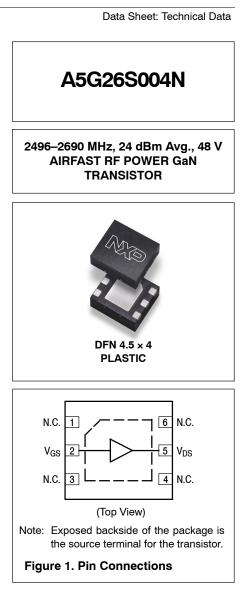
A5G26S004N Airfast RF Power GaN Transistor

Rev. 2 — January 2022

This 24 dBm RF power GaN transistor is designed for cellular base station applications covering the frequency range of 2496 to 2690 MHz.

2600 MHz


• Typical Single- Carrier W- CDMA Reference Circuit Performance: V_{DD} = 48 Vdc, I_{DQ} = 10 mA, P_{out} = 24 dBm Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2515 MHz	18.7	18.8	10.2	-39.6
2595 MHz	19.6	20.5	9.8	-42.0
2675 MHz	18.9	20.6	9.7	-44.7

1. All data measured in reference circuit with device soldered to printed circuit board.

Features

- · High terminal impedances for optimal broadband performance
- · Designed for low complexity analog or digital linearization systems
- Universal broadband driver
- · Optimized for massive MIMO active antenna systems for 5G base stations

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate- Source Voltage	V _{GS}	-8, 0	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum Forward Gate Current @ T _C = 25°C	I _{GMAX}	0.74	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Maximum Channel Temperature	Т _{СН}	225	°C

Table 2. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Operating Voltage	V _{DD}	48	Vdc

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 115°C, P_{D} = 1.1 W	R _{θJC} (IR)	9.5 (1)	°C/W
Thermal Resistance by Finite Element Analysis, Channel- to- Case Case Temperature 115°C, P_D = 1.1 W	R _{θCHC} (FEA)	32 (2)	°C/W

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS- 001- 2017)	1B
Charge Device Model (per JS- 002- 2014)	C3

Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Off- State Drain Leakage (V _{DS} = 150 Vdc, V _{GS} = -8 Vdc)	I _{D(BR)}	_	—	0.74	mAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 0.74 mAdc)	V _{GS(th)}	-4.9	-2.6	-1.9	Vdc
Gate Quiescent Voltage (V _{DD} = 48 Vdc, I _D = 10 mAdc, Measured in Functional Test)	V _{GS(Q)}	-2.9	-2.5	-2.0	Vdc
Gate- Source Leakage Current (V _{DS} = 150 Vdc, V _{GS} = -12 Vdc)	I _{GSS}	-0.74	_	—	mAdc

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

R_{6CHC} (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = 10^[A + B/(T + 273)], where *T* is the channel temperature in degrees Celsius, *A* = -11.1 and *B* = 8366.

(continued)

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Table 0. Lie circal characteristics ($T_A = 25$ C unless otherwise hole		suj				
Characteristic	Symbol	Min	Тур	Мах	Unit	
Functional Tests (1) (In NXP Production Test Fixture, 50 ohm system) V _{DD} = 48 Vdc, I _{DQ} = 10 mA, P _{out} = 24 dBm Avg., f = 2690 MHz, 1-tone CW.						
Power Gain	G _{ps}	18.0	20.9	24.0	dB	
Drain Efficiency	η _D	20.0	22.4	—	%	
Pout @ 6 dB Compression Point	P6dB	35.0	37.4	—	dBm	
Wideband Ruggedness ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) I _D with 10 dB PAR	_Q = 10 mA, f =	2595 MHz, A	dditive White	Gaussian No	ise (AWGN)	
ISBW of 400 MHz at 55 Vdc, 0.64 W Avg. Modulated Output Power (3 dB Input Overdrive from 0.3 W Avg. Modulated Output Power)		No D	evice Degrad	ation		

Typical Performance ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) V_{DD} = 48 Vdc, I_{DQ} = 10 mA, 2515–2675 MHz Bandwidth

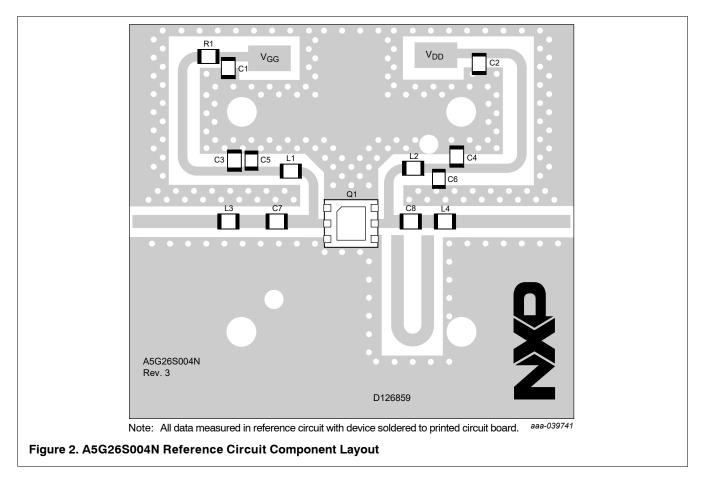
	1				
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	250		MHz
Gain Flatness in 160 MHz Bandwidth @ P _{out} = 24 dBm Avg.	G _F	_	0.9	_	dB
Fast CW, 27 ms Sweep					
Pout @ 6 dB Compression Point	P6dB	—	4.0	—	W
AM/PM (Maximum value measured at the P6dB compression point across the 2515–2675 MHz bandwidth)	Φ	—	-16	_	o
Gain Variation over Temperature (-40°C to +85°C)	ΔG		0.012		dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	∆P6dB	_	0.002		dB/°C

Table 7. Ordering Information

Device	Tape and Reel Information	Package
A5G26S004NT6	T6 Suffix = 5,000 Units, 12 mm Tape Width, 13- inch Reel	DFN 4.5 × 4

1. Part internally input matched.

2. All data measured in reference circuit with device soldered to printed circuit board.

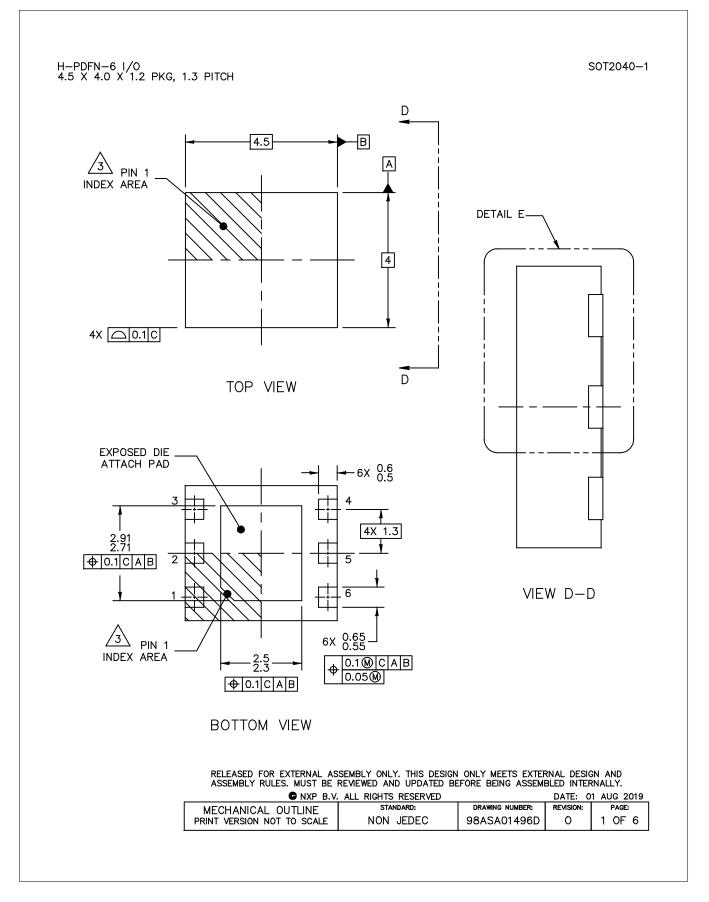

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors

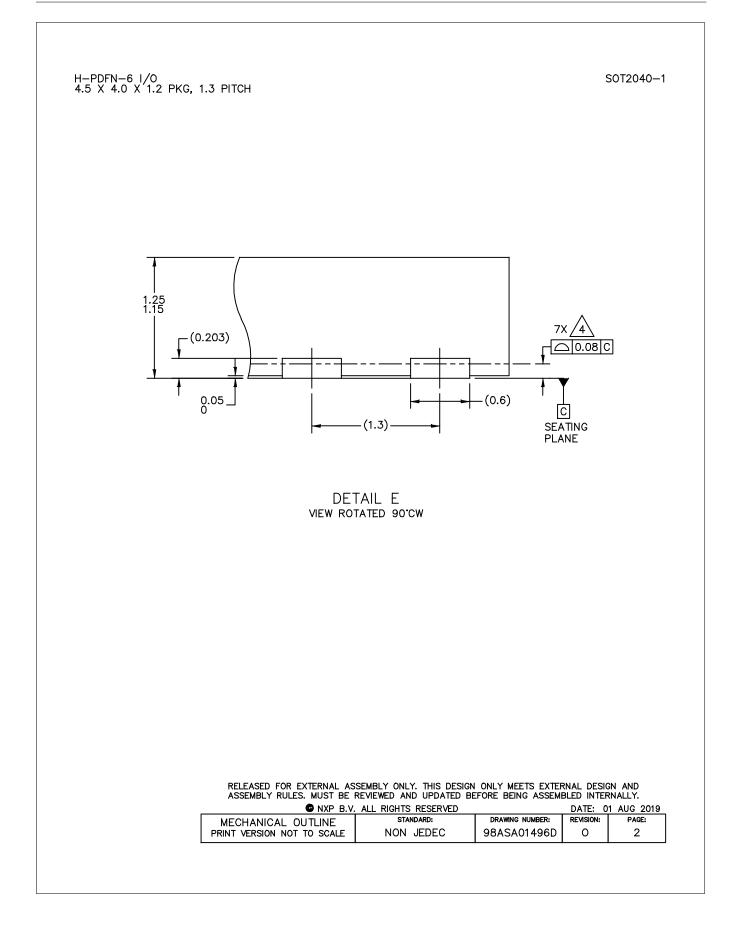
Turning the device ON

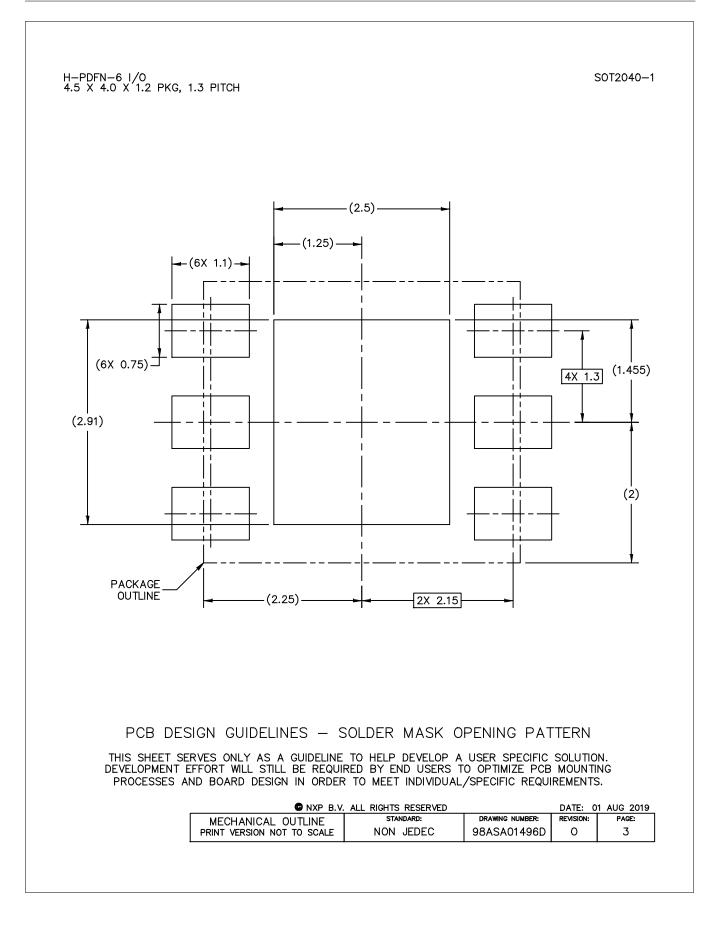
- 1. Set V_{GS} to the pinch- off voltage, typically –5 V.
- 2. Turn on V_{DS} to nominal supply voltage (+48 V).
- 3. Increase V_{GS} until I_{DS} current is attained.
- 4. Apply RF input power to desired level.

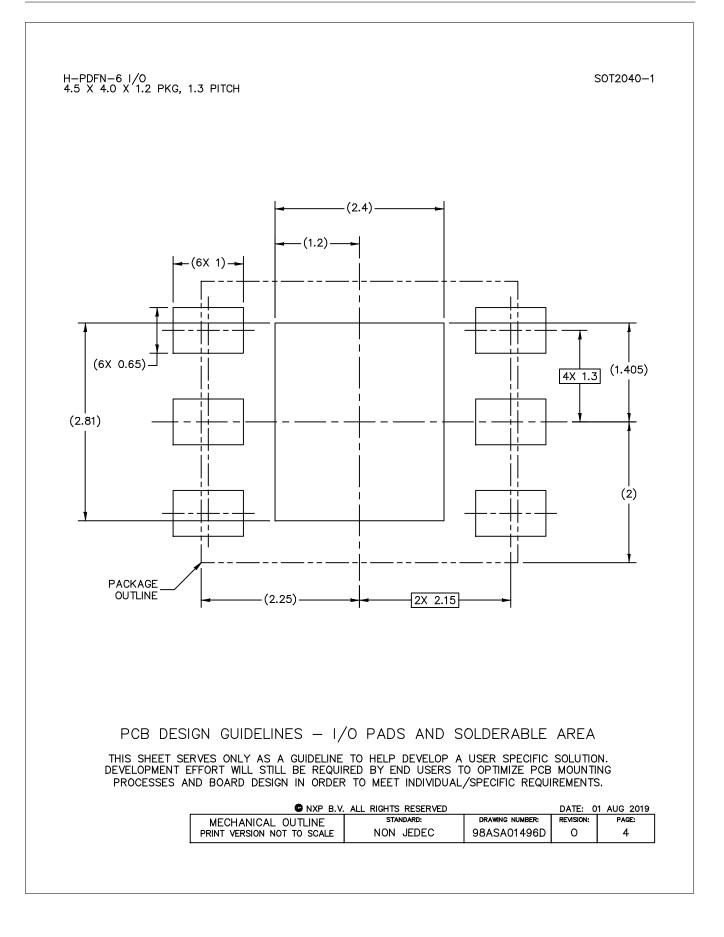
Turning the device OFF

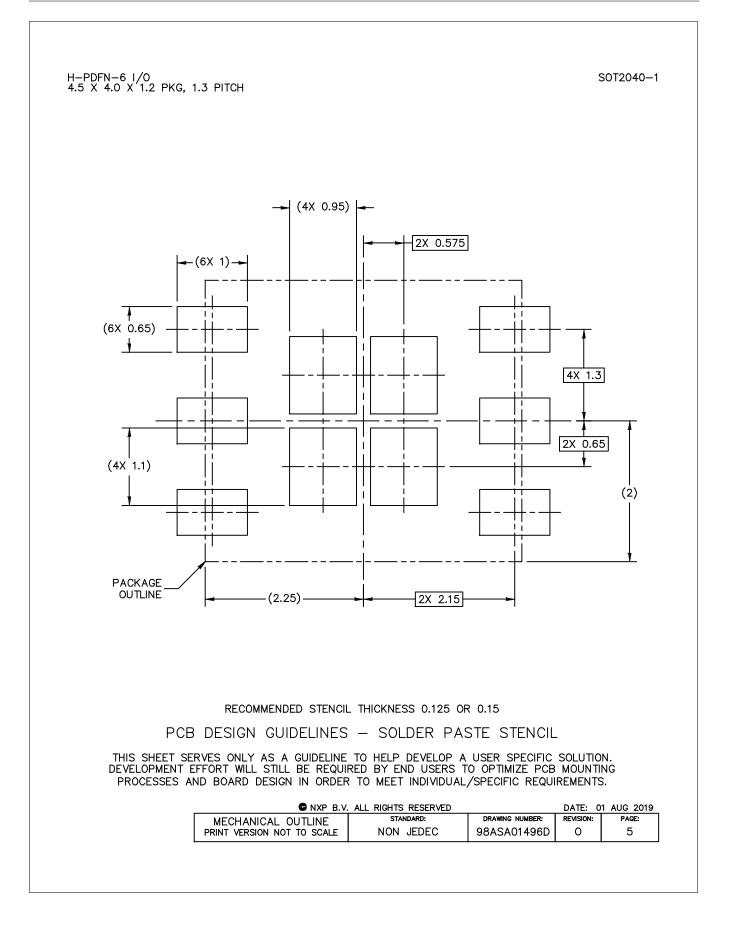
- 1. Turn RF power off.
- 2. Reduce V_{GS} down to the pinch-off voltage, typically -5 V.
- 3. Adjust drain voltage V_{DS} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Turn off V_{GS}.


Table 8. A5G26S004N Reference Circuit Component Designations and Values


Part	Description	Part Number	Manufacturer
C1, C2	2.2 µF Chip Capacitor	GRM32ER72A225KA35L	Murata
C3, C4	1 μF Chip Capacitor	GRM31MR71H105KA88L	Murata
C5, C6, C7, C8	8.2 pF Chip Capacitor	GQM2195C2E8R2BB12D	Murata
L1	3.9 nH Chip Inductor	0603HP-3N9XJLW	Coilcraft
L2, L3	1.6 nH Chip Inductor	0603HP-1N6XJLW	Coilcraft
L4	4.7 nH Chip Inductor	0603HP-4N7XJLW	Coilcraft
Q1	RF Power GaN Transistor	A5G26S004N	NXP
R1	10 Ω, 1/8 W Chip Resistor	CRCW080510R0FKEA	Vishay
РСВ	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D126859	MTL




Figure 3. Product Marking


Package Information

H-PDFN-6 I/0 4.5 X 4.0 X 1.2 PKG, 1.3 PITCH

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

C NXP B.V	. ALL RIGHTS RESERVED		DATE: 0	1 AUG 2019
MECHANICAL OUTLINE	STANDARD:	drawing number:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA01496D		6

A5G26S004N Airfast RF Power GaN Transistor, Rev. 2, January 2022

S0T2040-1

Product Documentation, Software and Tools

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

• .s2p File

Development Tools

Printed Circuit Boards

Revision History

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2020	Initial release of data sheet
1	Jan. 2021	 Table 1, Maximum Ratings: updated operating voltage for complete data sheet standardization, p. 2 Table 2, Recommended Operating Conditions: added to data sheet, p. 2
2	Jan. 2022	 Table 6, DC On Characteristics, V_{GS(th)}: Min, Typ and Max values updated to match production test values, p. 2