

RF Power LDMOS Transistor

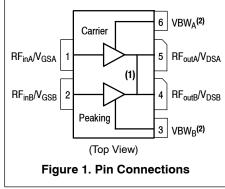
N-Channel Enhancement-Mode Lateral MOSFET

This 87 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2300 to 2400 MHz.

2300 MHz

 Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 30 Vdc, I_{DQA} = 650 mA, V_{GSB} = 0.65 Vdc, P_{out} = 87 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2300 MHz	14.7	47.0	7.8	-30.7
2350 MHz	15.1	46.4	7.6	-31.7
2400 MHz	15.2	46.5	7.5	-33.3


Features

- · Advanced high performance in-package Doherty
- Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- · Designed for digital predistortion error correction systems

A3T23H450W23SR6

2300-2400 MHz, 87 W AVG., 30 V AIRFAST RF POWER LDMOS TRANSISTOR

- 1. Pin connections 4 and 5 are DC coupled and RF independent.
- 2. Device can operate with V_{DD} current supplied through pin 3 and pin 6.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V_{GS}	-6.0, +10	Vdc
Operating Voltage	V_{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T _C = 25°C when DC current is fed through pin 3 and pin 6 Derate above 25°C	CW	166 1.0	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 78°C, 87 W Avg., W-CDMA, 30 Vdc, I_{DQA} = 650 mA, V_{GSB} = 0.65 Vdc, 2350 MHz	$R_{ heta JC}$	0.15	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	C3

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾			•	-	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 180 μAdc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 30 Vdc, I _{DA} = 650 mAdc, Measured in Functional Test)	V _{GSA(Q)}	2.2	2.6	3.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.8 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics - Side B, Peaking			•	•	•
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 360 \mu\text{Adc})$	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.6 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
- 4. Side A and Side B are tied together for these measurements.

(continued)

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

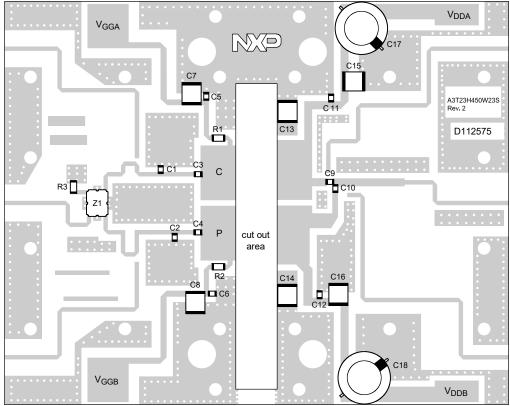
Characteristic Symbol Min Typ Max	Unit
-----------------------------------	------

Functional Tests (1.2.3) (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 30 \text{ Vdc}$, $I_{DQA} = 650 \text{ mA}$, $V_{GSB} = 0.65 \text{ Vdc}$, $P_{out} = 87 \text{ W Avg.}$, f = 2300 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ $\pm 5 \text{ MHz}$ Offset.

Power Gain	G _{ps}	14.0	14.7	17.0	dB
Drain Efficiency	η_{D}	44.2	47.0	_	%
P _{out} @ 3 dB Compression Point, CW	P3dB	56.4	57.4	_	dBm
Adjacent Channel Power Ratio	ACPR	_	-30.7	-27.5	dBc

Load Mismatch (3) (In NXP Doherty Test Fixture, 50 ohm system) $I_{DQA} = 650$ mA, $V_{GSB} = 0.65$ Vdc, f = 2350 MHz, 12 μ sec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 501 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 301 W Pulsed CW Rated Power)	-


Typical Performance $^{(3)}$ (In NXP Doherty Test Fixture, 50 ohm system) $V_{DD} = 30 \text{ Vdc}$, $I_{DQA} = 650 \text{ mA}$, $V_{GSB} = 0.65 \text{ Vdc}$, 2300-2400 MHz Bandwidth

Pout @ 3 dB Compression Point (4)	P3dB	_	562	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 2300–2400 MHz bandwidth)	Φ	_	-21	_	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		240		MHz
Gain Flatness in 100 MHz Bandwidth @ P _{out} = 87 W Avg.	G _F	_	0.25	_	dB
Gain Variation over Temperature (–40°C to +85°C)	ΔG		0.004		dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	ΔP1dB	_	0.004	_	dB/°C

Table 5. Ordering Information

Device	Tape and Reel Information	Package
A3T23H450W23SR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	ACP-1230S-4L2S

- 1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.
- 2. Part internally matched both on input and output.
- 3. Measurements made with device in an asymmetrical Doherty configuration.
- 4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

Note: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

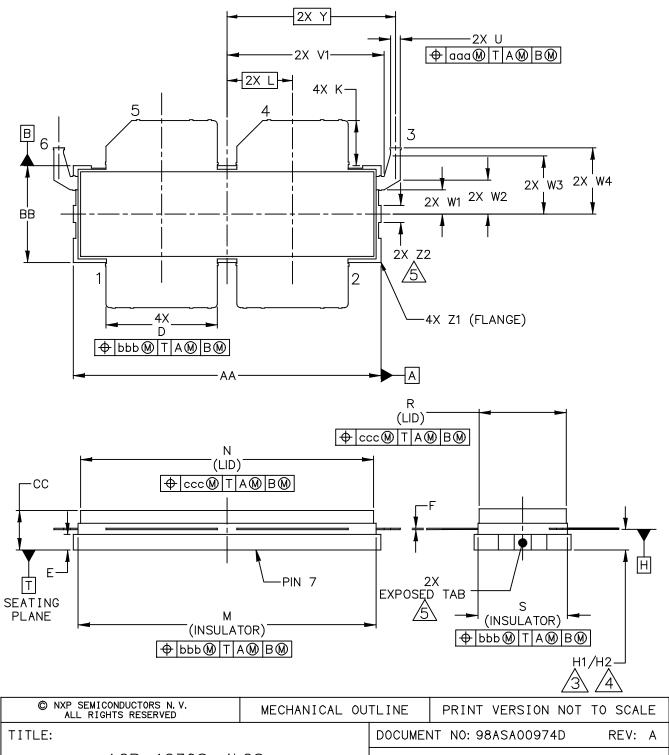

aaa-030961

Figure 2. A3T23H450W23SR6 Test Circuit Component Layout

Table 6. A3T23H450W23SR6 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	1.2 pF Chip Capacitor	ATC600F1R2BT250XT	ATC
C2	0.8 pF Chip Capacitor	ATC600F0R8BT250XT	ATC
C3, C4, C5, C6, C11, C12	8.2 pF Chip Capacitor	ATC600F8R2BT250XT	ATC
C7, C8, C13, C14, C15, C16	10 μF Chip Capacitor	C5750X7S2A106M230KB	TDK
C9	3.0 pF Chip Capacitor	ATC600F3R0BT250XT	ATC
C10	5.1 pF Chip Capacitor	ATC600F5R1BT250XT	ATC
C17, C18	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26	Multicomp
R1, R2	3.3 Ω, 1/8 W Chip Resistor	CRCW08053R30FKEA	Vishay
R3	50 Ω, 30 W Termination Resistor	RFP-375375N6Z50-2	Anaren
Z1	2300-2700 MHz Band, 90°, 2 dB Hybrid Coupler	X3C25P1-02S	Anaren
PCB	Rogers RO4350B, 0.020", $\epsilon_{r} = 3.66$	D112575	MTL

PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE PRINT VERSION NOT			T TO SCALE	
TITLE:		DOCUMEN	NT NO: 98ASA00974D	REV: A	
ACP-1230S-4L2S		STANDARD: NON-JEDEC			
		S0T1800)–4	21 JUN 2017	

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.
- 4. TOLERANCE OF DIMENSION H2 IS TENTATIVE.
- THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 9. DATUM A AND B TO BE DETERMINED AT DATUM T.

	INCHES		MILLIMETERS			INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	S	.365	.375	9.27	9.53	
BB	.395	.405	10.03	10.29	U	.035	.045	0.89	1.14	
CC	.160	.190	4.06	4.83	V1	.640	.655	16.26	16.64	
D	.455	.465	11.56	11.81	W1	.105	.115	2.67	2.92	
E	.062	.069	1.57	1.75	W2	.135	.145	3.43	3.68	
F	.004	.007	0.10	0.18	W3	.245	.255	6.22	6.48	
H1	.082	.090	2.08	2.29	W4	.265	.281	6.73	7.14	
H2	.078	.094	1.98	2.39	Υ	0.695 BSC		17.65 BSC		
K	.175	.195	4.45	4.95	Z1	R.000	R.040	R0.00	R1.02	
L	0.270 BSC		6.	6.86 BSC		.060	.100	1.52	2.54	
M	1.219	1.241	30.96	31.52	aaa	.015		0.38		
N	1.218	1.242	30.94	31.55	bbb	.010		0.25		
R	.365	.375	9.27	9.53	ccc	.020		0.51		
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED				MECHANICAL OUT		LINE PRINT VERSION NOT TO SCAL		TO SCALE		
TITLE:	TITLE: DOCUMENT NO: 98ASA00974D REV: A									
	ACP-1230S-4L2S						STANDARD: NON-JEDEC			
						SOT1800-4 21 JUN 201			1 JUN 2017	

A3T23H450W23SR6

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description				
0	Aug. 2018	Initial release of data sheet				