465	11.56	11.81	W1	.105	.115	2.67	2.92	
Е	.062	.069	1.57	1.75	W2	.135	.145	3.43	3.68	
F	.004	.007	0.10	0.18	W3	.245	.255	6.22	6.48	
H1	.082	.090	2.08	2.29	W4	.265	.281	6.73	7.14	
H2	.078	.094	1.98	2.39	Y	0.69	95 BSC	17.65 BSC		
К	.175	.195	4.45	4.95	Z1	R.000	R.040	R0.00	R1.02	
L	0.270	D BSC	6	.86 BSC	Z2	.060 .100		1.52	2.54	
М	1.219	1.241	30.96	31.52	aaa	.015		0.38		
N	1.218	1.242	30.94	31.55	bbb		010	0.25		
R	.365	.375	9.27	9.53	ccc		020	0.	51	
(NXP SEMICC ALL RIGH	NDUCTORS N.V. TS RESERVED		MECHANICA	L OUT	LINE	PRINT VEF	RSION NOT	TO SCALE	
TITLE:						DOCUMENT NO: 98ASA00974D REV: A				
ACP-1230S-4L2S					ſ	STANDARD: NON-JEDEC				
						SOT1800-4 21 JUN 2017				

9. DATUM A AND B TO BE DETERMINED AT DATUM T.

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2017	Initial release of data sheet
1	June 2017	 Table 6, Test Circuit Component Designations and Values: corrected C18 and C19 value and part number to 0.6 pF, GQM2195C2ER60BB12D, p. 4 Package Outline: replaced 98ASA00974D, Rev. O with Rev. A, pp. 13, 14. Corrected dimension E.