A5G38H055N

Airfast RF Power GaN Transistor

This 7.6 W asymmetrical Doherty RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 3700 to 3980 MHz .

This part is characterized and performance is guaranteed for applications operating in the 3700 to 3980 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

3700-3980 MHz

- Typical Doherty Single-Carrier W-CDMA Reference Circuit Performance: $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQA}}=45 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GSB}}=-3.9 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=7.6 \mathrm{~W}$ Avg., Input Signal PAR = $9.9 \mathrm{~dB} @ 0.01 \%$ Probability on CCDF. ${ }^{(1)}$

Frequency	$\mathbf{G}_{\mathbf{p s}}$ $(\mathbf{d B})$	$\eta_{\mathbf{D}}$ (\%)	Output PAR (dB)	ACPR (dBc)
3700 MHz	14.7	55.5	8.5	-29.5
3840 MHz	14.9	53.2	8.5	-35.0
3980 MHz	14.7	53.0	8.2	-33.4

1. All data measured in reference circuit with device soldered to printed circuit board.

Features

- High terminal impedances for optimal broadband performance
- Improved linearized error vector magnitude with next generation signal
- Able to withstand extremely high output VSWR and broadband operating conditions
- Designed for low complexity linearization systems
- Optimized for massive MIMO active antenna systems for 5G base stations

3700-3980 MHz, 7.6 W Avg., 48 V AIRFAST RF POWER GaN TRANSISTOR

(Top View)
Note: Exposed backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	125	Vdc
Gate-Source Voltage	V_{GS}	$-16,0$	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum Forward Gate Current, $\mathrm{I}_{\mathrm{G}}(\mathrm{A}+\mathrm{B}), @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{GMAX}}$	9.0	mA
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Case Operating Temperature Range	T_{C}	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Channel Temperature	T_{CH}	225	${ }^{\circ} \mathrm{C}$

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit
Operating Voltage	$V_{D D}$	48	Vdc

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature $117^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}=9.3 \mathrm{~W}$	$\mathrm{R}_{\theta \mathrm{JC}}(\mathrm{IR})$	2.6 (1)	
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature $117^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}=9.3 \mathrm{~W}$	$\mathrm{R}_{\theta \mathrm{CHC}}$ (FEA)	$7.6^{(2)}$	

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1 A
Charge Device Model (per JS-002-2014)	C3

Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	${ }^{\circ} \mathrm{C}$

Table 6. Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Off Characteristics ${ }^{(3)}$						
Off-State Drain Leakage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=150 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=150 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right) \end{aligned}$	Carrier Peaking	$I_{D(B R)}$	-	-	$\begin{aligned} & 1.6 \\ & 3.1 \end{aligned}$	mAdc
Off-State Gate Leakage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=48 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=48 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right) \end{aligned}$	Carrier Peaking	$\mathrm{I}_{\text {GLK }}$	$\begin{aligned} & -0.4 \\ & -0.6 \end{aligned}$	-	-	mAdc

On Characteristics - Side A, Carrier

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	-4.6	-2.0	-1.5	Vdc
Gate Quiescent Voltage ($\mathrm{V}_{\mathrm{DD}}=48 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DA}}=35 \mathrm{mAdc}$, Measured in Functional Test)	$\mathrm{V}_{\mathrm{GSA}}(\mathrm{Q})$	-2.9	-2.4	-1.9	Vdc
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{DS}}=150 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right)$	$\mathrm{I}_{\text {GSS }}$	-0.6	-	-	mAdc

On Characteristics - Side B, Peaking

Gate Threshold Voltage $\left(V_{D S}=10\right.$ Vdc, $\left.I_{D}=6.2 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	-4.6	-2.6	-1.9
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{DS}}=150 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=-8 \mathrm{Vdc}\right)$	$\mathrm{I}_{\mathrm{GSS}}$	-1.1	-	-

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
2. $\mathrm{R}_{\theta \mathrm{CHC}}$ (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) $=10[\mathrm{~A}+\mathrm{B} /(\mathrm{T}+273)]$, where T is the channel temperature in degrees Celsius, $A=-11.6$ and $B=9129$.
3. Each side of device measured separately.
(continued)
A5G38H055N Airfast RF Power GaN Transistor, Rev. 1, March 2023

Table 6. Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Typ	Max	Unit
Functional Tests ${ }^{(1)}$ (In NXP Doherty Production Test Fixture, 50 ohm system) $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQA}}=35 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GSB}}=\left(\mathrm{V}_{\mathrm{t}}-1.2\right) \mathrm{Vdc}$, $P_{\text {out }}=8.1$ W Avg., $f=3980 \mathrm{MHz}$, 1-tone CW.					
Power Gain	G_{ps}	13.0	15.0	18.0	dB
Drain Efficiency	η_{D}	41.0	45.0	-	\%
Pout @ 6 dB Compression Point	P6dB	45.3	46.2	-	dBm

Wideband Ruggedness ${ }^{(2)}$ (In NXP Doherty Reference Circuit, 50 ohm system) $I_{\text {DQA }}=45 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GSB}}=-3.9 \mathrm{Vdc}, \mathrm{f}=3840 \mathrm{MHz}$, Additive White Gaussian Noise (AWGN) with 10 dB PAR

ISBW of 400 MHz at 55 Vdc, 13.8 W Avg. Modulated Output Power	No Device Degradation
$(3 \mathrm{~dB}$ Input Overdrive from 7.6 W Avg. Modulated Output Power)	

Typical Performance (2) (In NXP Doherty Reference Circuit, 50 ohm system) $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQA}}=45 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GSB}}=-3.9 \mathrm{Vdc}$, 3700-3980 MHz Bandwidth

Fast CW, 27 ms Sweep					
Pout @ 6 dB Compression Point	P6dB	-	55	-	W
AM/PM (Maximum value measured at the P 6 dB compression point across the $3700-3980 \mathrm{MHz}$ bandwidth)	Φ	-	-9	-	-
Gain Variation over Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{G}$	-	0.036	-	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Output Power Variation over Temperature ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)	$\triangle \mathrm{P} 6 \mathrm{~dB}$	-	0.002	-	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Single-Carrier W-CDMA, Unclipped					
Gain Flatness in 280 MHz Bandwidth @ $\mathrm{P}_{\text {out }}=7.6 \mathrm{~W}$ Avg.	G_{F}	-	0.2	-	dB
2-Tone CW					
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	$\mathrm{VBW}_{\text {res }}$	-	300	-	MHz

Table 7. Ordering Information

Device	Tape and Reel Information	Package
A5G38H055NT4	T4 Suffix $=2,500$ Units, 16 mm Tape Width, 13-inch Reel	DFN 7×6.5

1. Part internally input matched.
2. All data measured in reference circuit with device soldered to printed circuit board.

Correct Biasing Sequence for GaN Depletion Mode Transistors in a Doherty Configuration

Bias ON the device

1. Set gate voltage $\mathrm{V}_{\mathrm{GSA}}$ and $\mathrm{V}_{\mathrm{GSB}}$ to -5 V .
2. Set drain voltage $\mathrm{V}_{\mathrm{DSA}}$ and $\mathrm{V}_{\mathrm{DSB}}$ to nominal supply voltage (+48 V).
3. Increase $\mathrm{V}_{\mathrm{GSA}}$ (carrier side) until $\mathrm{I}_{\mathrm{DQA}}$ current is attained.
4. Increase $\mathrm{V}_{\mathrm{GSB}}$ (peaking side) to target bias voltage.
5. Apply RF input power to desired level.

Bias OFF the device

1. Disable RF input power.
2. Adjust gate voltage $\mathrm{V}_{\mathrm{GSA}}$ and $\mathrm{V}_{\mathrm{GSB}}$ to -5 V .
3. Adjust drain voltage $\mathrm{V}_{\mathrm{DSA}}$ and $\mathrm{V}_{\mathrm{DSB}}$ to 0 V . Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
4. Disable $\mathrm{V}_{\mathrm{GSA}}$ and $\mathrm{V}_{\mathrm{GSB}}$.

Package Information

MECHANICAL OUTLINE	STANDARD:	DRAWNG NUMBER:	REMSION:	PAGE:
PRINT VERSION NOT TO SCALE	NON JEDEC	$98 A S A 01485 D$	A	2

PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN
THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V. ALL RIGHTS RESERVED | DATE: 02 APR 2020 | | |
| :---: | :---: | :---: | :---: | :---: |
| MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVSION: PAGE:
 PRINT VERSION NOT TO SCALE NON JEDEC 98ASA01485D A 3 | | | |

PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREA
THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V. ALL RIGHTS RESERVED | DATE: 02 APR 2020 | | |
| :---: | :---: | :---: | :---: | :---: |
| MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVSION: PAGE:
 PRINT VERSION NOT TO SCALE NON JEDEC $98 A S A 01485 D$ A 4 | | | |

STENCIL THICKNESS 0.125 OR 0.15
PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL
THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V. ALL RIGHTS RESERVED | DATE: 02 APR 2020 | | |
| :---: | :---: | :---: | :---: | :---: |
| MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVSION: PAGE:
 PRINT VERSION NOT TO SCALE NON JEDEC 98ASA01485D A 5 | | | |

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.
5. RADIUS ON LEAD AND DIE ATTACH FLAG IS OPTIONAL.
© NXP B.V. ALL RIGHTS RESERVED

Product Documentation and Software

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

- .s2p File

Revision History

The following table summarizes revisions to this document.

Revision	Date	
0	Mar. 2023	• Initial release of data sheet
1	Mar. 2023	• Typical Performance table: updated, p. 3

