Rev. 1, 08/2018



# **RF Power LDMOS Transistor**

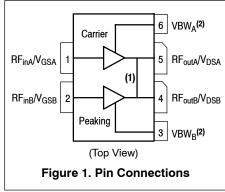
# N-Channel Enhancement-Mode Lateral MOSFET

This 87 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2110 to 2200 MHz.

#### 2100 MHz

 Typical Doherty Single-Carrier W-CDMA Performance: V<sub>DD</sub> = 30 Vdc, I<sub>DQA</sub> = 800 mA, V<sub>GSB</sub> = 0.35 Vdc, P<sub>out</sub> = 87 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

| Frequency | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) | Output PAR<br>(dB) | ACPR<br>(dBc) |
|-----------|-------------------------|-----------------------|--------------------|---------------|
| 2110 MHz  | 14.8                    | 49.5                  | 8.0                | -30.3         |
| 2140 MHz  | 15.3                    | 48.9                  | 8.0                | -31.1         |
| 2170 MHz  | 15.5                    | 48.6                  | 7.8                | -31.3         |
| 2200 MHz  | 15.5                    | 47.9                  | 7.7                | -32.0         |


#### **Features**

- · Advanced high performance in-package Doherty
- · Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- · Designed for digital predistortion error correction systems

# A3T21H456W23SR6

#### 2110-2200 MHz, 87 W AVG., 30 V AIRFAST RF POWER LDMOS TRANSISTOR





- 1. Pin connections 4 and 5 are DC coupled and RF independent.
- 2. Device can operate with V<sub>DD</sub> current supplied through pin 3 and pin 6.



# **Table 1. Maximum Ratings**

| Rating                                                                                                   | Symbol           | Value       | Unit      |
|----------------------------------------------------------------------------------------------------------|------------------|-------------|-----------|
| Drain-Source Voltage                                                                                     | V <sub>DSS</sub> | -0.5, +65   | Vdc       |
| Gate-Source Voltage                                                                                      | V <sub>GS</sub>  | -6.0, +10   | Vdc       |
| Operating Voltage                                                                                        | V <sub>DD</sub>  | 32, +0      | Vdc       |
| Storage Temperature Range                                                                                | T <sub>stg</sub> | -65 to +150 | °C        |
| Case Operating Temperature Range                                                                         | T <sub>C</sub>   | -40 to +150 | °C        |
| Operating Junction Temperature Range (1,2)                                                               | TJ               | -40 to +225 | °C        |
| CW Operation @ T <sub>C</sub> = 25°C when DC current is fed through pin 3 and pin 6<br>Derate above 25°C | CW               | 131<br>0.8  | W<br>W/°C |

#### **Table 2. Thermal Characteristics**

| Characteristic                                                                                                                                          | Symbol         | Value (2,3) | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------|
| Thermal Resistance, Junction to Case Case Temperature 79°C, 87 W Avg., W-CDMA, 30 Vdc, I <sub>DQA</sub> = 800 mA, V <sub>GSB</sub> = 0.35 Vdc, 2155 MHz | $R_{	heta JC}$ | 0.14        | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JS-001-2017)    | 2     |
| Charge Device Model (per JS-002-2014) | C3    |

# Table 4. Electrical Characteristics ( $T_A = 25$ °C unless otherwise noted)

| Characteristic                                                                                                | Symbol              | Min | Тур  | Max | Unit |
|---------------------------------------------------------------------------------------------------------------|---------------------|-----|------|-----|------|
| Off Characteristics <sup>(4)</sup>                                                                            |                     |     | •    | 1   | •    |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc)                   | I <sub>DSS</sub>    | _   | _    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current (V <sub>DS</sub> = 32 Vdc, V <sub>GS</sub> = 0 Vdc)                   | I <sub>DSS</sub>    | _   | _    | 5   | μAdc |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc)                             | I <sub>GSS</sub>    | _   | _    | 1   | μAdc |
| On Characteristics - Side A, Carrier                                                                          |                     |     |      |     |      |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 160 μAdc)                               | V <sub>GS(th)</sub> | 1.4 | 1.8  | 2.2 | Vdc  |
| Gate Quiescent Voltage<br>(V <sub>DD</sub> = 30 Vdc, I <sub>DA</sub> = 800 mAdc, Measured in Functional Test) | V <sub>GSA(Q)</sub> | 2.2 | 2.6  | 3.0 | Vdc  |
| Drain-Source On-Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 1.6 Adc)                               | V <sub>DS(on)</sub> | 0.0 | 0.15 | 0.3 | Vdc  |
| On Characteristics - Side B, Peaking                                                                          | -                   |     | •    | •   | •    |
| Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 360 \mu \text{Adc})$                                  | V <sub>GS(th)</sub> | 0.8 | 1.2  | 1.6 | Vdc  |
| Drain-Source On-Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 3.6 Adc)                               | V <sub>DS(on)</sub> | 0.0 | 0.15 | 0.3 | Vdc  |

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at <a href="http://www.nxp.com/RF/calculators">http://www.nxp.com/RF/calculators</a>.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a> and search for AN1955.
- 4. Side A and Side B are tied together for these measurements.

(continued)

# Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

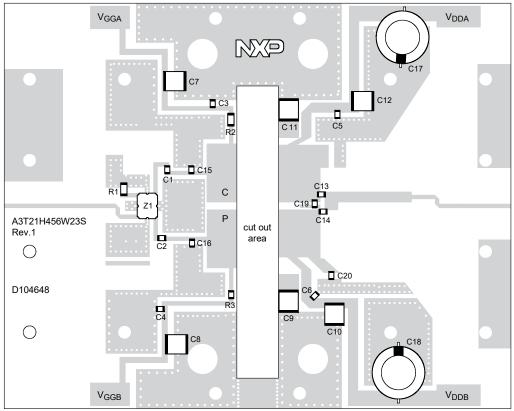
| Characteristic Symbol Min Typ Max | Unit |
|-----------------------------------|------|
|-----------------------------------|------|

Functional Tests (1.2.3) (In NXP Doherty Test Fixture, 50 ohm system)  $V_{DD} = 30 \text{ Vdc}$ ,  $I_{DQA} = 800 \text{ mA}$ ,  $V_{GSB} = 0.35 \text{ Vdc}$ ,  $P_{out} = 87 \text{ W Avg.}$ , f = 2110 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @  $\pm 5 \text{ MHz}$  Offset.

| Power Gain                                    | G <sub>ps</sub> | 13.8 | 14.8  | 16.8  | dB  |
|-----------------------------------------------|-----------------|------|-------|-------|-----|
| Drain Efficiency                              | $\eta_{D}$      | 46.0 | 49.5  | _     | %   |
| P <sub>out</sub> @ 3 dB Compression Point, CW | P3dB            | 55.9 | 56.8  | _     | dBm |
| Adjacent Channel Power Ratio                  | ACPR            | _    | -30.3 | -27.5 | dBc |

Load Mismatch  $^{(3)}$  (In NXP Doherty Test Fixture, 50 ohm system)  $I_{DQA} = 800$  mA,  $V_{GSB} = 0.35$  Vdc, f = 2140 MHz,  $12 \mu sec(on)$ , 10% Duty Cycle

| VSV | NR 10:1 at 32 Vdc, 550 W Pulsed CW Output Power        | No Device Degradation |
|-----|--------------------------------------------------------|-----------------------|
| (3  | B dB Input Overdrive from 389 W Pulsed CW Rated Power) |                       |


Typical Performance  $^{(3)}$  (In NXP Doherty Test Fixture, 50 ohm system)  $V_{DD} = 30 \text{ Vdc}$ ,  $I_{DQA} = 800 \text{ mA}$ ,  $V_{GSB} = 0.35 \text{ Vdc}$ , 2110-2200 MHz Bandwidth

| Pout @ 3 dB Compression Point (4)                                                               | P3dB               | _ | 562   | _ | W     |
|-------------------------------------------------------------------------------------------------|--------------------|---|-------|---|-------|
| AM/PM (Maximum value measured at the P3dB compression point across the 2110–2200 MHz bandwidth) | Φ                  | _ | -20   | _ | o     |
| VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)                          | VBW <sub>res</sub> | _ | 210   | _ | MHz   |
| Gain Flatness in 90 MHz Bandwidth @ P <sub>out</sub> = 87 W Avg.                                | G <sub>F</sub>     | _ | 0.2   | _ | dB    |
| Gain Variation over Temperature (–30°C to +85°C)                                                | ΔG                 |   | 0.005 |   | dB/°C |
| Output Power Variation over Temperature (-30°C to +85°C)                                        | ΔP1dB              | _ | 0.004 | _ | dB/°C |

#### **Table 5. Ordering Information**

| Device          | Tape and Reel Information                             | Package        |
|-----------------|-------------------------------------------------------|----------------|
| A3T21H456W23SR6 | R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel | ACP-1230S-4L2S |

- 1. V<sub>DDA</sub> and V<sub>DDB</sub> must be tied together and powered by a single DC power supply.
- 2. Part internally matched both on input and output.
- 3. Measurements made with device in an asymmetrical Doherty configuration.
- 4. P3dB = P<sub>avg</sub> + 7.0 dB where P<sub>avg</sub> is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.



Note: V<sub>DDA</sub> and V<sub>DDB</sub> must be tied together and powered by a single DC power supply.

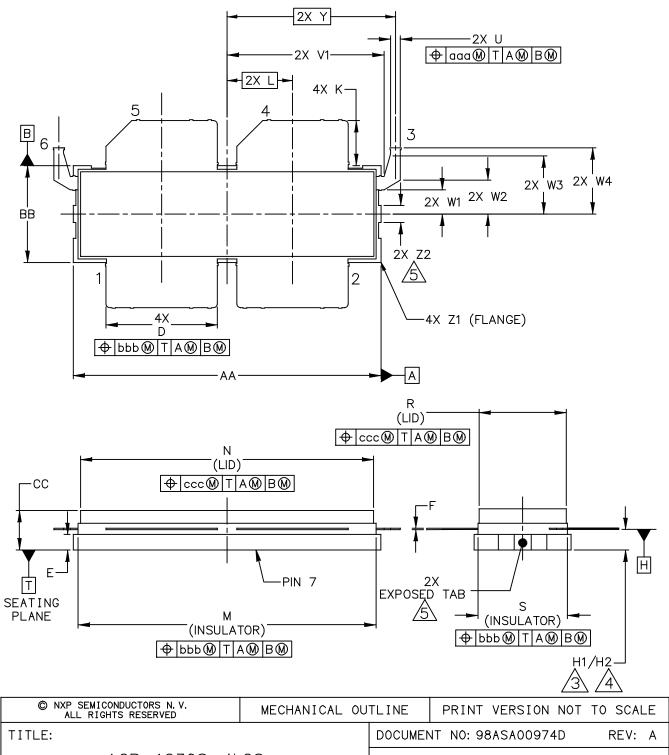

aaa-030170

Figure 2. A3T21H456W23SR6 Test Circuit Component Layout

Table 6. A3T21H456W23SR6 Test Circuit Component Designations and Values

| Part                        | Description                                      | Part Number         | Manufacturer       |
|-----------------------------|--------------------------------------------------|---------------------|--------------------|
| C1, C2, C3, C4, C5, C6, C14 | 15 pF Chip Capacitor                             | ATC600F150FW250XT   | ATC                |
| C7, C8, C9, C10, C11, C12   | 10 μF Chip Capacitor                             | C5750X7S2A106M230KB | TDK                |
| C13                         | 5.1 pF Chip Capacitor                            | ATC600F5R1BW250XT   | ATC                |
| C15                         | 0.6 pF Chip Capacitor                            | ATC600F0R6BW250XT   | ATC                |
| C16                         | 1.0 pF Chip Capacitor                            | ATC600F1R0BW250XT   | ATC                |
| C17, C18                    | 220 μF, 50 V Electrolytic Capacitor              | 227CKS050M          | Illinois Capacitor |
| C19                         | 2.2 pF Chip Capacitor                            | ATC600F2R2BW250XT   | ATC                |
| C20                         | 0.3 pF Chip Capacitor                            | ATC600F0R4BW250XT   | ATC                |
| R1                          | 50 Ω, 8 W Termination Chip Resistor              | S1206N              | RN2 Technologies   |
| R2, R3                      | 6.8 Ω, 1/4 W Chip Resistor                       | CRCW12066R80FKEA    | Vishay             |
| Z1                          | 2000-2300 MHz Band, 90°, 2 dB Asymmetric Coupler | CMX21Q02            | RN2 Technologies   |
| PCB                         | Rogers RO4350B, 0.020", $\epsilon_{r} = 3.66$    | D104848             | MTL                |

# **PACKAGE DIMENSIONS**



| © NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED | MECHANICAL OUTLINE PRINT VERSION N |                     | PRINT VERSION NO   | T TO SCALE  |  |
|-----------------------------------------------|------------------------------------|---------------------|--------------------|-------------|--|
| TITLE:                                        |                                    | DOCUMEN             | NT NO: 98ASA00974D | REV: A      |  |
| ACP-1230S-4L2S                                |                                    | STANDARD: NON-JEDEC |                    |             |  |
|                                               |                                    | S0T1800             | )–4                | 21 JUN 2017 |  |

#### NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.
- 1. TOLERANCE OF DIMENSION H2 IS TENTATIVE.
- THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 9. DATUM A AND B TO BE DETERMINED AT DATUM T.

|                                             | INCHES         |       | MILLIMETERS |                |     | INCHES                |                                 | MILLIMETERS       |       |  |
|---------------------------------------------|----------------|-------|-------------|----------------|-----|-----------------------|---------------------------------|-------------------|-------|--|
| DIM                                         | MIN            | MAX   | MIN         | MAX            | DIM | MIN                   | MAX                             | MIN               | MAX   |  |
| AA                                          | 1.265          | 1.275 | 32.13       | 32.39          | S   | .365                  | .375                            | 9.27              | 9.53  |  |
| ВВ                                          | .395           | .405  | 10.03       | 10.29          | U   | .035                  | .045                            | 0.89              | 1.14  |  |
| cc                                          | .160           | .190  | 4.06        | 4.83           | V1  | .640                  | .655                            | 16.26             | 16.64 |  |
| D                                           | .455           | .465  | 11.56       | 11.81          | W1  | .105                  | .115                            | 2.67              | 2.92  |  |
| E                                           | .062           | .069  | 1.57        | 1.75           | W2  | .135                  | .145                            | 3.43              | 3.68  |  |
| F                                           | .004           | .007  | 0.10        | 0.18           | W3  | .245                  | .255                            | 6.22              | 6.48  |  |
| H1                                          | .082           | .090  | 2.08        | 2.29           | W4  | .265                  | .281                            | 6.73              | 7.14  |  |
| H2                                          | .078           | .094  | 1.98        | 2.39           | Υ   | 0.695 BSC             |                                 | 17.65 BSC         |       |  |
| K                                           | .175           | .195  | 4.45        | 4.95           | Z1  | R.000                 | R.040                           | R0.00             | R1.02 |  |
| L                                           | 0.270 BSC      |       | 6.86 BSC    |                | Z2  | .060                  | .100                            | 1.52              | 2.54  |  |
| М                                           | 1.219          | 1.241 | 30.96       | 31.52          | aaa | .015                  |                                 | 0.38              |       |  |
| N                                           | 1.218          | 1.242 | 30.94       | 31.55          | bbb | .010                  |                                 | 0.25              |       |  |
| R                                           | .365           | .375  | 9.27        | 9.53           | ccc | .020                  |                                 | 0.51              |       |  |
|                                             |                |       |             |                |     |                       |                                 |                   |       |  |
| NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED |                |       |             | MECHANICAL OUT |     | LINE PRINT VERS       |                                 | SION NOT TO SCALE |       |  |
| TITLE: DC                                   |                |       |             |                |     |                       | DOCUMENT NO: 98ASA00974D REV: A |                   |       |  |
|                                             | ACP-1230S-4L2S |       |             |                |     |                       | STANDARD: NON-JEDEC             |                   |       |  |
|                                             |                |       |             |                |     | SOT1800-4 21 JUN 2017 |                                 |                   |       |  |

# PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

# **Application Notes**

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

#### **Software**

- Electromigration MTTF Calculator
- .s2p File

# **Development Tools**

• Printed Circuit Boards

# To Download Resources Specific to a Given Part Number:

- 1. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a>
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

# **REVISION HISTORY**

The following table summarizes revisions to this document.

|   | Revision | Date      | Description                                                                                                       |
|---|----------|-----------|-------------------------------------------------------------------------------------------------------------------|
|   | 0        | May 2018  | Initial release of data sheet                                                                                     |
| - | 1        | Aug. 2018 | Functional Tests table: changed P3dB min value from 55.5 dBm to 55.9 dBm to reflect current production data, p. 3 |