Document Number: A3T23H300W23S Rev. 0, 07/2018

**VRoHS** 

# **RF Power LDMOS Transistor**

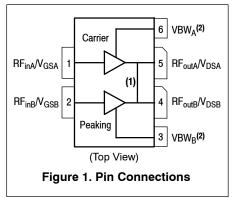
# N-Channel Enhancement-Mode Lateral MOSFET

This 63 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2300 to 2400 MHz.

# 2300 MHz

• Typical Doherty Single-Carrier W-CDMA Performance:  $V_{DD} = 30$  Vdc,  $I_{DQA} = 500$  mA,  $V_{GSB} = 0.7$  Vdc,  $P_{out} = 63$  W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

| Frequency | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) | Output PAR<br>(dB) | ACPR<br>(dBc) |
|-----------|-------------------------|-----------------------|--------------------|---------------|
| 2300 MHz  | 15.6                    | 49.3                  | 8.4                | -30.1         |
| 2350 MHz  | 16.1                    | 48.7                  | 8.5                | -31.9         |
| 2400 MHz  | 16.1                    | 48.0                  | 8.2                | -32.7         |


#### Features

- · Advanced high performance in-package Doherty
- Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- Designed for digital predistortion error correction systems



2300–2400 MHz, 63 W AVG., 30 V AIRFAST RF POWER LDMOS TRANSISTOR





1. Pin connections 4 and 5 are DC coupled and RF independent.

2. Device can operate with V<sub>DD</sub> current supplied through pin 3 and pin 6.



#### Table 1. Maximum Ratings

| Rating                                                                                                   | Symbol           | Value       | Unit      |
|----------------------------------------------------------------------------------------------------------|------------------|-------------|-----------|
| Drain-Source Voltage                                                                                     | V <sub>DSS</sub> | -0.5, +65   | Vdc       |
| Gate-Source Voltage                                                                                      | V <sub>GS</sub>  | -6.0, +10   | Vdc       |
| Operating Voltage                                                                                        | V <sub>DD</sub>  | 32, +0      | Vdc       |
| Storage Temperature Range                                                                                | T <sub>stg</sub> | -65 to +150 | °C        |
| Case Operating Temperature Range                                                                         | T <sub>C</sub>   | -40 to +150 | °C        |
| Operating Junction Temperature Range (1,2)                                                               | TJ               | -40 to +225 | °C        |
| CW Operation @ T <sub>C</sub> = 25°C when DC current is fed through pin 3 and pin 6<br>Derate above 25°C | CW               | 180<br>1.2  | W<br>W/°C |

#### **Table 2. Thermal Characteristics**

| Characteristic                                                                                                                                               | Symbol          | Value <sup>(2,3)</sup> | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------|
| Thermal Resistance, Junction to Case<br>Case Temperature 73°C, 63 W Avg., W-CDMA, 30 Vdc, I <sub>DQA</sub> = 500 mA,<br>V <sub>GSB</sub> = 0.7 Vdc, 2350 MHz | $R_{\theta JC}$ | 0.17                   | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JS-001-2017)    | 2     |
| Charge Device Model (per JS-002-2014) | C3    |

#### Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                | Symbol              | Min | Тур  | Max | Unit |
|---------------------------------------------------------------------------------------------------------------|---------------------|-----|------|-----|------|
| Off Characteristics <sup>(4)</sup>                                                                            |                     |     |      |     |      |
| Zero Gate Voltage Drain Leakage Current<br>(V <sub>DS</sub> = 65 Vdc, V <sub>GS</sub> = 0 Vdc)                | I <sub>DSS</sub>    | _   | —    | 10  | μAdc |
| Zero Gate Voltage Drain Leakage Current<br>(V <sub>DS</sub> = 32 Vdc, V <sub>GS</sub> = 0 Vdc)                | I <sub>DSS</sub>    | _   | _    | 5   | μAdc |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc)                             | I <sub>GSS</sub>    |     |      | 1   | μAdc |
| On Characteristics - Side A, Carrier                                                                          |                     |     |      |     |      |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 140 μAdc)                               | V <sub>GS(th)</sub> | 1.3 | 1.8  | 2.3 | Vdc  |
| Gate Quiescent Voltage<br>(V <sub>DD</sub> = 30 Vdc, I <sub>DA</sub> = 500 mAdc, Measured in Functional Test) | V <sub>GSA(Q)</sub> | 2.2 | 2.6  | 3.0 | Vdc  |
| Drain-Source On-Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 1.4 Adc)                               | V <sub>DS(on)</sub> | 0.1 | 0.15 | 0.3 | Vdc  |
| On Characteristics - Side B, Peaking                                                                          |                     |     |      |     |      |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 320 μAdc)                               | V <sub>GS(th)</sub> | 0.8 | 1.2  | 1.6 | Vdc  |
| Drain-Source On-Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 3.2 Adc)                               | V <sub>DS(on)</sub> | 0.1 | 0.15 | 0.3 | Vdc  |

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Side A and Side B are tied together for these measurements.

(continued)

# A3T23H300W23SR6

#### Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic | Symbol | Min | Тур | Мах | Unit |
|----------------|--------|-----|-----|-----|------|
|                |        |     |     |     |      |

**Functional Tests** <sup>(1,2,3)</sup> (In NXP Doherty Test Fixture, 50 ohm system)  $V_{DD}$  = 30 Vdc,  $I_{DQA}$  = 500 mA,  $V_{GSB}$  = 0.7 Vdc,  $P_{out}$  = 63 W Avg., f = 2300 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

| Power Gain                        | G <sub>ps</sub> | 14.4 | 15.6  | 16.8  | dB  |
|-----------------------------------|-----------------|------|-------|-------|-----|
| Drain Efficiency                  | η <sub>D</sub>  | 46.7 | 49.3  | _     | %   |
| Pout @ 3 dB Compression Point, CW | P3dB            | 55.3 | 56.2  | _     | dBm |
| Adjacent Channel Power Ratio      | ACPR            |      | -29.0 | -26.0 | dBc |

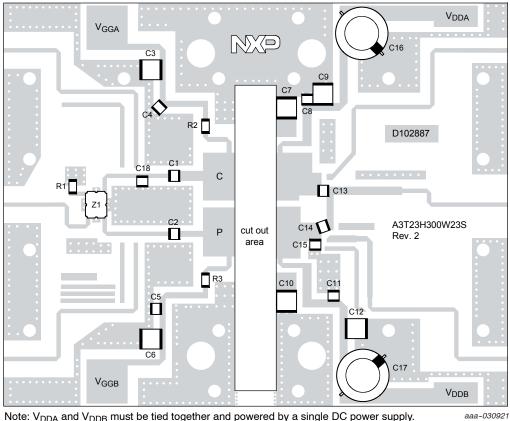
Load Mismatch <sup>(3)</sup> (In NXP Doherty Test Fixture, 50 ohm system)  $I_{DQA}$  = 500 mA,  $V_{GSB}$  = 0.7 Vdc, f = 2350 MHz, 12  $\mu$ sec(on), 10% Duty Cycle

| VSWR 10:1 at 32 Vdc, 360 W Pulsed CW Output Power       | No Device Degradation |
|---------------------------------------------------------|-----------------------|
| (3 dB Input Overdrive from 210 W Pulsed CW Rated Power) |                       |

**Typical Performance** <sup>(3)</sup> (In NXP Doherty Test Fixture, 50 ohm system)  $V_{DD}$  = 30 Vdc,  $I_{DQA}$  = 500 mA,  $V_{GSB}$  = 0.7 Vdc, 2300–2400 MHz Bandwidth

| Pout @ 3 dB Compression Point (4)                                                                     | P3dB               | _ | 410   | — | W     |
|-------------------------------------------------------------------------------------------------------|--------------------|---|-------|---|-------|
| AM/PM<br>(Maximum value measured at the P3dB compression point across<br>the 2300–2400 MHz bandwidth) | Φ                  | _ | -18   | _ | 0     |
| VBW Resonance Point<br>(IMD Third Order Intermodulation Inflection Point)                             | VBW <sub>res</sub> | — | 230   | _ | MHz   |
| Gain Flatness in 100 MHz Bandwidth @ P <sub>out</sub> = 63 W Avg.                                     | G <sub>F</sub>     | — | 0.4   | — | dB    |
| Gain Variation over Temperature<br>(-40°C to +85°C)                                                   | ΔG                 | — | 0.007 |   | dB/°C |
| Output Power Variation over Temperature<br>(-40°C to +85°C)                                           | ∆P1dB              | — | 0.003 |   | dB/°C |

#### Table 5. Ordering Information

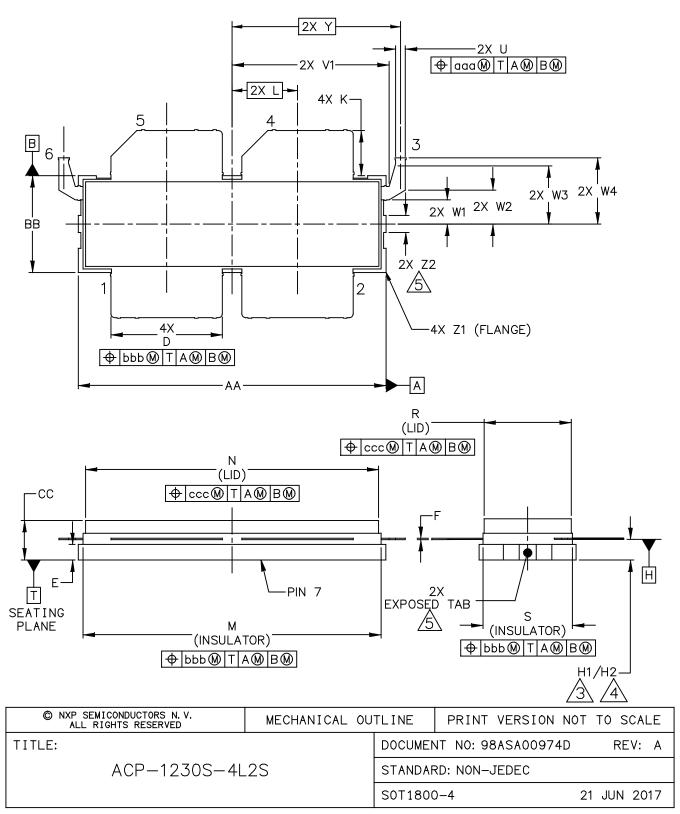

| Device          | Tape and Reel Information                             | Package        |
|-----------------|-------------------------------------------------------|----------------|
| A3T23H300W23SR6 | R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel | ACP-1230S-4L2S |

1.  $V_{DDA}$  and  $V_{DDB}$  must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurements made with device in an asymmetrical Doherty configuration.

4. P3dB = P<sub>avg</sub> + 7.0 dB where P<sub>avg</sub> is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.




Note: V<sub>DDA</sub> and V<sub>DDB</sub> must be tied together and powered by a single DC power supply. Figure 2. A3T23H300W23SR6 Test Circuit Component Layout

| Table 6. A3T23H300W23SR6 Test Circuit Com | ponent Designations and Values   |
|-------------------------------------------|----------------------------------|
|                                           | ipolient Designations and values |

| Part                         | Description                                   | Part Number         | Manufacturer |
|------------------------------|-----------------------------------------------|---------------------|--------------|
| C1, C2, C4, C5, C8, C11, C14 | 6.2 pF Chip Capacitor                         | ATC100B6R2BT500XT   | ATC          |
| C3, C6, C7, C9, C10, C12     | 10 μF Chip Capacitor                          | C5750X7S2A106M230KB | TDK          |
| C13                          | 3.3 pF Chip Capacitor                         | ATC100B3R3CT500XT   | ATC          |
| C15                          | 0.8 pF Chip Capacitor                         | ATC100B0R8BT500XT   | ATC          |
| C16, C17                     | 470 μF, 63 V Electrolytic Capacitor           | MCGPR63V477M13X26   | Multicomp    |
| C18                          | 0.3 pF Chip Capacitor                         | ATC100B0R3BT500XT   | ATC          |
| R1                           | 50 Ω, 30 W Termination Resistor               | RFP-375375N6Z50-2   | Anaren       |
| R2, R3                       | 3.6 Ω, 1/4 W Chip Resistor                    | CRCW12063R60FKEA    | Vishay       |
| Z1                           | 2300–2700 MHz Band, 90°, 2 dB Hybrid Coupler  | X3C25P1-02S         | Anaren       |
| PCB                          | Rogers RO4350B, 0.020″, ε <sub>r</sub> = 3.66 | D102887             | MTL          |

# PACKAGE DIMENSIONS



NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

4. TOLERANCE OF DIMENSION H2 IS TENTATIVE.

- 5. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.

|                | INCHES                                                    |       | MILLIMETERS |       |                     | INCHES              |                       | MILLIMETERS              |       |  |
|----------------|-----------------------------------------------------------|-------|-------------|-------|---------------------|---------------------|-----------------------|--------------------------|-------|--|
| DIM            | MIN                                                       | MAX   | MIN         | MAX   | DIM                 | MIN                 | MAX                   | MIN                      | МАХ   |  |
| AA             | 1.265                                                     | 1.275 | 32.13       | 32.39 | S                   | .365                | .375                  | 9.27                     | 9.53  |  |
| BB             | .395                                                      | .405  | 10.03       | 10.29 | U                   | .035                | .045                  | 0.89                     | 1.14  |  |
| СС             | .160                                                      | .190  | 4.06        | 4.83  | V1                  | .640                | .655                  | 16.26                    | 16.64 |  |
| D              | .455                                                      | .465  | 11.56       | 11.81 | W1                  | .105                | .115                  | 2.67                     | 2.92  |  |
| E              | .062                                                      | .069  | 1.57        | 1.75  | W2                  | .135                | .145                  | 3.43                     | 3.68  |  |
| F              | .004                                                      | .007  | 0.10        | 0.18  | W3                  | .245                | .255                  | 6.22                     | 6.48  |  |
| H1             | .082                                                      | .090  | 2.08        | 2.29  | W4                  | .265                | .281                  | 6.73                     | 7.14  |  |
| H2             | .078                                                      | .094  | 1.98        | 2.39  | Y                   | 0.695 BSC           |                       | 17.65 BSC                |       |  |
| К              | .175                                                      | .195  | 4.45        | 4.95  | Z1                  | R.000               | R.040                 | R0.00                    | R1.02 |  |
| L              | 0.270 BSC                                                 |       | 6.86 BSC    |       | Z2                  | .060                | .100                  | 1.52                     | 2.54  |  |
| М              | 1.219                                                     | 1.241 | 30.96       | 31.52 | aaa                 | .015                |                       | 0.3                      | 0.38  |  |
| Ν              | 1.218                                                     | 1.242 | 30.94       | 31.55 | bbb                 | .010 0.             |                       | 25                       |       |  |
| R              | .365                                                      | .375  | 9.27        | 9.53  | ccc                 | .020                |                       | 0.51                     |       |  |
|                |                                                           |       |             |       |                     |                     |                       |                          |       |  |
| (              | © NXP SEMICONDUCTORS N.V.<br>ALL RIGHTS RESERVED MECHAN I |       |             |       | L OUTLINE PRINT VEF |                     |                       | RSION NOT TO SCALE       |       |  |
|                |                                                           |       |             |       |                     |                     |                       | T NO: 98ASA00974D REV: A |       |  |
| ACP-1230S-4L2S |                                                           |       |             |       |                     | STANDARD: NON-JEDEC |                       |                          |       |  |
|                |                                                           |       |             |       |                     |                     | SOT1800-4 21 JUN 2017 |                          |       |  |

9. DATUM A AND B TO BE DETERMINED AT DATUM T.

#### A3T23H300W23SR6

# PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

# **Application Notes**

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

#### Software

- Electromigration MTTF Calculator
- .s2p File

#### **Development Tools**

• Printed Circuit Boards

#### To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

# **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |
|----------|-----------|-------------------------------|
| 0        | July 2018 | Initial release of data sheet |