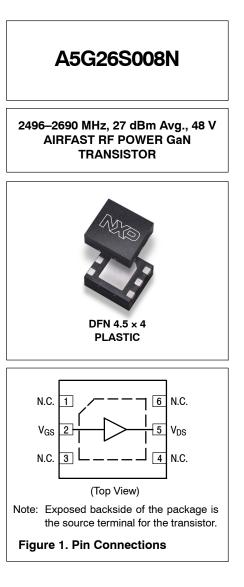
A5G26S008N Airfast RF Power GaN Transistor

Rev. 0 — October 2021

Data Sheet: Technical Data

This 27 dBm RF power GaN transistor is designed for cellular base station applications covering the frequency range of 2496 to 2690 MHz.

2600 MHz


• Typical Single- Carrier W- CDMA Reference Circuit Performance: V_{DD} = 48 Vdc, I_{DQ} = 17 mA, P_{out} = 27 dBm Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2496 MHz	19.0	15.8	10.1	-41.0
2595 MHz	19.4	16.5	10.1	-42.4
2690 MHz	18.8	16.4	9.9	-43.6

1. All data measured in reference circuit with device soldered to printed circuit board.

Features

- · High terminal impedances for optimal broadband performance
- · Designed for low complexity analog or digital linearization systems
- Universal broadband driver
- Optimized for massive MIMO active antenna systems for 5G base stations

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate- Source Voltage	V _{GS}	8, 0	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum Forward Gate Current @ T _C = 25°C	I _{GMAX}	1.5	mA
Storage Temperature Range	T _{stg}	−65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Maximum Channel Temperature	Т _{СН}	225	°C

Table 2. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Operating Voltage	V _{DD}	48	Vdc

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 118.6°C, P _D = 2.6 W	R _{θJC} (IR)	7.3 (1)	°C/W
Thermal Resistance by Finite Element Analysis, Channel- to- Case Case Temperature 118.6°C, $P_D = 2.6$ W	R _{0CHC} (FEA)	17.8 (2)	°C/W

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1B
Charge Device Model (per JS- 002- 2014)	С3

Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Off- State Drain Leakage (V_{DS} = 150 Vdc, V_{GS} = -8 Vdc)		—	—	0.67	mAdc
On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 1.52 mAdc)	V _{GS(th)}	-3.3	-2.3	-2.0	Vdc
Gate Quiescent Voltage (V _{DD} = 48 Vdc, I _D = 17 mAdc, Measured in Functional Test)	V _{GS(Q)}	-2.8	-2.5	-1.8	Vdc
Gate- Source Leakage Current (V _{DS} = 150 Vdc, V _{GS} = -12 Vdc)	I _{GSS}	-0.67	_	_	mAdc

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

R_{6CHC} (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = 10^[A + B/(T + 273)], where *T* is the channel temperature in degrees Celsius, *A* = -11.6 and *B* = 9129.

(continued)

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

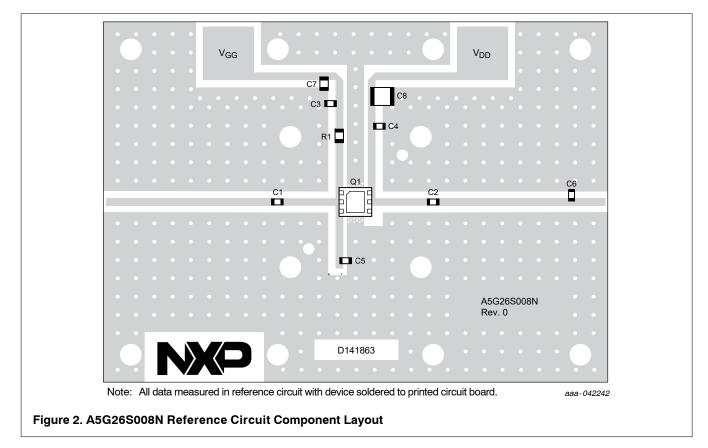
Characteristic		Min	Тур	Max	Unit
Functional Tests ⁽¹⁾ (In NXP Production Test Fixture, 50 ohm system) V _C I - tone CW. [See note on correct biasing sequence.]	_D = 48 Vdc, I _D	_Q = 17 mA, P	out = 27 dBm	Avg., f = 2598	5 MHz,
Power Gain	G _{ps}	16.0	18.4	20.0	dB
Drain Efficiency	η _D	14.5	16.0	_	%
Pout @ 6 dB Compression Point	P6dB	39.5	40.5	_	dBm
Wideband Ruggedness ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) I with 10 dB PAR	_{DQ} = 17 mA, f	= 2595 MHz,	Additive White	e Gaussian N	oise (AWGI
ISBW of 400 MHz at 55 Vdc, 0.5 W Avg. Modulated Output Power (3 dB Input Overdrive from 0.5 W Avg. Modulated Output Power)	No Device Degradation				
Typical Performance ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) V _{DD}	= 48 Vdc, I _{DQ}	= 17 mA, 24	96–2690 MHz	Bandwidth	
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		300		MHz
Gain Flatness in 194 MHz Bandwidth @ P _{out} = 27 dBm Avg.			0.7	_	dB
Fast CW, 27 ms Sweep		L			
P _{out} @ 6 dB Compression Point	P6dB	_	10.7	_	W
AM/PM (Maximum value measured at the P6dB compression point across the 2496–2690 MHz bandwidth)	Φ	_	-8	_	0
Gain Variation over Temperature (–40°C to +85°C)	ΔG		0.017	_	dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	∆P6dB		0.001		dB/°C

Table 7. Ordering Information

Device	Tape and Reel Information	Package
A5G26S008NT6	T6 Suffix = 5,000 Units, 12 mm Tape Width, 13- inch Reel	DFN 4.5 × 4

1. Part internally input matched.

2. All data measured in reference circuit with device soldered to printed circuit board.

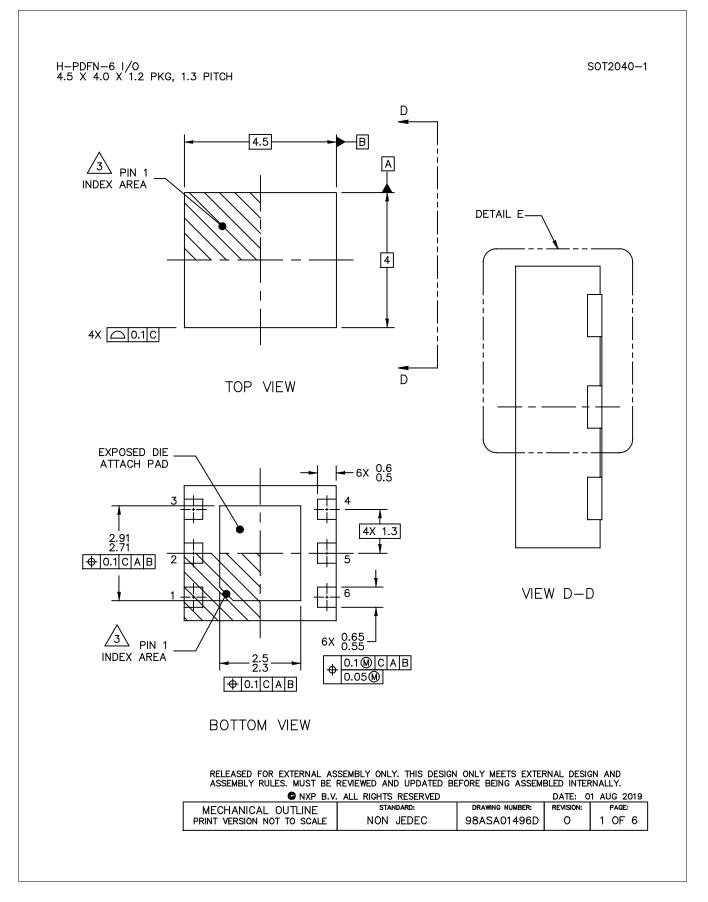

NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors

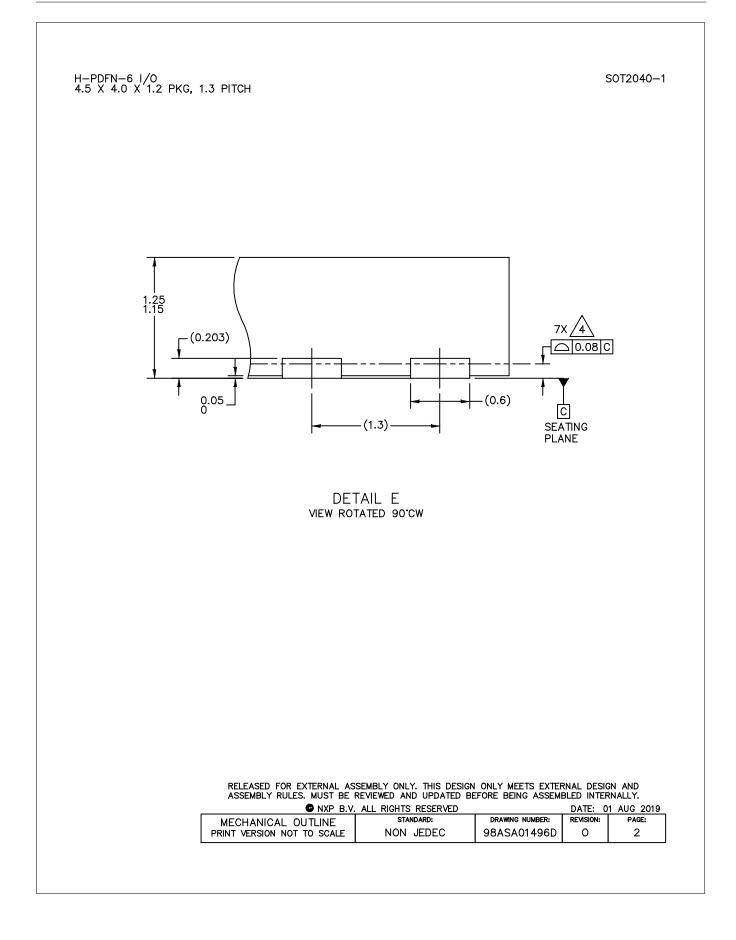
Turning the device ON

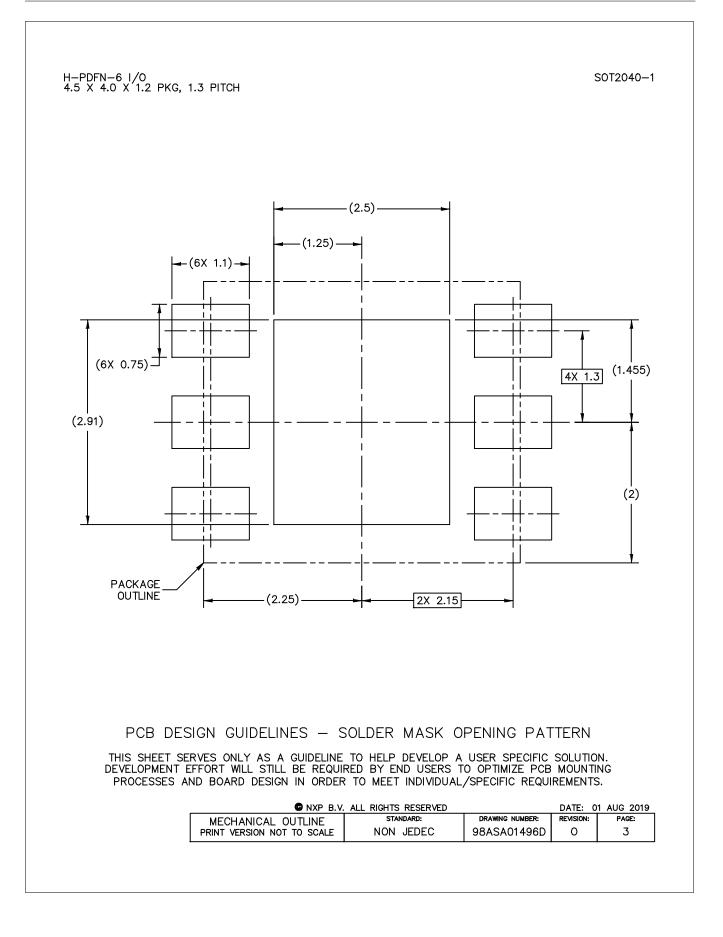
- 1. Set V_{GS} to the pinch- off voltage, typically –5 V.
- 2. Turn on V_{DS} to nominal supply voltage (+48 V).
- 3. Increase V_{GS} until I_{DS} current is attained.
- 4. Apply RF input power to desired level.

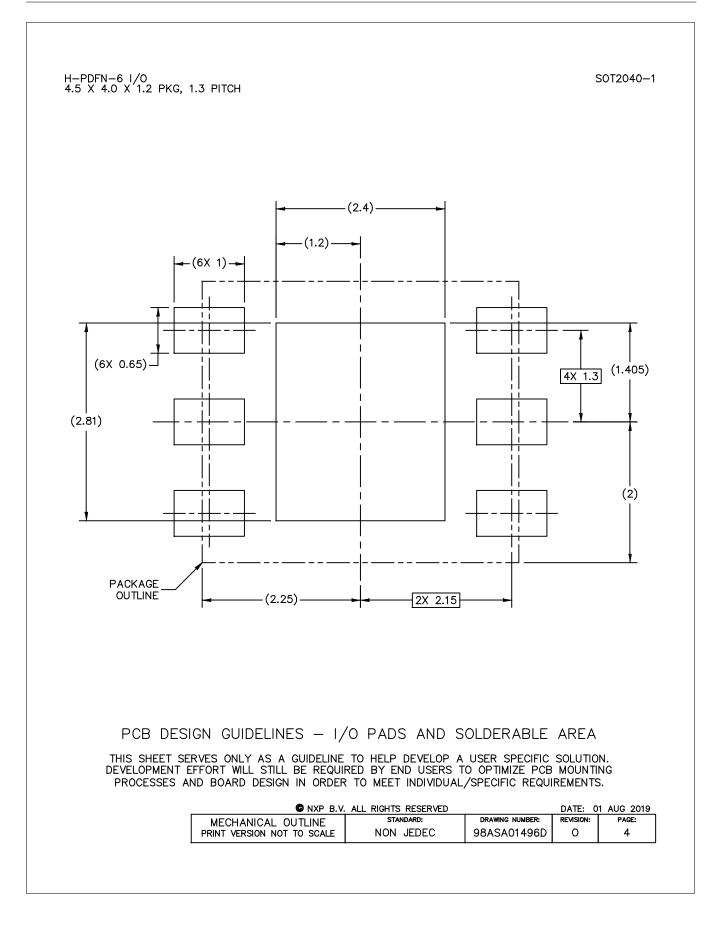
Turning the device OFF

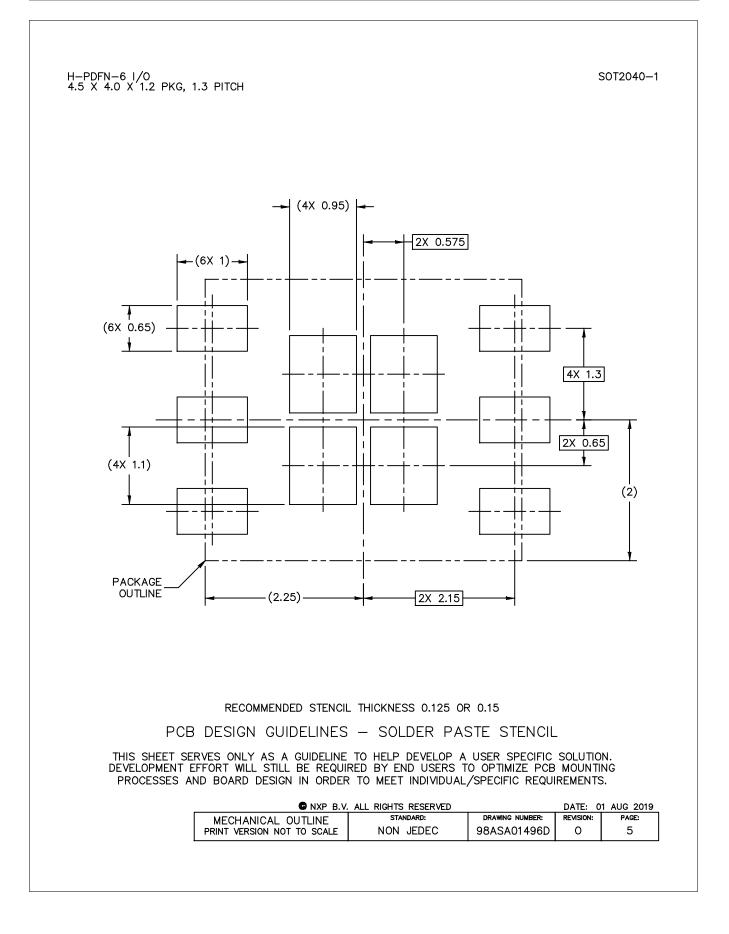
- 1. Turn RF power off.
- 2. Reduce V_{GS} down to the pinch-off voltage, typically –5 V.
- 3. Adjust drain voltage V_{DS} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Turn off V_{GS}.


Table 8. A5G26S008N Reference Circuit Component Designations and Values


Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	5.6 pF Chip Capacitor	600S5R6CT250XT	ATC
C5	0.4 pF Chip Capacitor	600S0R4BT250XT	ATC
C6	0.3 pF Chip Capacitor	600S0R3BT250XT	ATC
C7	1 μF Chip Capacitor	08055C105KAT2A	AVX
C8	4.7 μF Chip Capacitor	C3225X7S2A475M	TDK
Q1	RF Power GaN Transistor	A5G26S008N	NXP
R1	3.3 Ω, 1/8 W Chip Resistor	CRCW08053R30FKEA	Vishay
PCB	Roger RO4350B, 0.020", $\epsilon_r = 3.66$	D141863	MTL




Figure 3. Product Marking


Package Information

H-PDFN-6 I/0 4.5 X 4.0 X 1.2 PKG, 1.3 PITCH

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

C NXP B.V.	ALL RIGHTS RESERVED		DATE: 0	1 AUG 2019
MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE	STANDARD: NON JEDEC	drawing number: 98ASA01496D	REVISION:	PAGE: 6
		0011011011000	-	-

A5G26S008N Airfast RF Power GaN Transistor, Rev. 0, October 2021

S0T2040-1

Product Documentation and Software

Refer to the following resources to aid your design process.

Application Notes

- · AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

• .s2p File

Development Tools

Printed Circuit Boards

Revision History

The following table summarizes revisions to this document.

Revision	Date	Description
0	Oct. 2021	Initial release of data sheet