

# Anybus<sup>®</sup> X-gateway<sup>™</sup> CANopen<sup>®</sup> PROFINET<sup>®</sup> IRT (2.32)

## **USER MANUAL**

SCM-1202-029 1.2 en-US ENGLISH





## **Important User Information**

## Disclaimer

The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Anybus<sup>\*</sup> is a registered trademark of HMS Industrial Networks AB. All other trademarks mentioned in this document are the property of their respective holders.

## **Table of Contents**

## Page

| 1 | Prefa | ice 3                                                 | \$       |
|---|-------|-------------------------------------------------------|----------|
|   | 1.1   | About This Document                                   | 3        |
|   | 1.2   | Document history                                      | 3        |
|   | 1.3   | Document Conventions                                  | 1        |
|   | 1.4   | Document-Specific Conventions                         | ł        |
| 2 | Desc  | ription5                                              | ;        |
|   | 2.1   | Introduction                                          | 5        |
|   | 2.2   | Data Exchange                                         | 5        |
|   | 2.3   | CANopen Functionality                                 | 1        |
| 3 | Insta | llation                                               | 3        |
|   | 3.1   | Installation Overview                                 | 3        |
|   | 3.2   | DIN Rail Mounting                                     | )        |
|   | 3.3   | Power Connector                                       | )        |
|   | 3.4   | USB Connector                                         | )        |
|   | 3.5   | Secondary CANopen Network Interface                   | )        |
|   | 3.6   | PROFINET IRT Network Interface11                      | Ĺ        |
|   | 3.7   | LED Indicators                                        | <u>)</u> |
| 4 | Confi | guration14                                            | ŀ        |
|   | 4.1   | Configuration Overview                                | ı        |
|   | 4.2   | Configuring the Secondary CANopen Network             | 5        |
|   | 4.3   | Configuring the PROFINET IRT (2.32) Interface         |          |
|   | 4.4   | Enabling Data Exchange                                | <u>)</u> |
| 5 | PROF  | INET Asset Management 23                              | 3        |
|   | 5.1   | Asset Management Record 23                            | 3        |
|   | 5.2   | Recording and Reading Data                            | 3        |
|   | 5.3   | Supported File Formats                                | 1        |
|   | 5.4   | Supported Asset Management Records24                  |          |
|   | 5.5   | XML Based Asset Management25                          |          |
|   | 5.6   | Binary Based Asset Management                         | 3        |
|   | 5.7   | Uploading the Asset Management File to the FTP Server | 2        |

| 6 | CANo | ppen Module Specification                     | 34   |
|---|------|-----------------------------------------------|------|
|   | 6.1  | NMT State Machine                             | . 34 |
|   | 6.2  | CANopen Data Exchange                         | . 35 |
|   | 6.3  | LSS Services                                  | . 39 |
|   | 6.4  | Error Control                                 | . 40 |
|   | 6.5  | CANopen Emergency Messages                    | . 41 |
|   | 6.6  | CANopen Live List Functionality               | . 42 |
| 7 | CANo | open Object Implementation                    | 44   |
|   | 7.1  | Static Data Types                             | . 44 |
|   | 7.2  | Communication Profile Area                    | . 44 |
|   | 7.3  | Manufacturer Specific Objects                 | . 52 |
| Α | Tech | nical Data                                    | 59   |
|   | A.1  | General Specifications                        |      |
|   | A.2  | Secondary CANopen Network Interface           | . 59 |
|   | A.3  | Primary PROFINET IRT (2.32) Network Interface | . 59 |

## 1 Preface

## **1.1** About This Document

This document describes Anybus X-gateway CANopen PROFINET IRT (2.32).

For additional related documentation and file downloads, please visit <u>www.anybus.com/support</u>.

## **1.2** Document history

| Version | Date       | e Description                                 |  |
|---------|------------|-----------------------------------------------|--|
| 1.0     | 2017-01-23 | First release                                 |  |
| 1.1     | 2017-11-22 | Updated for new firmware                      |  |
| 1.2     | 2019-04-11 | Added section about PROFINET Asset Management |  |

### **1.3** Document Conventions

Ordered lists are used for instructions that must be carried out in sequence:

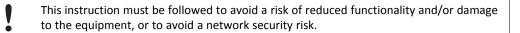
- 1. First do this
- 2. Then do this

Unordered (bulleted) lists are used for:

- Itemized information
- Instructions that can be carried out in any order

...and for action-result type instructions:

- This action...
  - $\rightarrow$  leads to this result


**Bold typeface** indicates interactive parts such as connectors and switches on the hardware, or menus and buttons in a graphical user interface.

Monospaced text is used to indicate program code and other kinds of data input/output such as configuration scripts.

This is a cross-reference within this document: Document Conventions, p. 4

This is an external link (URL): www.hms-networks.com

(1) This is additional information which may facilitate installation and/or operation.



## Caution

This instruction must be followed to avoid a risk of personal injury.



### WARNING

This instruction must be followed to avoid a risk of death or serious injury.

## **1.4 Document-Specific Conventions**

- Hexadecimal values are represented with the suffix *h* and a leading zero where needed, e.g. the hexadecimal value 1F4 is written 01F4h.
- A byte always consists of 8 bits.

## 2 Description

## 2.1 Introduction

Anybus X-gateway CANopen is designed to provide a seamless connection between a primary fieldbus or Ethernet network and a secondary CANopen sub-network.

The X-gateway transmits I/O data transparently between the two networks. Data from the primary network is written into CANopen objects that can be mapped into CANopen PDOs or read via CANopen SDOs, and vice versa. This makes it possible to integrate CANopen devices into almost any other PLC system and their supported networks.

No proprietary configuration software is needed for Anybus X-gateway CANopen, although dedicated tools may be required when configuring the primary network. Any standard CANopen configuration tool can be used to configure the secondary CANopen network interface.

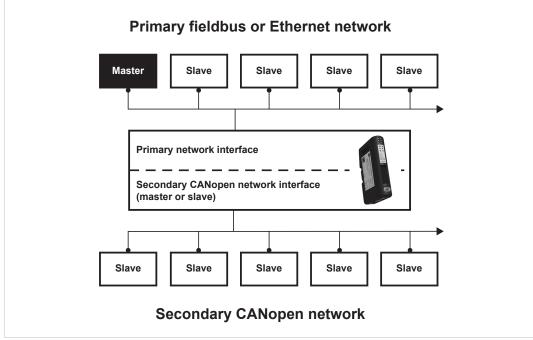



Fig. 1 Networking example

## 2.2 Data Exchange

The terminology and definitions used for different types of data vary between network types. All data transported through the Anybus X-gateway CANopen are fast, cyclic data, and will in this document simply be referred to as "I/O data".

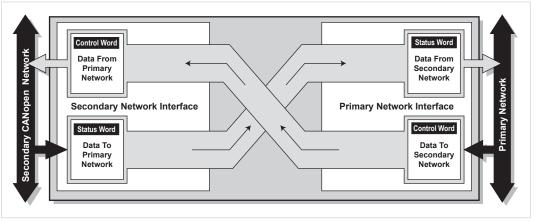



Fig. 2 Data exchange example

Each of the two network interfaces exchanges data on its network through its own buffer, which can hold up to 512 bytes of data. The first two bytes in the primary network buffer are reserved for the Control Word and Status Word, leaving 510 bytes available for I/O data.

The actual amount of data that can be exchanged depend on the application and network used and may therefore be less than 510 bytes, which is only the maximum size of the buffer.

The Control Word can be used by the master on the primary network to start and stop the exchange of data, and to reset the X-gateway if needed. The Status Word can be used by the master to read the status of the secondary CANopen network.

The I/O data exchange is separated from the network data exchange. While the gateway ensures data consistency (where applicable), it does not feature any mechanisms for synchronisation between the primary and secondary networks.

## 2.3 CANopen Functionality

(i)

The functionality of the secondary CANopen network interface is defined by the following CANopen specifications:

- KGB Draft Standard 301 version 4.2.0 (Rev. 4.2)
- CiA Draft Standard Proposal 302 Part 1–5.

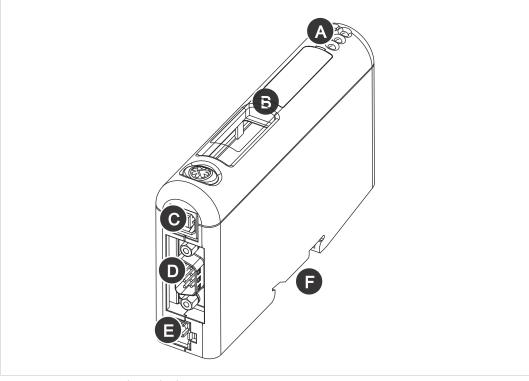
#### Supported CANopen Services

Communication and parameters in the CANopen protocol are built around abject. Different services are used for communication with the objects and for other tasks such as supervising the network. Which services are available depend on whether the secondary CANopen network interface is operating as a master or as a slave.

| Service                           | Available in | Description                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NMT (Network Management)          | Master       | NMT messages are used to configure, initialize and monitor the network, and for error handling.                                                                                                                                                                                                                                                                                                |  |
| CMT (Configuration Management)    | Master       | CMT messages are used for configuring CANopen devices.<br>This primarily involves PDO parameters and mapping of<br>information.                                                                                                                                                                                                                                                                |  |
| PDO (Process Data Objects)        | Master/Slave | Used for I/O communication.<br>128 Receive PDOs and 128 Transmit PDOs are<br>implemented, each being able to transfer up to 8 bytes.<br>The total number of PDOs that can be used is limited by<br>the data buffer size.<br>Supported PDO message types are COS (Change of state),<br>Cyclic Synchronous, and Acyclic Synchronous.                                                             |  |
| SDO (Service Data Objects)        | Master/Slave | Used to access and configure objects in the X-gateway and<br>other network nodes without mapping them to an I/O<br>(PDO) connection.<br>SDOs use asynchronous data transmission and can transfer<br>more than 8 bytes (the limit for a PDO).<br>Supported SDO message types are <i>Expedited Upload/</i><br><i>Download Protocol</i> and <i>Segmented Upload/Download</i><br><i>Protocol</i> . |  |
| SYNC (Synchronization Object)     | Master/Slave | Used for synchronizing PDO communication. A master can be either a producer or a consumer of the synchronization. A slave can only be a consumer.                                                                                                                                                                                                                                              |  |
| EMCY (Emergency Object)           | Master/Slave | Used for error reporting when a fatal error has occurred in the X-gateway or in other monitored or supervised modules.                                                                                                                                                                                                                                                                         |  |
| LSS (Layer Setting Services)      | Master       | Used by a CANopen master to configure the baud rate and NodeID of slaves that support LSS.                                                                                                                                                                                                                                                                                                     |  |
| Heartbeat Mechanism               | Master/Slave | Allows a device to monitor the status of another node. The X-gateway can appear both as heartbeat producer and consumer.                                                                                                                                                                                                                                                                       |  |
| Node Guarding Protocol Master/Sla |              | Provides active surveillance of a slave by the master.<br>Slaves can be configured to expect a node guarding<br>request from the master.                                                                                                                                                                                                                                                       |  |

The secondary CANopen network will start up as a slave by default.

## 3 Installation


ė

This product contains parts that can be damaged by electrostatic discharge (ESD). Use ESD prevention measures to avoid damage.

## 3.1 Installation Overview

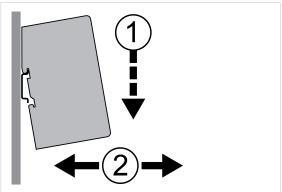
Basic steps when installing the Anybus X-gateway CANopen:

- 1. Set the node address and baud rate for the secondary CANopen interface.
- 2. Set the hardware configuration switches for the primary network interface (if applicable).
- 3. Mount the gateway on the DIN rail.
- 4. Connect the primary and secondary networks.
- 5. Connect the power cable and apply power.
- 6. Continue to *Configuration, p. 14*.



#### Fig. 3 Connectors, switches and indicators

- A LED indicators
- B Primary network interface
- C USB connector
- D CANopen connector
- E Power connector
- F DIN rail mount


## 3.2 DIN Rail Mounting

V

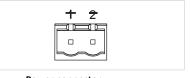
The unit must be electrically grounded through the DIN rail for EMC compliance.

#### Mount on DIN rail

- 1. Hook the unit onto the upper lip of the rail and push gently downwards.
- 2. Push the unit towards the rail until it snaps into place.



ig. 4 Push down to mount or remove


#### **Remove from DIN rail**

- 1. Push the unit gently downwards on the rail.
- 2. Pull the bottom end of the unit free of the rail and remove it.

## **3.3** Power Connector

See also *Technical Data, p. 59* regarding power supply requirements.

| Pin | Signal       |
|-----|--------------|
| 1   | +24 VDC      |
| 2   | Power Ground |



#### Fig. 5 Power connector

## **3.4 USB Connector**

The USB connector is only used when upgrading the firmware of the unit. It cannot be used for configuration purposes.

| Pin Signal                  |               |  |  |
|-----------------------------|---------------|--|--|
| 1                           | 1 +5 V input  |  |  |
| 2 USBDM (USB communication) |               |  |  |
| 3 USBDP (USB communication) |               |  |  |
| 4                           | Signal ground |  |  |
| Housing                     | Cable shield  |  |  |

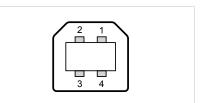



Fig. 6 USB type B connector

## 3.5 Secondary CANopen Network Interface

#### 3.5.1 Configuration Switches

Three configuration switches on the side of the unit are used to set the node address and baud rate for the secondary CANopen network interface.

The node address and baud rate cannot be changed during runtime. The module must be restarted to make a changed setting take effect.

#### Baud Rate (Switch A)

The first rotary switch is used to set the operating baud rate.

| Setting | Baud Rate (kbit/s) |        |                        |
|---------|--------------------|--------|------------------------|
| 0       | 20                 |        |                        |
| 1       | 50                 |        |                        |
| 2       | 125                |        |                        |
| 3       | 250                |        | A B C                  |
| 4       | 500                |        |                        |
| 5       | 800                | ГЛ     |                        |
| 6       | 100                | •      |                        |
| 7       | Auto               | L L    |                        |
| 8, 9    | (not used)         |        | I                      |
|         |                    | Fig. 7 | Configuration switches |

Do not select "Auto" if the traffic on the secondary network will be limited, e.g. if there are only a few nodes or the interface is configured as a master.

#### Node Adress (Switches B + C)

The second and third switches are used together to set a CANopen node address between 1 and 99. In the following example the node address is set to  $42 (4 \times 10 + 2 \times 1)$ :

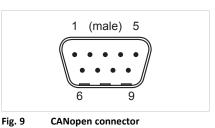



Fig. 8 Node address example

#### 3.5.2 CANopen Connector

The secondary network CANopen connector is located on the bottom of the unit. This connector is also used when downloading the CANopen configuration.

| Pin        | Signal     |
|------------|------------|
| 2          | CAN_L      |
| 3          | CAN GND    |
| 5          | Shield     |
| 6          | CAN GND    |
| 7          | CAN_H      |
| 1, 4, 8, 9 | (reserved) |



## **3.6 PROFINET IRT Network Interface**

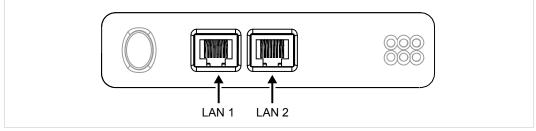



Fig. 10 PROFINET IRT interface

## Ethernet Connectors (LAN 1/LAN 2)

The PROFINET IRT interface contains a dual port Ethernet switch with RJ45 type connectors. The two ports are labeled **LAN 1** and **LAN 2**.

| Pin        | Function   |
|------------|------------|
| 1          | TD+        |
| 2          | TD-        |
| 3          | RD+        |
| 6          | RD-        |
| 4, 5, 7, 8 | (reserved) |

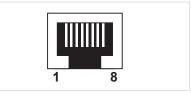



Fig. 11 Ethernet connector (RJ45)

## 3.7 LED Indicators

| 00       | LED 1 to 4 | Primary network interface status           |
|----------|------------|--------------------------------------------|
| 34<br>56 | LED 5      | Secondary CANopen network interface status |
|          | LED 6      | Device operation status                    |

#### LED Indicators – Primary PROFINET IRT Network Interface

| 1 - Network Status  | Off                   | Offline<br>– No power                                                                                                               |
|---------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                     |                       | <ul> <li>– No connection to IO Controller</li> </ul>                                                                                |
|                     | Green                 | Online (RUN)<br>– Connection to IO Controller                                                                                       |
|                     | Green, 1 flash        | Online (STOP)<br>– Connection to IO Controller<br>– IO Controller in STOP state or IO data bad<br>– RT synchronization not finished |
|                     | Red                   | Fatal error                                                                                                                         |
|                     | Red, 1 flash          | Station name error                                                                                                                  |
|                     | Red, 2 flashes        | IP address error                                                                                                                    |
|                     | Red, 3 flashes        | Configuration error                                                                                                                 |
|                     | Alternating red/green | Firmware update in progress                                                                                                         |
| 2 - Module Status   | Off                   | No power or initializing                                                                                                            |
|                     | Green                 | Normal operation                                                                                                                    |
|                     | Green, 1 flash        | Diagnostic event present                                                                                                            |
|                     | Red                   | Fatal error                                                                                                                         |
|                     | Alternating red/green | Firmware update in progress                                                                                                         |
| 3 - Link/Activity 1 | Off                   | No power or no link detected                                                                                                        |
| 4 - Link/Activity 2 | Green                 | Link OK                                                                                                                             |
|                     | Green, flickering     | Transmitting/receiving data                                                                                                         |

#### LED Indicators – Secondary CANopen Network Interface & Device Status

| 5 - CANopen Status | Off                  | No power                   |
|--------------------|----------------------|----------------------------|
|                    | Flickering red/green | LSS services in progress   |
|                    | Green                | Operational state          |
|                    | Green, 1 flash       | Stopped state              |
|                    | Green, blinking      | Pre-operational state      |
|                    | Red                  | Bus off                    |
|                    | Red, 1 flash         | Warning limit reached      |
|                    | Red, 2 flashes       | Error control event        |
|                    | Red, 3 flashes       | Sync error                 |
|                    | Red, 4 flashes       | Data communication timeout |
|                    | Red, blinking        | Configuration error        |
| 6 - Device Status  | Off                  | Power off                  |
|                    | Green                | Running                    |
|                    | Green, 1 flash       | Bootup                     |
|                    | Red                  | Fatal error                |
|                    | Red, 1 flash         | Initialization error       |
|                    | Red, 2 flashes       | Timeout error              |
|                    | Red, 3 flashes       | Hardware failure           |
|                    | Red, 4 flashes       | Invalid switch settings    |

#### **LED Indicator Timing Intervals**

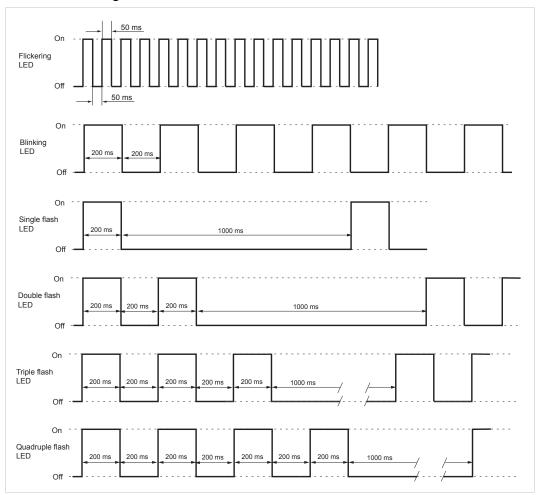



Fig. 12 LED indicator timing intervals

## 4 Configuration

I

## 4.1 Configuration Overview

#### **Device Description Files**

A device description file contains a description of a network device, its functions, object dictionary implementations, etc., and is used when configuring the network interface. The device description file can be referred to as an EDS, GSD, DDF, etc., depending on the type of network.

The latest versions of the device description files to use with Anybus X-gateway CANopen can be downloaded from <u>www.anybus.com/support</u>.

#### Basic steps when configuring Anybus X-gateway CANopen

The secondary network interface should be configured first. The gateway must then be power cycled before configuring the primary network interface.

- 1. Determine the amount of data that should be transferred. This value will be entered in the secondary CANopen network interface configuration.
- 2. Configure the secondary CANopen network interface. See Configuring the Secondary CANopen Network, p. 15.
- 3. Power cycle the X-gateway.
- 4. Configure the primary network interface. See *Configuring the PROFINET IRT (2.32) Interface, p. 16.*

#### **Module Identification**

Anybus X-gateway CANopen will identify itself on the network as follows:

| Description         | Value                      |
|---------------------|----------------------------|
| Vendor Code         | 90                         |
| Vendor Name         | "HMS Networks"             |
| Product Code        | 51                         |
| Product Type        | 12                         |
| Product Type String | "Communications Adapter"   |
| Product Name        | "Anybus X-gateway CANopen" |
| Catalog             | "Anybus X-gateway CANopen" |
| Desc Text           | "Anybus X-gateway CANopen" |

## 4.2 Configuring the Secondary CANopen Network

This is a generic description of the basic steps in configuring the secondary CANopen network interface using an external CANopen configuration tool. For instructions on how to create and apply a configuration, please refer to the documentation for the configuration tool used.

- 1. Download the Anybus X-gateway CANopen EDS file from <u>www.anybus.com/support</u>.
- 2. Prepare EDS files for the other nodes on the secondary CANopen network.
- 3. Open the CANopen configuration tool and upload the EDS files to it.
- 4. Configure the following parameters in the Anybus X-gateway CANopen:

| Parameter                          | Value range                               | Comment                                                                                                                                                                                                                                                                                            |
|------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NodeID                             | 1 to 127                                  | NodeID 1 to 99 can be set with the configuration switches.<br>NodeID 99 to 127 can only be be set using a configuration tool or<br>from the CANopen network.                                                                                                                                       |
| Baud Rate                          | 20, 50, 125, 250, 500,<br>800, 1000, Auto | Set with configuration switch.<br>Auto should only be used when configured as a slave.                                                                                                                                                                                                             |
| Master/Slave                       | Master or Slave                           | Default = Slave. See also NMT Start-up, 1F80h, p. 48.                                                                                                                                                                                                                                              |
| Input Data Size<br>(object 3000h)  | 2 to 512                                  | Size of the data transmitted <b>to</b> the primary network.<br>Bytes 0 and 1 are reserved for the Status Word, leaving a<br>maximum of 510 bytes available for data. The actual maximum<br>data size depends on the primary network.<br>Default = 16 bytes (14 bytes data + 2 bytes Status Word).  |
| Output Data Size<br>(object 3001h) | 2 to 512                                  | Size of the data received <b>from</b> the primary network.<br>Bytes 0 and 1 are reserved for the Control Word, leaving a<br>maximum of 510 bytes available for data. The actual maximum<br>data size depends on the primary network.<br>Default = 16 bytes (14 bytes data + 2 bytes Control Word). |

- 5. Configure the other CANopen nodes as needed. Make sure that each node uses the same baud rate and has a unique NodeID.
- 6. Download the configuration from the tool to each CANopen node.

The configuration can be downloaded individually to each node, or as a *Concise DCF* file to the CANopen master which will then configure the slaves.

- 7. Power cycle the X-gateway.
- 8. Continue to *Configuring the PROFINET IRT (2.32) Interface, p. 16.*

(1) The secondary CANopen network will start up as a slave by default.

## 4.3 Configuring the PROFINET IRT (2.32) Interface

The secondary network interface should always be configured first. The gateway must then be power cycled before configuring the primary network interface.

The primary network interface of the X-gateway must be configured with the configuration tool used for the network it is connected to. The choice of configuration tool depends on the type of network, the application, and the master used on the primary network.

Application notes describing how to configure primary network interfaces in Anybus X-gateway CANopen with some of the most common tools can be found at <u>www.anybus.com/support</u>.

#### 4.3.1 PROFINET Data Exchange

PROFINET is the open Industrial Ethernet standard for automation from PROFIBUS and PROFINET International. The PROFINET IRT device provides PROFINET IO Isochronous Real Time Communication.

PROFINET makes a clear distinction between fast cyclical data, *IO Data*, and acyclical data, *Record Data*. PROFINET IO Data corresponds to what is generally referred to as *I/O Data* in Anybus X-gateway CANopen. PROFINET Record Data is not supported.

#### PROFINET IO Data (I/O Data)

PROFINET IO Data is exchanged cyclically and is built up by I/O modules. The actual I/O configuration is determined by the PROFINET IO Controller. The modules are mapped to the Input and Output Buffers in the order of their slot number.

The first two bytes of the I/O data area are reserved for the Control Word and the Status Word, which are used by the IO Controller to control and report status on the nodes on the secondary CANopen network. The remainder is available for real-time data transfer using PDOs.

The amount of data exchanged as I/O data is specified when configuring the CANopen master interface. The data arriving from the CANopen master is completely transparent. The interpretation must be defined by the master on the primary network.

#### **GSD** File

All PROFINET devices are associated with an XML-based *GSD* file. This file contains information about the basic capabilities and configuration options of the device.

The latest version of the GSD file for Anybus X-gateway CANopen can be downloaded from <a href="http://www.anybus.com/support">www.anybus.com/support</a>.

#### 4.3.2 Network Configuration

To be able to communicate over Ethernet the network interface needs a valid TCP/IP configuration. This section explains some basic concepts and describes how to configure the TCP/IP settings in Anybus X-gateway CANopen using the *IPconfig* software tool.

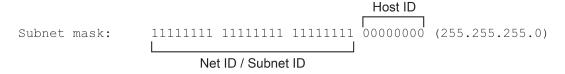
When Ethernet communication has been established the TCP/IP settings can also be changed from the web interface. See *Web Pages*, *p.* 21.

#### **Basic TCP/IP Concepts**

#### **IP Address**

The IP address is used to identify each node on a TCP/IP network. IP addresses are written as four decimal integers (0–255) separated by dots, where each integer represents the binary value of one byte of the IP address. This is known as *dot-decimal notation*.

Example: 10000000 00001010 0000010 00011110 is written as 128.10.2.30


The following IP addresses are reserved for special purposes and cannot be used:

| 0.n.n.n   | First byte zero — used for broadcast messages                  |
|-----------|----------------------------------------------------------------|
| 127.n.n.n | First byte 127 — used for loopback addresses to the local host |
| n.n.n.0   | Last byte zero — identifies a whole network/subnet             |
| n.n.n.255 | Last byte 255 — used for broadcast messages                    |

#### Subnet Mask

The IP address is divided into three parts: *Net ID, Subnet ID* and *Host ID*. A subnet mask is a 32bit binary pattern, where a set bit allocates a bit for Network/Subnet ID, and a cleared bit allocates a bit for the Host ID. The subnet mask is usually written in dot-decimal notation.

**Example:** To make the IP address 128.10.2.30 belong to subnet 128.10.2, the subnet mask must be 255.255.255.0.



#### **Default Gateway**

For devices to be able to communicate over Ethernet they must either belong to the same subnet or communicate via a gateway or router.

A gateway or router routes communication between networks, i.e. it enables the nodes on one network to access the nodes on another. The *default gateway* address in the TCP/IP settings of your product specifies the IP address of the gateway or router on the local network.

#### **TCP/IP Configuration**

#### Installing the IPconfig Utility

*IPconfig* is a Windows-based tool for configuration of TCP/IP settings in HMS devices. The tool will detect all compatible and active HMS devices on the local network.

- 1. Download IPconfig from <u>www.anybus.com/support</u>.
- 2. Unpack the contents of the zip archive and run the installer program.

#### **Scanning for Connected Devices**

When IPconfig is started it will automatically scan all available local networks for HMS devices. Detected devices will be listed in the main window. To refresh the list, click on **Scan**.

|   | IP /         | SN SN         | GW            | DHCP | Version | Туре                | MAC               | Т |
|---|--------------|---------------|---------------|------|---------|---------------------|-------------------|---|
|   | 10.10.13.164 | 255.255.255.0 | 10.10.13.1    | On   | 3.25.0  | ABX EtherNet/IPScan | 00-30-11-0E-36-6C |   |
| L | 10.10.13.204 | 255.255.255.0 | 0.0.0.0       | Off  | 1.05.1  | Anybus .NET Gateway | 00-30-11-13-3D-13 |   |
| L | 10.10.13.166 | 255.255.255.0 | 10.10.13.1    | On   | 1.34.1  | EC250               | 00-30-11-FB-9D-40 |   |
| L | 10.10.13.168 | 255.255.255.0 | 10.10.13.1    | On   | 2.00.1  | LC350               | 00-30-11-FB-9D-36 |   |
|   | 192.168.0.83 | 255.255.255.0 | 192.168.0.254 | Off  | 1.22.0  | ModbusGW            | 00-30-11-FB-7F-13 |   |
|   |              |               |               |      |         |                     |                   |   |
|   |              |               |               |      |         |                     |                   |   |
| L |              |               |               |      |         |                     |                   |   |
|   |              |               |               |      |         |                     |                   |   |

Fig. 13 IPconfig main window

| IP      | IP address of the device               |
|---------|----------------------------------------|
| SN      | Subnet mask                            |
| GW      | Default gateway                        |
| DHCP    | Automatically managed IP configuration |
| Version | Firmware version                       |
| Туре    | Product name                           |
| MAC     | Ethernet MAC address (System ID)       |

#### **Ethernet Configuration**

To change the IP settings for a device, double-click on the entry in the main window or right-click on it and select **Configuration**.

| Ethernet configur | ation               |                 |
|-------------------|---------------------|-----------------|
| IP address:       | 192 . 168 . 0 . 83  | DHCP            |
| Subnet mask:      | 255 . 255 . 255 . 0 | C On<br>© Off   |
| Default gateway:  | 192 . 168 . 0 . 254 |                 |
| Primary DNS:      | 0 . 0 . 0 . 0       |                 |
| Secondary DNS:    | 0.0.0.0             |                 |
| Hostname:         | Modbus              |                 |
| Password:         |                     | Change password |
| New password:     |                     |                 |
|                   |                     | Set Cancel      |

#### Fig. 14 Ethernet configuration

Enter static IP settings as required, or select DHCP if using dynamic IP addressing.

Do not enable DHCP if there is no DHCP server available on the network.

You can add a name for the device in the **Hostname** field. Only characters a–z, A–Z, 0–9 and \_ (underscore) are allowed.

The default password for changing IP settings is blank (no password). If a password has been set for the device you must enter it to be able to change the settings.

To set a new password, check the **Change password** box and enter the current password in the **Password** field, then enter the new password in the **New password** field.

For se

For security reasons the default password should always be changed.

Click on Set to save the new settings. The device will reboot automatically.

#### **IPconfig Settings**

Additional settings for IPconfig can be accessed by clicking on Settings.

| ſ    | IPconfig                                                                                                                                                                         |                                                                            |                                                          |                                |                                                 |                                            |         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------|---------|
|      | IP /<br>10.10.13.164<br>10.10.13.204<br>10.10.13.164<br>192.168.0.83                                                                                                             | SN<br>255.255.255.255.0<br>255.255.255.0<br>255.255.255.0<br>255.255.255.0 | GW<br>10.10.13.1<br>0.0.0<br>10.10.13.1<br>192.168.0.254 | DHCP<br>On<br>Off<br>On<br>Off | Version<br>3.25.0<br>1.05.1<br>1.32.0<br>1.22.0 | ABX EtherNet/IPScan<br>Anybus .NET Gateway |         |
| Real | vk Interface<br>oadcast from a Spec<br>ork Interface Control<br>lek US8 GbE Family C<br>nal DHCP server<br>mgl Internal DHCP se<br>ave been set to DHCP<br>sable internal DHCP s | er<br>ontroller<br>rver should only b<br>P by mistake.                     |                                                          | rodules<br>Cancel              |                                                 | Settings Sce                               | an Exit |

Fig. 15 IPconfig settings

#### **Network Interface**

Check this option to select a specific network interface to use when scanning for devices from a computer which has more than one interface. If this option is left unchecked, all available networks will be scanned.

#### **Internal DHCP Server**

If a device has been set to use DHCP but there is no DHCP server on the network, the device may not be detected by IPconfig. To recover access to the device an internal DHCP server in IPconfig can be temporarily activated:

- 1. Click the checkbox for **Internal DHCP Server**, then click **OK**. IPconfig will automatically refresh the scan and list the missing device in the main window.
- 2. Select the device and configure it to use static IP addressing instead of DHCP.
- 3. Disable the internal DHCP server.

Do not enable the internal DHCP server if there is already an active DHCP server on the network.

#### **DCP (Discovery and Control Protocol)**

Anybus X-gateway CANopen PROFINET IRT (2.32) supports the DCP protocol, which allows a PROFINET IO Controller/Supervisor to change the network settings during runtime.

#### 4.3.3 Web Pages

Network configuration settings and status of the PROFINET IRT network interface can be accessed by pointing a web browser to the IP address of the interface.

#### **Module Overview**

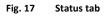

| MODULE Identifi                                     | cation                           |                                  |  |
|-----------------------------------------------------|----------------------------------|----------------------------------|--|
| Overview Module<br>Parameters Serial nu<br>FW versi | name: Ai<br>imber: F(<br>ion: 3. | nybus X-gateway<br>000039E<br>28 |  |
| Status CPU Los<br>Configuration<br>SRV/CES<br>SMTP  |                                  | days, 0h:1m:5s<br>%              |  |
|                                                     |                                  |                                  |  |
|                                                     |                                  |                                  |  |

Fig. 16 Overview tab

Provides basic information about the X-gateway including the serial number and the installed firmware version.

#### **Network Status**

| MODULE        | Current IP Settings     |                   |  |
|---------------|-------------------------|-------------------|--|
| Overview      | DHCP:                   | Disabled          |  |
| Parameters    | Host Name:              |                   |  |
| NETWORK       | IP Address:             | 192.168.0.155     |  |
| Status        | Subnet Mask:            | 255.255.255.0     |  |
| Configuration | Gateway Address:        | 0.0.0.0           |  |
|               | DNS Server #1:          | 0.0.0.0           |  |
| SERVICES      | DNS Server #2:          | 0.0.0.0           |  |
| SMTP          | Domain name:            |                   |  |
|               | Current Ethernet Status |                   |  |
|               | MAC Address:            | 00:30:11:FF:05:03 |  |
|               | Port 1:                 | 100 FDX           |  |
|               | Port 2:                 | No Link           |  |
|               | > Interface Counters    |                   |  |
|               |                         |                   |  |
|               | Media Counters          |                   |  |



Displays an overview of the current network status.

#### **Network Configuration**

| MODULE           | IP Configuration                      |               |                                 |
|------------------|---------------------------------------|---------------|---------------------------------|
| Overview         | DHCP                                  | Disabled V    |                                 |
| Parameters       | IP Address                            | 192.108.0.155 |                                 |
| NETWORK          | Subnet Mask                           | 255.255.255.0 |                                 |
| Status           | Gateway Address                       | 0.0.0.0       |                                 |
|                  | Host Name                             |               |                                 |
| Configuration    | Domain name                           |               |                                 |
| SERVICES         | DNS Server #1                         | 0.0.0         |                                 |
| SMTP             | DNS Server #2                         | 0.0.0         |                                 |
|                  | Save settings                         |               |                                 |
| © 2013 HMS Indu: | strial Networks - All rights reserved |               | Connecting Devices <sup>™</sup> |

Fig. 18 Configuration tab

Provides access to the TCP/IP network settings. These parameters can also be configured using the *IPconfig* tool.

## 4.4 Enabling Data Exchange

 $(\mathbf{i})$ 

Once both interfaces of the X-gateway have been properly configured, the PLC (master) on the primary network must explicitly allow the X-gateway to exchange I/O data between the primary and secondary networks by writing the OPERATIONAL command in the control word.

If the X-gateway is set as **master** on the secondary network, it will automatically be available when the PLC has enabled data exchange. The X-gateway will control the secondary network, using the instructions that are sent in the control word by the PLC.

If the X-gateway is set as a **slave** on the secondary network, it will wait for a request from the master before starting to exchange data. If the X-gateway has not been enabled by the PLC to exchange data it will return an error message to the secondary network.

The secondary CANopen network will start up as a slave by default.

## 5 **PROFINET Asset Management**

## 5.1 Asset Management Record

With the *asset management record* functionality data about the assets available on a non PROFINET network can be recorded and read out over a PROFINET network.

Together with the *Identification & Maintenance data* functionality an extensive registration of devices and machines is possible, even in facilities where the devices are not installed in the PROFINET environment.

Factory owners and system integrators can collect data about devices installed beyond the *Anybus gateway*.

The recorded data can be used as basis for the design of easier maintenance and operation processes, despite the increasing complexity of processes and associated machines.

## 5.2 Recording and Reading Data

An *asset management* file containing all the *assets* and their corresponding data on the non PROFINET network is created and uploaded via an *FTP* server to the Gateway *file system*.

The *asset management* file can be transferred from a computer connected to a PROFINET network.

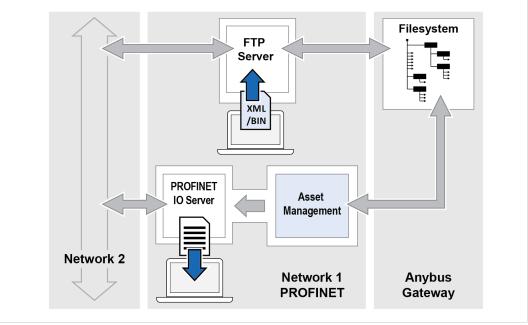



Fig. 19 The Asset Management Default Mode

By using the *superposed parameter channel* mode it is also possible to transfer the *asset management* file from a PLC connected to a non PROFINET network.

For further details about the *superposed parameter channel* mode, please refer to <u>www.anybus.com/support</u>.

#### **Record Data**

Data about the *assets* on the non PROFINET network is recorded and stored in an *XML* file or an *binary* file.

#### **Read Data**

Each time an *instance* is requested the *asset management* data is read out over the PROFINET network.

The recorded *asset management* data can be downloaded to a computer connected to the PROFINET network.

## 5.3 Supported File Formats

The following file formats are supported for the *asset management* file.

| Format        | Version         |
|---------------|-----------------|
| XML           | XML Version 1.0 |
| Binary file   | N/A             |
| Little-endian |                 |

## 5.4 Supported Asset Management Records

Supported asset management records:

- Unique ID
- Location
- Hardware Revision
- Annotation
- Order ID
- Serial Number
- Software Revision
- Serial Number

### 5.5 XML Based Asset Management

#### 5.5.1 Creating the Asset Management XML File

Creating the asset management XML file:

- 1. List all assets and their corresponding data on the non PROFINET network.
- Create an XML file that include one *asset management record* for each asset. Repeat all the *attributes* after each other.
- 3. When all *attributes* are listed, close the *element* by using a *closing entry*.
- 4. Name the XML file *asset\_mgmt*.

### 5.5.2 XML File Size Limitation

 $ig( \big)$  The size of the asset management file may not exceed 95 kb.

Up to 32 instances can be added.

In order to keep the file size small, consider the following:

- Keep strings as short as possible.
- Do not pad with empty spaces for strings.
- Try to use as few spaces as possible for indentation in the file.
- The number of white-space also affects the file size.
- Avoid using optional name strings.

### 5.5.3 XML Attribute Name and Data Format

The order of the elements is significant for the XML schema to work with the Anybus Gateways. If the XML schema is incorrect, the XML file will not work and no data will be recorded.

When creating the XML file, add the *elements* and their *attributes* in the same order as the *attribute names* are listed in the table below.

Each *element* consists of a series of *attributes* and their various data.

Each attribute is described by one entry.

The supported *attribute names* are specified in the table.

**Example 1:** XML *element* including an *attribute* with the *location* record.

```
<AbccAttribute>
<Name Value="Location Type"/>
<Attribute Value="3"/>
<Data Value="1"/>
</AbccAttribute>
```

| Attribute Name and Data                        |                                                         |                                                                                                                                                                            |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Attribute Name                                 | Data Format                                             | Description                                                                                                                                                                |  |  |  |  |
| AM info Type<br>Location Type                  | Unsigned 8                                              | The value can be set in either of two formats, $0x12$ or $18$ .                                                                                                            |  |  |  |  |
| AM Type Identification<br>IM Hardware Revision | Unsigned 16                                             | The value can be set in either of two formats, $0 \pm 1234$ or $4660.$                                                                                                     |  |  |  |  |
| IM Annotation                                  | String of length $\ensuremath{\mathbb{X}}$              | Maximum number of elements in array: 64.                                                                                                                                   |  |  |  |  |
| IM Order ID                                    | String of length $\ensuremath{\mathbb{X}}$              | Maximum number of elements in array: 64.                                                                                                                                   |  |  |  |  |
| IM Serial Number                               | String of length X                                      | Maximum number of elements in array: 16.                                                                                                                                   |  |  |  |  |
| AM Software Revision                           | String of length X                                      | Maximum number of elements in array: 64.                                                                                                                                   |  |  |  |  |
| AM Hardware Revision                           | String of length X                                      | Maximum number of elements in array: 64.                                                                                                                                   |  |  |  |  |
| IM Software Revision                           | String                                                  | Format of the string shall be C.X.Y.Z.<br>C is one character.<br>X, Y and Z represent a value between 0 and 255.<br>X – Major version<br>Y – Minor version<br>Z – Internal |  |  |  |  |
| IM Unique Identifier                           | Array of Unsigned 8<br>Length is 16                     | Format of the value shall be 0xXX; 0xYY0xZZ.<br>16 values in hex-format, where each value is separated by a ","                                                            |  |  |  |  |
| Location LT                                    | Array of Unsigned 16<br>Length is up to 12<br>elements. | Format of the value shall be 0xXXXX; 0xYYYY0xZZZZ.<br>Up to 12 values in hex-format, where each value is separated<br>by a ";".                                            |  |  |  |  |
| Location SS<br>AM Device Identification        | Array of Unsigned 16<br>Length is 4.                    | Format of the value shall be 0xXXXX; 0xYYYY0xZZZZ.<br>4 values in hex-format, where each value is separated by a ";".                                                      |  |  |  |  |

## Attribute Name and Data Format

### 5.5.4 Asset Management XML File Structure Example

The code example presented below can be used as a guide when creating the *asset management* XML file.



Fig. 20 Asset management XML file structure example

## 5.6 Binary Based Asset Management

### 5.6.1 Creating the Asset Management Binary File

Creating the asset management binary file:

- 1. List all assets and their corresponding data on the non PROFINET network.
- 2. Create an Binary file that include a *asset management record* for each asset. Repeat all the *attributes* after each other.
- 3. When all *attributes* are listed, close the *element* by using a *closing entry*.
- 4. Name the bin file *asset\_mgmt*.

## 5.6.2 Binary File Size Limitation

 $ig( \big)$  The size of the asset management file may not exceed 12 kb.

(1) 32 instances can be added, instance 1 to 32.

In order to keep the file size small, consider the following:

- Keep strings as short as possible.
- Do not pad with empty spaces for strings.

### 5.6.3 Binary File Header

(1) Omitted attributes are disabled or set to their default value.

The size of the file header is 70 bytes.

The supported *file headers* are specified in the table.

#### Supported File Headers

| File Header Byte Number Data  |       | Data Type | Comment                                                                                                          |  |  |
|-------------------------------|-------|-----------|------------------------------------------------------------------------------------------------------------------|--|--|
| File format version           | 0-1   | UINT16    | Version number of the file format.<br>Set to 0.                                                                  |  |  |
| File checksum                 | 2-5   | UINT32    | Used for version control of the file.<br>Not used by the gateway.<br>If not used, the field must be set to zero. |  |  |
| Byte offset to<br>Instance 1  | 6-7   | UINT16    | Byte offset to the start of the data describing Asset management Instance X.                                     |  |  |
| Byte offset to<br>Instance 2  | 8-9   |           | Set to zero if instance is not used.                                                                             |  |  |
| Byte offset to<br>Instance 32 | 68-69 |           |                                                                                                                  |  |  |
| Instance data                 | 70-x  | N/A       | Data for the instance(s), as specified below.                                                                    |  |  |

### 5.6.4 Binary Instance Data

Each *instance* consists of a series of *attributes* and their respective data.

#### **Attribute Description**

Each *attribute* is described by one entry.

| Attribute Description | Byte number | Data type                                 | Comment                                                                                                                      |
|-----------------------|-------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Attribute number      | 0           | UINT8                                     | Attribute number of the data being described.                                                                                |
| Data length           | 1           | UINT8                                     | Optional checksum.<br>Shall represent the number of data bytes<br>following.<br>Not used by the gateway.                     |
| Attribute data        | 2-x         | Depends on the attribute being described. | Data for the attribute.<br>Format shall be as described for the data-type.<br>Not needed for strings padding or termination. |

#### **Attribute Closure Description**

Use a *closing entry* to close the instance data.

| Attribute Description | Byte number | Data type | Comment                                                                                                           |
|-----------------------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------|
| Closure               | 0–1         | UINT16    | Data-field which tell that there will not follow<br>any more attributes for this instance.<br>Set to value 0xFFF. |

#### Attribute Name and Data Format

Supported attribute names and data formats.

| Attribute Name and Data Format |  |
|--------------------------------|--|
|--------------------------------|--|

| Attribute Name                                 | Data Format                                             | Description                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AM info Type<br>Location Type                  | Unsigned 8                                              | The value is set as one byte value.                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| AM Type Identification<br>IM Hardware Revision | Unsigned 16                                             | The value is set with two bytes, <i>little-endian</i> format.                                                                                                                                                                                                                                                                              |  |  |  |  |
| IM Annotation                                  | String of length $\ensuremath{\mathbb{X}}$              | Maximum number of elements in array: 64.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| IM Order ID                                    | String of length $\ensuremath{\mathbb{X}}$              | Maximum number of elements in array: 64.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| IM Serial Number                               | String of length $\ensuremath{\mathbb{X}}$              | Maximum number of elements in array: 16.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| AM Software Revision                           | String of length ${\rm X}$                              | Maximum number of elements in array: 64.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| AM Hardware Revision                           | String of length ${\tt X}$                              | Maximum number of elements in array: 64                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| IM Software Revision                           | Array of Unsigned 8<br>Length is 4                      | <ul> <li>First byte is a character.</li> <li>Bytes 2, 3 and 4 represent the version in the format X.Y.Z where X, Y and Z represent a value between 0 and 255.</li> <li>C is one character.</li> <li>X, Y and Z represent a value between 0 and 255.</li> <li>X – Major version</li> <li>Y – Minor version</li> <li>Z – Internal</li> </ul> |  |  |  |  |
| IM Unique Identifier                           | Array of Unsigned 8<br>Length is 16                     | Format is 16 bytes.                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Location LT                                    | Array of Unsigned 16<br>Length is up to 12<br>elements. | Each Unsigned 16 comprises two bytes, where each two bytes form an Unsigned 16 in <i>little-endian</i> format.<br>The number of Unsigned 16's can be up to 12, placed directly after each other                                                                                                                                            |  |  |  |  |
| Location SS<br>AM Device Identification        | Array of Unsigned 16<br>Length is 4.                    | Each Unsigned 16 comprises two bytes, where each two bytes<br>form an Unsigned 16 in <i>little-endian</i> format.<br>The number of Unsigned 16's shall be 4, placed directly after<br>each other.                                                                                                                                          |  |  |  |  |

### 5.6.5 Asset Management Binary File Example

The binary file structure example presented below can be used as a guide when creating the *asset management* binary file.

Only *instance* 1 is supported.

For *instance 1*, only attribute 1 and 2 are defined.

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|----|------|------|------|------|------|------|------|------|
| 0  | 0x00 | 0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x46 | 0x00 |
| 8  | 0x00 |
| 16 | 0x00 |
| 24 | 0x00 |
| 32 | 0x00 |
| 40 | 0x00 |
| 48 | 0x00 |
| 56 | 0x00 |
| 64 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x00 | 0x01 | 0x01 |
| 72 | 0x01 | 0x02 | 0x10 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 |
| 80 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0D |
| 88 | 0x0E | 0x0F | 0x10 | 0xFF | 0xFF |      |      |      |

Fig. 21 Binary file example

## 5.7 Uploading the Asset Management File to the FTP Server

Use Windows Explorer or a standard FTP client to transfer the asset management file to the FTP server.

When the *superposed parameter channel* function is enabled, transfer the *asset management file* via a PLC connected to the network where the gateway is installed.

### 5.7.1 Transferring the Asset Management File from Windows Explorer

Transfer the asset management file, XML or binary file, to the FTP server using Windows Explorer.

#### **Before You Begin**

ig( ig) Use only one of the file formats, XML format or binary format.

(1) Only upload one single file on the FTP server.

- Name the asset management file: asset\_mgmt
- The default port is FTP port 21.
- Make sure that the gateway and your computer are connected to the PROFINET network to be used.

#### Procedure

|                                                                                                                                                                                       | - □ ×<br>~ 0                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| <ul> <li>← → ~ ↑ ♥ &gt; The Internet &gt; 10.10.55.75 &gt;</li> <li>✓ Quick access</li> <li>⊘ Creative Cloud Files</li> <li>④ OneDrive</li> <li>This PC</li> <li>♥ Network</li> </ul> | v (z) Search 10.10.55.75 , p |
| 3 items 1 item selected                                                                                                                                                               | 8== 📼                        |

Fig. 22 The FTP Server root folder

- 1. Open an Windows Explorer Window.
- 2. Click to select the Address bar.
- 3. Enter ftp://Username:Password@IPaddress.
  - Replace "Username" and "Password" with a valid username and password combination.
  - Replace 'IPaddress' with the IP address of the PROFINET interface.
- 4. Press Enter.

Fig. 23 Application folder with an asset\_mgmt.xml file

5. Open the *application* folder and save the *asset management file*, XML or Binary file, in the folder.

## 6 CANopen Module Specification

## 6.1 NMT State Machine

CANopen network management is modeled as a state machine with four states. The device can change states due to requests from an NMT object, a hardware reset (power cycle), or a module control message initiated by an application event.

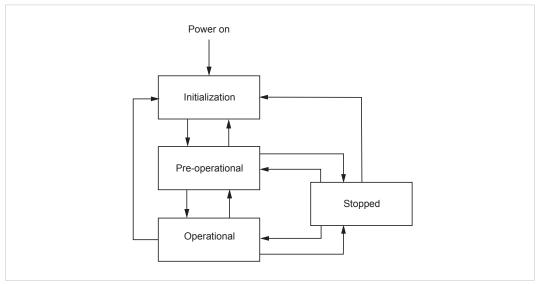



Fig. 24 CANopen NMT state machine

| Initialization  | When power is applied (or on reset), the device will enter the Initialization state. All parameters will be set to their latest stored values. If there is no stored value for a parameter, the default value from the device profile is used. When initialization has finished, the device will transit to the Pre-operational state.                                                          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-operational | The Pre-operational state is primarily used for configuration. It allows SDO, EMCY, SYNC and NMT control messages to be transmitted, but not process data (PDOs). When the device has entered the Pre-operational state it will send a boot-up message, indicating that it is ready to transit to the Operational state. The device can also go back to Initialization or to the Stopped state. |
| Operational     | In the Operational state all supported communication objects are allowed. PDOs (I/O data) will be communicated according to the active configuration. The device can transit from the Operational state to any of the other states.                                                                                                                                                             |
| Stopped         | In this state all data communication is stopped. Only Heartbeat, Node Guarding, and NMT control messages are possible. The device can transit from the Stopped state to any of the other states.                                                                                                                                                                                                |

The first two bytes of the I/O data area are reserved for the Control Word and the Status Word, which are used by the controlling PLC on the primary network to control and report status on the nodes on the secondary CANopen network. The remainder is available for real-time data transfer using PDOs. The amount of data that is exchanged as I/O data is specified when configuring the CANopen master interface.

## 6.2.1 Control Word

| Control Word |              | Effective I/O Data |        |            |
|--------------|--------------|--------------------|--------|------------|
| Byte 0       |              |                    | Byte 1 | Byte 2–510 |
| Toggle bit   | Cmd (3 bits) | CmdExt (4 bits)    | NodeID | Data       |

The MSB in byte 0 (toggle bit) is toggled each time a new command is issued.

If NodeID = 0, the command is valid only for the module itself. If NodeID = 128 (80h), the command is valid for the whole secondary CANopen network. If the module is configured as a slave, the only allowed value of NodeID is 0.

#### Supported Commands (Cmd + CmdExt)

The function of the Control Word differs depending on if the secondary CANopen interface is configured as a slave or a master.

| Cmd   | CmdExt         | Name                    | Master                                                                                                                   | Slave                                                             |  |  |
|-------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| 0h    | -              | (Set NMT State)         |                                                                                                                          |                                                                   |  |  |
|       | 0h<br>1h<br>2h | PRE-OPERATIONAL         |                                                                                                                          | State is set by the controlling PLC.                              |  |  |
|       |                | OPERATIONAL             | whole network according to the value of NodeID.                                                                          | If the PLC is running, the state will be                          |  |  |
|       |                | RESET NODE              |                                                                                                                          | set to OPERATIONAL, otherwise to<br>PRE-OPERATIONAL. <sup>1</sup> |  |  |
|       | 3h             | RESET COMMUNICATION     |                                                                                                                          | The of Enanonal.                                                  |  |  |
|       | 4h             | STOP                    |                                                                                                                          | Default = PRE-OPERATIONAL                                         |  |  |
|       | 5h–Fh          | -                       | (reserved)                                                                                                               | _                                                                 |  |  |
| 1h    | -              | Get Node state          | Requests the state in object 1F82h of the node or network (if monitored by Node Guarding or Heartbeat).                  |                                                                   |  |  |
| 2h    | -              | Get COPM general status | Requests the general status of the CAN                                                                                   | open module                                                       |  |  |
| 3h–6h | (reserved)     |                         |                                                                                                                          |                                                                   |  |  |
| 7h    | -              | (No operation)          | Setting Cmd to this value when the module goes offline will prevent<br>unpredictable behavior when it comes back online. |                                                                   |  |  |

# RESET NODE will restore the last stored configuration, RESET COMMUNICATION will restore communication settings. Both commands will return the module to the INITIALIZATION state.

| Examples     |              |                                                                                                                          |  |  |  |  |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Master/Slave | Control Word | Meaning                                                                                                                  |  |  |  |  |
| Slave        | 01 00h       | 01h:Allow the module to go to OPERATIONAL if asked by an NMT master.00h:The command is only valid for the module itself. |  |  |  |  |
| Master       | 01 80h       | 01h:Start remote node in the secondary network.80h:The command is valid for all nodes in the secondary network.          |  |  |  |  |
|              | 01 02h       | 01h:Start remote node.02h:The command is valid for node 2.                                                               |  |  |  |  |
|              | 04 80h       | 04h:Stop remote node.80h:The command is valid for all nodes in the secondary network.                                    |  |  |  |  |

<sup>1.</sup> The controlling PLC must set the X-gateway to OPERATIONAL using the Control Word, otherwise the X-gateway will decline an NMT Set Operational Command on the secondary network with error code FF10h. The same error code will be sent if the X-gateway is reset to PRE-OPERATIONAL by the primary network.

## 6.2.2 Status Word

Byte 0 in the status word shows the last valid command and command extension written to the Control Word, to indicate that the command has been performed. Byte 1 gives the lowest NodeID with error. Please note that there can be one or more nodes, with higher NodeIDs, that also have errors. If NodeID is 0, all nodes are fine. If NodeID is (for example) 5, it means that there is an error with node 5.

Only errors from nodes monitored by the heartbeat mechanism or by node guarding will be reported. Errors from other slaves cannot be recognized.

| Status Word |                    | Effective I/O Data    |            |            |
|-------------|--------------------|-----------------------|------------|------------|
| Byte 0      |                    |                       | Byte 1     | Byte 2–510 |
| Toggle bit  | CmdRsp<br>(3 bits) | CmdExtRsp<br>(4 bits) | Error Node | Data       |

The MSB in byte 0 (toggle bit) is toggled to mirror the toggle bit of the Control Word.

#### **Supported Commands**

The available command responses and their representation in byte 0 of the status word.

| CmdRsp<br>(3 bits) | CmdExtRsp<br>(4 bits) | Name                      | Master                                                           | Slave                                     |  |  |
|--------------------|-----------------------|---------------------------|------------------------------------------------------------------|-------------------------------------------|--|--|
| 0h                 | -                     | (Set NMT State)           | Response to Set NMT State                                        | Response to Set NMT State command.        |  |  |
|                    | 0h                    | PRE-OPERATIONAL           | command. Reflects the command.                                   | Reflects the command.                     |  |  |
|                    | 1h                    | OPERATIONAL               |                                                                  |                                           |  |  |
|                    | 2h                    | RESET NODE                |                                                                  |                                           |  |  |
|                    | 3h                    | RESET<br>COMMUNICATION    |                                                                  |                                           |  |  |
|                    | 4h                    | STOP                      |                                                                  |                                           |  |  |
|                    | 5h - Fh               | -                         | (reserved)                                                       |                                           |  |  |
| 1h                 | -                     | (Get Node state)          | Reflects the state set in object                                 | Reflects the state set in object 1F82h of |  |  |
|                    | 0h                    | PRE-OPERATIONAL           | 1F82h of a CANopen node or<br>network (depending on the value of | the CANopen interface.                    |  |  |
|                    | 1h                    | OPERATIONAL               | Nodeld).                                                         |                                           |  |  |
|                    | 2h                    | RESET NODE                |                                                                  |                                           |  |  |
|                    | 3h                    | RESET<br>COMMUNICATION    |                                                                  |                                           |  |  |
|                    | 4h                    | STOP                      |                                                                  |                                           |  |  |
|                    | 5h                    | UNKNOWN                   |                                                                  |                                           |  |  |
|                    | 6h                    | MISSING                   |                                                                  |                                           |  |  |
|                    | 7h - Eh               | -                         |                                                                  |                                           |  |  |
|                    | Fh                    | ERROR                     |                                                                  |                                           |  |  |
| 2h                 | Bit:                  | (Get COPM general status) | Requests the CANopen status of the                               | module                                    |  |  |
|                    | 0                     | CAN_BUS_OFF               | Bus off                                                          |                                           |  |  |
|                    | 1                     | CAN_ERR_PASV              | Error passive                                                    |                                           |  |  |
|                    | 2                     | ERR_NG_HB                 | Node guarding or Heartbeat error                                 |                                           |  |  |
|                    | 3                     | ERR_SYNC                  | Sync error                                                       |                                           |  |  |
| 3h - 6h            | (reserved)            |                           | - ·                                                              |                                           |  |  |
| 7h                 | -                     | (No operation)            | Reflects the command                                             |                                           |  |  |

## 6.2.3 Control/Status Word Example

This example shows two control words sent from the master on the primary network to the Anybus X-gateway CANopen.

Each Control Word includes a command that affects the secondary CANopen network, and is acknowledged by a status word containing a response to the command.

The first bit in the Control Word is toggled when a new command is sent, to make sure it is distinguished from the previous command.

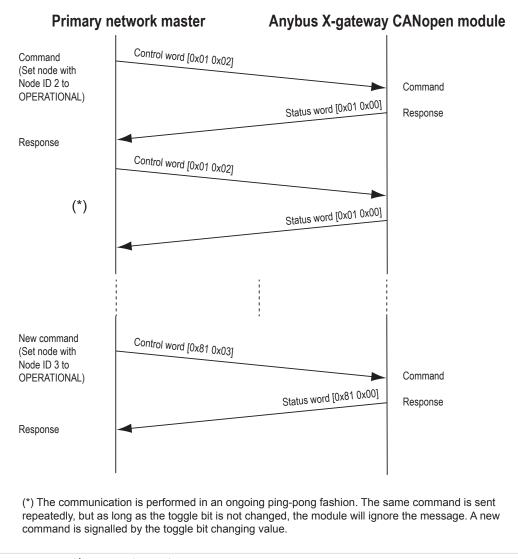



Fig. 25 Control/Status Word example

## 6.2.4 PDO Functionality

Real-time data transfer is performed by means of PDOs (Process Data Objects). The PDOs are linked to entries in the Device Object Dictionary and provide the interface to the application objects. The number and length of PDOs in a device are node specific and have to be configured by the CANopen configuration tool.

PDOs are used both for data transmission and reception, using so called Transmit-PDOs (TPDOs) and Receive-PDOs (RPDOs). Each PDO corresponds to two entries in the Device Object Dictionary. The PDO parameter object holds information on the COB-ID, the transmission type etc. On recognition of the COB-ID the corresponding PDO mapping object can be identified, to make it possible to transmit/receive data to/from the correct object in the device.

The default settings for the PDO mapping can be changed during configuration.

See also Manufacturer Specific Objects, p. 52.

#### **Default PDO Mapping Scheme**

| RPDO | Default COB ID Mapped to |                                      | Relating to                    | Default State |
|------|--------------------------|--------------------------------------|--------------------------------|---------------|
| 1    | 200h + NodeID            | Object index 2100h, subindex 1–8     | Receive bytes 2–9              |               |
| 2    | 300h + NodeID            | Object index 2100h, subindex 9–16    | Receive bytes 10–17            |               |
| 3    | 400h + NodeID            | Object index 2100h, subindex 17–24   | 24 Receive bytes 18–25 Enabled |               |
| 4    | 500h + NodeID            | Object index 2100h, subindex 25–32   | Receive bytes 26–33            |               |
| 5    |                          | Object index 2100h, subindex 33-40   | Receive bytes 34–41            |               |
|      | 80000000h                |                                      |                                | Disabled      |
| 128  |                          | Object index 2103h, subindex 121–126 | Receive bytes 506–511          |               |

The default mapping scheme contains 4 TPDOs and 4 RPDOs.

| TPDO | Default COB IDs | Mapped to                            | Relating to            | Default State |
|------|-----------------|--------------------------------------|------------------------|---------------|
| 1    | 180h + NodeID   | Object index 2000h, subindex 1-8     | Transmit bytes 2–9     |               |
| 2    | 280h + NodeID   | Object index 2000h, subindex 9–16    | Transmit bytes 10–17   |               |
| 3    | 380h + NodeID   | Object index 2000h, subindex 17-24   | Transmit bytes 18–25   | Enabled       |
| 4    | 480h + NodeID   | Object index 2000h, subindex 25-32   | Transmit bytes 26–33   |               |
| 5    |                 | Object index 2000h, subindex 33-40   | Transmit bytes 34–41   |               |
|      | 80000000h       |                                      |                        | Disabled      |
| 128  |                 | Object index 2003h, subindex 121–126 | Transmit bytes 506–511 |               |

The RPDOs can be received either in synchronous or asynchronous mode. A synchronization (SYNC) object is transmitted periodically by a synchronization master. The data in synchronous RPDOs are not transferred to the application until after the next SYNC object is received. Asynchronous RPDOs will be transferred directly.

The transmission type parameter of a RPDO specifies the triggering mode.

| Transmission type          | Mode         | RPDO transmission description                                                      |
|----------------------------|--------------|------------------------------------------------------------------------------------|
| 0–240                      | Synchronous  | A received RPDO is transferred to the application after a SYNC object is received. |
| 241–253                    | -            | (reserved)                                                                         |
| 254–255<br>(Default = 255) | Event driven | An RPDO is transmitted without any relation to the SYNC object.                    |

#### **TPDO Transmission Types**

The TPDOs can be transmitted either in synchronous or asynchronous mode. A synchronization (SYNC) object is transmitted periodically by a synchronization master. Synchronous TPDOs are transmitted within a predefined time-window immediately after a configured number of SYNC objects, or after the SYNC object that follows upon a CoS (Change of State event). Asynchronous TPDOs can be transmitted at any time, triggered by a CoS or a cyclic period set in the Event Timer.

The transmission type parameter of a TPDO specifies the transmission mode as well as the triggering mode.

| Transmission type          | Mode TPDO transmission description |                                                                                                                                                                  |
|----------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                          | Synchronous, acyclic               | A TPDO is triggered by an event, but not transmitted before the occurrence of a SYNC object.                                                                     |
| 1–240                      | Synchronous, cyclic                | A TPDO is transmitted with every n-th SYNC object, where n is a defined number from 1 - 240.                                                                     |
| 241-253                    | -                                  | (reserved)                                                                                                                                                       |
| 254–255<br>(Default = 255) | Event driven                       | A TPDO is transmitted without any relation to the SYNC object. The transmission is triggered by a CoS event or if a specified time has elapsed without an event. |

# 6.3 LSS Services

Anybus X-gateway CANopen supports LSS Master functionality according to the CANopen DS305 specification. An LSS Master can configure the baud rate and NodeID of all slaves that support LSS. The X-gateway can not act as an LSS slave.

An LSS Slave is identified by its LSS address, which consists of the Vendor ID, Product Code, Revision Number and Serial Number of the slave. If there is a missing slave on the network after the boot timeout, the master will send an *identify slave* request, using the LSS address of the missing slave. If a node responds to this request, the master will set its NodeID to the first missing NodeID. It will then send a bootup message to that node. If more than one node responds to the request, the LSS routine will fail.

# 6.4 Error Control

It is strongly recommended to monitor the CANopen network. Anybus X-gateway CANopen can use either *Heartbeat* or *Node Guarding* for monitoring. At an error event from any of these mechanisms the active I/O data will be frozen, as no new data will be available.

### 6.4.1 Heartbeat

The heartbeat mechanism is used to monitor the nodes in the network and verifies that the nodes are available. A heartbeat producer periodically sends a message. The data part of the frame contains a byte indicating the node status. The heartbeat consumer reads these messages. If a message fails to arrive within a certain time limit (defined in the object directory of the devices, objects 1016h and 1017h), a heartbeat event is registered by the consumer. The ERROR LED on the front of the Anybus X-gateway CANopen and the status word will indicate the event. An EMCY object (8130h) is also transmitted on the CANopen fieldbus. If the module is configured as a slave and is in OPERATIONAL state, it will go to PRE-OPERATIONAL state and wait for the user to take action. If it is in master mode, it will take action according to the settings in the master objects.

Anybus X-gateway CANopen can act both as heartbeat consumer and as heartbeat producer simultaneously.

# 6.4.2 Node Guarding

The NMT Master transmits guarding requests. If an NMT Slave has not responded within a defined time span (node lifetime) or if the communication status of the slave has changed, the master takes appropriate action according to its configuration.

If Life guarding (the slave guards the master) is supported, the slave uses the guard time and lifetime factor from its Object Dictionary to determine the node lifetime. If the slave does not receive a guarding request within its lifetime, a node guard event is registered. The ERROR LED on the front of the Anybus X-gateway CANopen will indicate the event. An EMCY object (8130h) is also transmitted on the CANopen fieldbus.

If the guard time or the lifetime factor are 0 (default), the Slave does not guard the Master. The guarding can be initiated at boot-up or later.

Only one of the Heartbeat or Node Guarding mechanisms can be active. If Heartbeat is enabled in a slave (preferred), Node Guarding will be disabled.

# 6.4.3 Emergency Object (EMCY)

The Emergency Object is used for error reporting on the CANopen network when a fatal fault has occurred. The error codes are saved in a list in Communication Profile Object 1003h, and an Emergency Message is produced on the CANopen network.

See also CANopen Emergency Messages, p. 41.

# 6.5 CANopen Emergency Messages

As CANopen is not a hierarchical master-slave system, and node monitoring only conveys the communication state and not the actual node status, every node requires a high priority CAN identifier to indicate error situations. This mechanism is referred to as *Emergency Messaging* and the associated communication object *Emergency Message*.

An emergency message always consists of 8 data bytes (words). The first 2 words are used for the error code, the third word contains a copy of the error register value (1001h), and the remaing 5 words are reserved for vendor specific information.

| 0     | 1    | 2        | 3                           | 4 | 5 | 6 | 7 |
|-------|------|----------|-----------------------------|---|---|---|---|
| Error | code | Register | Vendor specific error field |   |   |   |   |

In Anybus X-gateway CANopen the error codes can be read from the list in the Communication Profile Object (CPO) at index 1003h. The following error codes are supported:

| Error code | Description                                                                                                           |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0000h      | Error reset or no error                                                                                               |  |  |  |  |
| 6161h      | Software error (master mode only) – see below                                                                         |  |  |  |  |
| 6600h      | Hardware error                                                                                                        |  |  |  |  |
| 8110h      | CAN overrun (objects lost)                                                                                            |  |  |  |  |
| 8120h      | CAN in error passive mode                                                                                             |  |  |  |  |
| 8130h      | Life guard error or heartbeat error                                                                                   |  |  |  |  |
| 8140h      | Recovered from bus off                                                                                                |  |  |  |  |
| 8210h      | PDO not processed due to length error                                                                                 |  |  |  |  |
| 8220h      | PDO length exceeded                                                                                                   |  |  |  |  |
| FF10h      | State error (slave mode only) — Indicates either of the following errors:                                             |  |  |  |  |
|            | • The module is in OPERATIONAL state although the Control Word is set to disallow this.                               |  |  |  |  |
|            | • A CANopen master attempts to set the module in OPERATIONAL state although the Control Word is set to disallow this. |  |  |  |  |

#### Error code 6161h will write an additional error code in the second word (bit 16–31):

| 31         | 16                    | 15    | 0    |
|------------|-----------------------|-------|------|
| Additional | nformation            | Error | code |
| Error Code | NodeID (if available) | 61    | 61   |

| Error code | Description                                      |
|------------|--------------------------------------------------|
| 00h        | No software error detected                       |
| 01h        | Tag for CMT record not available                 |
| 02h        | Cache management inconsistent                    |
| 03h        | SDO could not be transmitted                     |
| 04h        | Configuration entry inconsistent                 |
| 05h        | Checksum error                                   |
| 06h        | Data could not be written to non-volatile memory |
| 07h        | SDO timeout                                      |
| 08h        | SDO error                                        |

# 6.6 CANopen Live List Functionality

Anybus X-gateway CANopen provides a list of the active status of the slave nodes attached to the secondary network CANopen master. The list is assembled by the master and forwarded to the primary network during each cycle.

This feature is disabled by default and can be enabled through the CANopen network configuration software, see *Enabling Live List in Anybus Configuration Manager, p. 43*.

## Live List Usage

The Live List consists of 16 bytes and holds bit coded status information for CANopen slave nodes 1–127.

| Bit set (1) | Device active — | State OPERATIONAL |
|-------------|-----------------|-------------------|
|-------------|-----------------|-------------------|

Bit cleared (0)

Device not active — States INITIALIZATION, PRE-OPERATIONAL or STOPPED.

| Offset | Bit 7         | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0            |  |  |  |  |
|--------|---------------|-------|-------|-------|-------|-------|-------|------------------|--|--|--|--|
|        | Device number |       |       |       |       |       |       |                  |  |  |  |  |
| 0      | 7             | 6     | 5     | 4     | 3     | 2     | 1     | ALL <sup>a</sup> |  |  |  |  |
| 1      | 15            | 14    | 13    | 12    | 11    | 10    | 9     | 8                |  |  |  |  |
| 2      | 23            | 22    | 21    | 20    | 19    | 18    | 17    | 16               |  |  |  |  |
| 3      | 31            | 30    | 29    | 28    | 27    | 26    | 25    | 24               |  |  |  |  |
| 4      | 39            | 38    | 37    | 36    | 35    | 34    | 33    | 32               |  |  |  |  |
| 5      | 47            | 46    | 45    | 44    | 43    | 42    | 41    | 40               |  |  |  |  |
| 6      | 55            | 54    | 53    | 52    | 51    | 50    | 49    | 48               |  |  |  |  |
| 7      | 63            | 62    | 61    | 60    | 59    | 58    | 57    | 56               |  |  |  |  |
| 8      | 71            | 70    | 69    | 68    | 67    | 66    | 65    | 64               |  |  |  |  |
| 9      | 79            | 78    | 77    | 76    | 75    | 74    | 73    | 72               |  |  |  |  |
| 10     | 87            | 86    | 85    | 84    | 83    | 82    | 81    | 80               |  |  |  |  |
| 11     | 95            | 94    | 93    | 92    | 91    | 90    | 89    | 88               |  |  |  |  |
| 12     | 103           | 102   | 101   | 100   | 99    | 98    | 97    | 96               |  |  |  |  |
| 13     | 111           | 110   | 109   | 108   | 107   | 106   | 105   | 104              |  |  |  |  |
| 14     | 119           | 118   | 117   | 116   | 115   | 114   | 113   | 112              |  |  |  |  |
| 15     | 127           | 126   | 125   | 124   | 123   | 122   | 121   | 120              |  |  |  |  |

a. Bit 0 in Offset 0 indicates 1 if all monitored nodes are in OPERATIONAL state, else it will be 0.

Only operational/non-operational state will be presented in the Live List. Error passive state will not be detected, but BUSOFF will also result in heartbeat/node guarding errors and will be reflected in the live list.

The control/status word allocates 2 bytes in the input/output area by default and is always enabled. If the Live List is enabled, an additional 16 bytes will be allocated in the IO area, starting at the next available address after the status word.

# **Enabling Live List in Anybus Configuration Manager**

The Live List feature is available in Object 0x3003 (Live List Enable) in *Anybus Configuration Manager CANopen*. The feature is disabled by default and is enabled by setting the parameter **Object Value:Value** to **1**.

| > 1F84 DeviceTypeIdentification                                                           | Object Description |            |   |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--------------------|------------|---|--|--|--|--|--|
| > 1F86 ProductCode                                                                        | Index              | 0x3003     |   |  |  |  |  |  |
| > 1F87 RevisionNumber                                                                     | Object Type        | Var        |   |  |  |  |  |  |
| > 1F88 SerialNumber                                                                       | Data Type          | UINT8      |   |  |  |  |  |  |
| 1F89 BootTime<br>> 2000 Transmit Byte 1-128 area                                          | Access             | Read/Write |   |  |  |  |  |  |
| > 2001 Transmit Byte 1-120 area                                                           | Low Limit          | 0          |   |  |  |  |  |  |
| > 2002 Transmit Byte 257-384 area                                                         | High Limit         | 1          |   |  |  |  |  |  |
| > 2003 Transmit Byte 385-512 area                                                         | Default Value      | 0          |   |  |  |  |  |  |
| > 2010 Transmit Word 1-128 area                                                           |                    | 0          |   |  |  |  |  |  |
| <ul> <li>2011 Transmit Word 129-256 are</li> <li>2020 Transmit Long 1-128 area</li> </ul> | Object Value       |            |   |  |  |  |  |  |
| > 2100 Receive Byte 1-128 area                                                            | Display As         | Auto       |   |  |  |  |  |  |
| > 2101 Receive Byte 129-256 area                                                          | Value              | 1          |   |  |  |  |  |  |
| > 2102 Receive Byte 257-384 area                                                          |                    |            |   |  |  |  |  |  |
| > 2103 Receive Byte 385-512 area                                                          |                    |            |   |  |  |  |  |  |
| > 2110 Receive Word 1-128 area                                                            |                    |            |   |  |  |  |  |  |
| > 2111 Receive Word 129-256 are-                                                          |                    |            |   |  |  |  |  |  |
| > 2120 Receive Long 1-128 area                                                            |                    |            |   |  |  |  |  |  |
| 3000 Input Data Size                                                                      |                    |            |   |  |  |  |  |  |
| 3001 Output Data Size                                                                     |                    |            |   |  |  |  |  |  |
| > 3002 Fatal Event Record                                                                 |                    |            |   |  |  |  |  |  |
| 3003 Livelist Enable                                                                      |                    |            |   |  |  |  |  |  |
| 3020 CANopen Offline Option                                                               |                    |            |   |  |  |  |  |  |
| 3040 Modbus RTU Offline Timec                                                             |                    |            |   |  |  |  |  |  |
| 3060 Modbus TCP Offline Timeo ≡                                                           |                    |            |   |  |  |  |  |  |
| 3070 EtherNet/IP Exact IO match 👻                                                         |                    |            |   |  |  |  |  |  |
| III +                                                                                     |                    |            |   |  |  |  |  |  |
| work scan finished in 5 sec. 2 node(s) found                                              | A d-(-) - d-d-d    |            | _ |  |  |  |  |  |
|                                                                                           | , U node(s) added. |            |   |  |  |  |  |  |
| Nork sear missied in 5 see. 2 node(s) round                                               |                    |            |   |  |  |  |  |  |

#### Fig. 26 Anybus Configuration Manager CANopen

# I/O Assembly Examples

#### Data to Primary Network with Live List Disabled

| Byte |             | Content                                               |      |      |      |      |      |      |  |  |
|------|-------------|-------------------------------------------------------|------|------|------|------|------|------|--|--|
| 0–7  | Status word | Status word Status word Data Data Data Data Data Data |      |      |      |      |      |      |  |  |
| 8–15 | Data        | Data                                                  | Data | Data | Data | Data | Data | Data |  |  |

| Data to Primary Network with Live List Enabled |
|------------------------------------------------|
|------------------------------------------------|

| Byte  |                 | Content                 |               |               |               |               |                |                 |  |  |  |
|-------|-----------------|-------------------------|---------------|---------------|---------------|---------------|----------------|-----------------|--|--|--|
| 0–7   | Status word     | Status word Status word |               | Nodes 815     | Nodes<br>1623 | Nodes<br>2431 | Nodes<br>3239  | Nodes<br>4047   |  |  |  |
| 8–15  | Nodes<br>4855   | Nodes<br>5663           | Nodes<br>6471 | Nodes<br>7279 | Nodes<br>8087 | Nodes<br>8895 | Nodes<br>96103 | Nodes<br>104111 |  |  |  |
| 16-23 | Nodes<br>112119 | Nodes<br>120127         | Data          | Data          | Data          | Data          | Data           | Data            |  |  |  |
| 24–31 | Data            | Data                    | Data          | Data          | Data          | Data          | Data           | Data            |  |  |  |

a. If all monitored nodes are in OPERATIONAL state this bit will be 1, else it will be 0.

# 7 CANopen Object Implementation

This section describes the CANopen objects that are implemented in the secondary CANopen network according to the indicated CANopen specifications and the latest Anybus X-gateway CANopen EDS file.

# 7.1 Static Data Types

Implemented according to CiA Draft Standard 301 version 4.2.0.

# 7.2 Communication Profile Area

# 7.2.1 Communication Profile Objects

According to CiA Draft Standard 301 version 4.2.0

| Index | Object Name                      | Subindex | Description                                                                                                                                                                            | Туре              | Access | Notes                                                                                                                                                     |
|-------|----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000h | Device Type                      | 00h      | Type of device                                                                                                                                                                         | U32               | RO     | 0000 0000h (No profile)                                                                                                                                   |
| 1001h | Error register                   | 00h      | Error register, connected to the<br>EMCY object. Bit 0 indicates a<br>generic error                                                                                                    | U8                | RO     |                                                                                                                                                           |
| 1003h | Predefined error field           | 00h      | Number of errors. Writing 0 clears the error list.                                                                                                                                     | U8                | RW     | See CANopen Emergency<br>Messages, p. 41                                                                                                                  |
|       |                                  | 01h-10h  | List of errors. Most recent error at top of list.                                                                                                                                      | U32               | RO     |                                                                                                                                                           |
| 1005h | COB-ID Sync                      | 00h      | ID of the sync message                                                                                                                                                                 | U32               | RW     | -                                                                                                                                                         |
| 1006h | Communication<br>Cycle Period    | 00h      | Communication cycle period                                                                                                                                                             | U32               | RW     | Only available if SYNC support is enabled                                                                                                                 |
| 1007h | Synchronous<br>Window Length     | 00h      | Synchronous Window Length                                                                                                                                                              | U32               | RW     | Only available if SYNC support is enabled                                                                                                                 |
| 1008h | Manufacturer device name         | 00h      | The name of the CANopen module                                                                                                                                                         | Visible<br>string | RO     | "Anybus X-gateway<br>CANopen"                                                                                                                             |
| 1009h | Manufacturer<br>hardware version | 00h      | Manufacturer hardware version                                                                                                                                                          | Visible<br>string | RO     | Current hardware revision                                                                                                                                 |
| 100Ah | Manufacturer software version    | 00h      | Manufacturer software version                                                                                                                                                          | Visible<br>string | RO     | Set by HMS                                                                                                                                                |
| 100Ch | Guard time                       | 00h      | Used together with "Life time<br>factor" to decide the node<br>lifetime in ms                                                                                                          | U16               | RW     | 0000h (default)                                                                                                                                           |
| 100Dh | Life time factor                 | 00h      | If the node has not been<br>guarded within its lifetime ( <i>Life</i><br><i>time factor</i> * <i>Guard time</i> ), an<br>error event is logged and a<br>remote node error is indicated | U8                | RW     | 00h (default)                                                                                                                                             |
| 1010h | Store Parameters                 | 00h      | Largest subindex supported                                                                                                                                                             | U8                | RO     | 01h                                                                                                                                                       |
|       |                                  | 01h      | Store all parameters                                                                                                                                                                   | U32               | RW     | To save a configuration,<br>write "save" = 73 61 76 65h<br>to this object. <sup>2</sup><br>See also <i>General Fieldbus</i><br><i>Parameters, p. 56</i> . |

<sup>2.</sup> The byte order may have to be changed depending on the method of writing to this object.

| Index     | Object Name                | Subindex  | Description                                                                                                                                                                                                                                 | Туре | Access | Notes                                                                                                                                                                               |
|-----------|----------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1011h     | Restore Parameters         | 00h       | Largest subindex supported                                                                                                                                                                                                                  | U8   | RO     | 01h                                                                                                                                                                                 |
|           |                            | 01h       | Restore all parameters                                                                                                                                                                                                                      | U32  | RW     | To restore the default values<br>of a configuration, write<br>"load" = 6C 6F 61 64h to this<br>object. <sup>3</sup>                                                                 |
| 1014h     | COB-ID EMCY                | 00h       | Defines the COB-ID of the<br>Emergency Object                                                                                                                                                                                               | U32  | RO     |                                                                                                                                                                                     |
| 1016h     | Consumer                   | 00h       | Largest subindex supported                                                                                                                                                                                                                  | U8   | RO     | 7Fh                                                                                                                                                                                 |
|           | Heartbeat Time             | 01h - 80h | The consumer heartbeat time<br>defines the expected heartbeat<br>cycle time and has to be higher<br>than the corresponding<br>producer heartbeat time.<br>Monitoring starts after the<br>reception of the first heartbeat.<br>Not used if 0 | U32  | RW     | NodeID + Heartbeat Time.<br>Bits 31–24: reserved<br>Bits 23–16: NodeID<br>Bits 15–0: Heartbeat Time<br>Value must be a multiple of 1<br>ms.<br>Up to 127 nodes can be<br>monitored. |
| 1017h     | Producer Heartbeat<br>Time | 00h       | Defines the cycle time of the heartbeat. Not used if 0                                                                                                                                                                                      | U16  | RW     | The time must be at least 10 ms and a multiple of 1 ms                                                                                                                              |
| 1018h     | Identity object            | 00h       | Number of entries                                                                                                                                                                                                                           | U8   | RO     | 04h                                                                                                                                                                                 |
|           |                            | 01h       | Vendor ID                                                                                                                                                                                                                                   | U32  | RO     | 1Bh (HMS Industrial<br>Networks)                                                                                                                                                    |
|           |                            | 02h       | Product Code                                                                                                                                                                                                                                | U32  | RO     | 18h (Anybus X-gateway<br>CANopen)                                                                                                                                                   |
|           |                            | 03h       | Revision Number                                                                                                                                                                                                                             | U32  | RO     | Current software revision                                                                                                                                                           |
|           |                            | 04h       | Serial Number                                                                                                                                                                                                                               | U32  | RO     | HMS serial number                                                                                                                                                                   |
| 1029h     | Error behavior<br>object   | 00h       | Number of entries                                                                                                                                                                                                                           | U8   | RO     |                                                                                                                                                                                     |
|           |                            | 01h       | Communication error                                                                                                                                                                                                                         | U8   | RO     | 00h: Change to<br>Preoperational if currently in<br>NMT state Operational                                                                                                           |
|           |                            | 02h       | Profile or manufacturer specific error                                                                                                                                                                                                      | U8   | RO     | 00h: Change to<br>Preoperational if currently in<br>NMT state Operational                                                                                                           |
| 1400h     | Receive PDO                | 00h       | Largest subindex supported                                                                                                                                                                                                                  | U8   | RO     | 02h                                                                                                                                                                                 |
|           | parameter                  | 01h       | COB-ID used by PDO                                                                                                                                                                                                                          | U32  | RW     | -                                                                                                                                                                                   |
| 147Fh     |                            | 02h       | Transmission type                                                                                                                                                                                                                           | U8   | RW     | See PDO Functionality, p. 38                                                                                                                                                        |
| 1600h<br> | Receive PDO<br>mapping     | 00h       | No. of mapped application objects in PDO                                                                                                                                                                                                    | U8   | RW     | -                                                                                                                                                                                   |
| 167Fh     |                            | 01h       | Mapped object #1                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 02h       | Mapped object #2                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 03h       | Mapped object #3                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 04h       | Mapped object #4                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 05h       | Mapped object #5                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 06h       | Mapped object #6                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 07h       | Mapped object #7                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
|           |                            | 08h       | Mapped object #8                                                                                                                                                                                                                            | U32  | RW     | -                                                                                                                                                                                   |
| 1800h     | Transmit PDO               | 00h       | Largest subindex supported                                                                                                                                                                                                                  | U8   | RO     | 05h                                                                                                                                                                                 |
|           | parameter                  | 01h       | COB-ID used by PDO                                                                                                                                                                                                                          | U32  | RW     | -                                                                                                                                                                                   |
| 187Fh     |                            | 02h       | Transmission type                                                                                                                                                                                                                           | U8   | RW     | See PDO Functionality, p. 38                                                                                                                                                        |
|           |                            | 03h       | Inhibit time                                                                                                                                                                                                                                | U16  | RW     | In steps of 0.1 ms                                                                                                                                                                  |
|           |                            |           |                                                                                                                                                                                                                                             | 1    | 1      |                                                                                                                                                                                     |

<sup>3.</sup> The byte order may have to be changed depending on the method of writing to this object.

| Index     | Object Name          | Subindex | Description                              | Туре | Access | Notes |
|-----------|----------------------|----------|------------------------------------------|------|--------|-------|
| 1A00h<br> | Transmit PDO mapping | 00h      | No. of mapped application objects in PDO | U8   | RW     | -     |
| 1A7Fh     |                      | 01h      | Mapped object #1                         | U32  | RW     | -     |
|           |                      | 02h      | Mapped object #2                         | U32  | RW     | -     |
|           |                      | 03h      | Mapped object #3                         | U32  | RW     | -     |
|           |                      | 04h      | Mapped object #4                         | U32  | RW     | -     |
|           |                      | 05h      | Mapped object #5                         | U32  | RW     | -     |
|           |                      | 06h      | Mapped object #6                         | U32  | RW     | -     |
|           |                      | 07h      | Mapped object #7                         | U32  | RW     | -     |
|           |                      | 08h      | Mapped object #8                         | U32  | RW     | -     |

# 7.2.2 Configuration Manager

According to CiA Draft Standard Proposal 302 Part 3

#### Network Configuration Objects

| Index | Object Name     | Subindex | Description                                                                                                                                                                  | Туре   | Access                       |
|-------|-----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|
| 1F22h | Concise DCF     | -        | The concise/compressed DCF files information is stored in this object.                                                                                                       | Domain | RW                           |
| 1F25h | Configure Slave | 0 - 128  | Subindex 0 is ignored.<br>Subindex i (i = 1 - 127): Request reconfiguration of<br>slave with NodelD equal to subindex i.<br>Subindex 128: Request to reconfigure all slaves. | U32    | Sub 0: RO<br>Sub 1 - 128: WO |

To configure the slave with NodeID i, write "conf" = 63 6F 6E 66h to object 1F25h, subindex i.

If this fails, emergency code 6161h is produced (see CANopen Emergency Messages, p. 41).

#### **Check Configuration**

The Configuration Manager (CMT) compares signature and configuration with the value from the DCF to decide if a reconfiguration is to be performed or not. The comparison values are stored by the Configuration Manager in these objects:

| Index | Object Name                    | Subindex | Description                                                                                         | Туре   | Access |
|-------|--------------------------------|----------|-----------------------------------------------------------------------------------------------------|--------|--------|
| 1F26h | Expected<br>Configuration Date | 0 - 127  | The date that the Configuration Manager expects to find when comparing signature and configuration. | UINT32 | RW     |
| 1F27h | Expected<br>Configuration Time | 0 - 127  | The time that the Configuration Manager expects to find when comparing signature and configuration. | UINT32 | RW     |

# 7.2.3 Network Management Objects

The NMT master controls the states of the connected network participants, the NMT slaves. It monitors the devices and reports to the application, for example if an NMT slave fails. In more complex systems several devices are able to perform as master, which means that the configuration must have an entry defining which device will act as master.

Once configured, the objects carry all information needed for the module to act on the network, and the application does not need to be accessed to obtain this information. This simplifies the implementation and maintenance of multiple applications considerably.

| Index | Object Name                   | Subindex | Description                                                                                                                                                                    | Туре | Access                                      |
|-------|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|
| 1F80h | NMT Start-up                  | -        | Defining whether the device is the NMT Master                                                                                                                                  | U32  | RW                                          |
| 1F81h | Slave Assignment              | ARRAY    | Module list: Entry of all slaves to be managed,<br>including guarding values and the entry of actions to<br>be taken in event of guarding errors.                              | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F82h | Request NMT                   | ARRAY    | Remote control initiation of NMT services. For<br>example, tools can use this to request intentional<br>start/stop of individual slaves. Remote query of the<br>current state. | U8   | Sub 0: RO<br>Sub 1 - 127: RW<br>Sub 128: WO |
| 1F83h | Request Guarding              | ARRAY    | Remote control start/stop of guarding. Remote query of the current state                                                                                                       | U8   | Sub 0: RO<br>Sub 1 - 127: RW<br>Sub 128: WO |
| 1F84h | Device Type<br>Identification | ARRAY    | Expected device types for the slaves                                                                                                                                           | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F85h | Vendor<br>Identification      | ARRAY    | Vendor identifications for the slaves                                                                                                                                          | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F86h | Product Code                  | ARRAY    | Product codes for the slaves                                                                                                                                                   | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F87h | Revision Number               | ARRAY    | Revision numbers for the slaves                                                                                                                                                | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F88h | Serial Number                 | ARRAY    | Expected serial numbers for the slaves                                                                                                                                         | U32  | Sub 0: RO<br>Sub 1 - 127: RW                |
| 1F89h | Boot Time                     | VAR      | The maximum time between the start of the boot<br>process and the signalling of successful boot of all<br>mandatory NMT slaves. After this time LSS services<br>are initiated. | U32  | RW                                          |

#### NMT Start-up, 1F80h

If the Anybus X-gateway CANopen should function as NMT Master, the master functionality must be enabled in this object. The object will configure the start-up behavior of the device and how it will manage the slaves.

The X-gateway starts up as a slave as default (Bit 0 = 0). To make it function as a master, change the value of Bit 0 to 1 and save the configuration by issuing the *save* command to subindex 01h in object 1010 (Store Parameters). The setting will take immediate effect but will revert to the default value (slave) on the next reset/reboot unless it has been saved.

| Bit    | Value | Description                                                                                                        | Notes                      |
|--------|-------|--------------------------------------------------------------------------------------------------------------------|----------------------------|
| 0      | 0     | NMT Master functionality is disabled. Ignore the rest of the object, except for bits 1 and 3. Ignore object 1F81h. | Default                    |
|        | 1     | NMT Master functionality is enabled. The device is Master.                                                         |                            |
| 1      | 0     | Start only explicitly assigned slaves (if bit 3 = 0)                                                               | Default                    |
|        | 1     | After boot-up, perform the service NMT Start Remote Node All Nodes<br>(if bit 3 = 0)                               |                            |
| 2      | 0     | Automatically enter Operational state                                                                              | Default                    |
|        | 1     | Do not enter Operational state automatically. Application will decide when to enter Operational state              |                            |
| 3      | 0     | Start-up of slaves allowed (i.e. allowed to send NMT Start Remote Node command)                                    | Default                    |
|        | 1     | Not allowed to send NMT Start Remote Node command. The application will start the slaves                           |                            |
| 4      | 0     | If a mandatory slave generates an Error Control Event, treat the slave individually                                | If bit 6 = 1, ignore bit 4 |
|        | 1     | If a mandatory slave generates an Error Control Event, perform NMT Reset All Nodes (including self)                |                            |
| 5      | -     | Not implemented                                                                                                    |                            |
| 6      | 0     | If a mandatory slave generates an Error Control Event, treat the slave according to bit 4                          |                            |
|        | 1     | If a mandatory slave generates an Error Control Event, send NMT Stop<br>All Nodes (including self). Ignore bit 4   |                            |
| 7 - 31 | -     | Reserved (0)                                                                                                       |                            |

**Note:** If object 1F81h bit 3 = 1, the network must not be restarted if a mandatory slave could not be contacted.

This object defines which slaves the Master should monitor, control and/or configure. One entry is made for each assigned slave, with the subindex corresponding to the slave's NodeID.

| Bit     | Value | Description                                                                                                                                                                                                                                                                                     |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | 0     | Node with this ID is not a slave.                                                                                                                                                                                                                                                               |
|         | 1     | Node with this ID is a slave. After configuration the node will be set to Operational.                                                                                                                                                                                                          |
| 1       | -     | Reserved                                                                                                                                                                                                                                                                                        |
| 2       | 0     | On an Error Control Event or on detection of a new slave, inform the application, but do NOT configure and start the slave.                                                                                                                                                                     |
|         | 1     | On an Error Control Event or on detection of a new slave, inform the application and start the process <i>Start Boot Slave</i> .                                                                                                                                                                |
| 3       | 0     | Optional slave. The network may be started even if this node could not be contacted.                                                                                                                                                                                                            |
|         | 1     | Mandatory slave. The network must not be started if this node could not be contacted during the boot slave process.                                                                                                                                                                             |
| 4       | -     | Not implemented                                                                                                                                                                                                                                                                                 |
| 5       | -     | Not implemented                                                                                                                                                                                                                                                                                 |
| 6       | -     | Not implemented                                                                                                                                                                                                                                                                                 |
| 7       | 0     | CANopen device may be used without reset to default.                                                                                                                                                                                                                                            |
|         | 1     | CANopen device shall be reset to factory defaults by issuing a restore to defaults (object 1011h).                                                                                                                                                                                              |
| 8 - 15  | -     | 8 bit value for the <i>RetryFactor</i> .                                                                                                                                                                                                                                                        |
| 16 - 31 | -     | 16 bit value for the <i>GuardTime</i> .<br>If a slave does not answer, the master will retry the request <i>RetryFactor -1</i> times with an interval<br>of <i>GuardTime</i> . Guarding will be performed only if non-zero values are entered for <i>Retry Factor</i> and<br><i>GuardTime</i> . |

#### Request NMT, 1F82h

Each node on the CANopen network can be controlled individually from the fieldbus application by sending this object. The subindex indicates what nodes the request affects:

| Subindex          | Description                                      |
|-------------------|--------------------------------------------------|
| 0                 | Largest subindex supported (128)                 |
| i (with i = 1127) | Request NMT Service for the slave with NodeID i. |
| 128               | Request NMT Service for all nodes                |

The entire network can be started with one command (subindex 128)

#### **Examples:**

• Node 5 should be transferred to the OPERATIONAL state:

An SDO write access with the value 5 is executed to object 1F82h subindex 5 in the local object dictionary. When an NMT command is sent, data is cleared.

• All nodes in the network should be transferred to the PRE-OPERATIONAL state:

An SDO write access with the value 127 is executed to object 1F82h subindex 128 in the local object dictionary.

#### Request Guarding, 1F83h

Guarding can be initiated from the object dictionary in a similar way. Guarding is initiated with the values stored in *Slave Assignment*, *1F81h*, *p. 49*, provided that at the same time no parameters are entered for that node as a Heartbeat Consumer.

| $(\mathbf{i})$ | This functionality is only available in master mode. |
|----------------|------------------------------------------------------|
|----------------|------------------------------------------------------|

| Subindex          | Description                                  | Access |
|-------------------|----------------------------------------------|--------|
| 0                 | Largest subindex supported (128)             | RO     |
| i (with i = 1127) | Request Guarding for the slave with NodeID i | RW     |
| 128               | Request Start/Stop Guarding for all nodes.   | WO     |

#### Example:

• Guarding should be started for node 5 (500 ms, Life Time Factor 3):

An SDO write access with the value 01F40301h is executed to object 1F81h subindex 5 in the local object dictionary. Guarding is activated by an SDO write access with the value 1 to object 1F83h subindex 5 in the local object dictionary.

| Bits    | Value       | Explanation                                                                                                  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------|
| 31 - 16 | 01F4h (500) | The interval with which node 5 will be guarded                                                               |
| 15 - 8  | 03h         | If node 5 does not answer the guarding will be repeated another RetryFactor<br>-1 times (in this case twice) |
| 7 - 0   | 01h         | This value indicates that node 5 is a slave                                                                  |

#### Device Type Identification, 1F84h

Each node on the CANopen network is checked against its expected device type. The subindex indicates which node is checked:

| Subindex          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Largest subindex supported (127)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i (with i = 1127) | If the expected device type is not 0 or if the slave is set as mandatory, the module compares<br>expected device type with actual device type (object 1000h, subindex 0) for the slave with<br>NodeID i. If the expected device type is 0, this only gives information about the existence of a<br>node, not which device type it is. If the value is not 0, it is compared to the value read from<br>the node, and boot up of that slave is continued if they match. If they don't match, the slave<br>will stay in state PRE-OPERATIONAL. |

#### Vendor Identification, 1F85h

Each node on the CANopen network is checked against its expected vendor. The subindex indicates which node is checked:

| Subindex          | Description                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Largest subindex supported (127)                                                                                                                                                                                              |
| i (with i = 1127) | Compares expected vendor with actual vendor (object 1018h, subindex 1) for the slave with NodeID i. Boot up of that slave is continued only if they match. If they don't match, the slave will stay in state PRE-OPERATIONAL. |

#### Product Code, 1F86h

Each node on the CANopen network is checked against its expected product code. The subindex indicates which node is checked. The node in question is only checked if data is other than zero:

| Subindex          | Description                                                                                                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Largest subindex supported (127)                                                                                                                                                                                                          |
| i (with i = 1127) | Compares expected product code with actual product code (object 1018h, subindex 2) for the slave with NodelD i. Boot up of that slave is continued only if they match. If they don't match, the slave will stay in state PRE-OPERATIONAL. |

#### **Revision Number, 1F87h**

Each node on the CANopen network is checked against its expected revision number. The revision number includes major and minor revision. For a match to occur the major revision has to be exactly the same and the minor revision of the module has to be greater than or equal to the expected minor revision number. The subindex indicates which node is checked. The node in question is only checked if data is other than zero:

| Subindex          | Description                                                                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Largest subindex supported (127)                                                                                                                                                                                |
| i (with i = 1127) | Compares expected revision number with actual revision number (object 1018h, subindex 3) for the slave with NodeID i. Boot up of that slave is continued only if they match according to the description above. |

#### Serial Number, 1F88h

Each node on the CANopen network is checked against its expected serial number. The subindex indicates which node is checked. The node in question is only checked if data is other than zero:

| Subindex          | Description                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Largest subindex supported (127)                                                                                                                                                                                                            |
| i (with i = 1127) | Compares expected serial number with actual serial number (object 1018h, subindex 4) for the slave with NodelD i. Boot up of that slave is continued only if they match. If they don't match, the slave will stay in state PRE-OPERATIONAL. |

#### Boot Time, 1F89h

The network master will wait the assigned time (in ms) for all mandatory slaves to boot. If not all mandatory slaves are ready after this time, the LSS routine will be started, see *LSS Services, p. 39*. If the assigned time is 0, the master will wait endlessly.

| Value (ms) | Description                                         |
|------------|-----------------------------------------------------|
| 0          | Default. No time limit for mandatory slaves to boot |
| > 0        | Time limit for mandatory slave to boot              |

# 7.3 Manufacturer Specific Objects

Manufacturer-specific objects are used to configure the PDOs to the shared memory area. One or several generic data objects can be connected to each PDO.

Data in the Input/Output Buffers will be mapped to three different areas in the Local Object Dictionary: *Byte, Word* and *Long*, using different data types.

See also Local Object Dictionary Index Mapping, p. 54.

# 7.3.1 Input Buffer

Contains data transmitted to the secondary CANopen network.

| Index | Subindex | Туре          | Access | Name                                                        | Position in Input Data area (byte)        |
|-------|----------|---------------|--------|-------------------------------------------------------------|-------------------------------------------|
| 2000h | -        | STRUCT        |        | Transmit Byte 1-128                                         | 2-129 (0 and 1 reserved for Control Word) |
|       | 0        | U8            | RO     | Number of entries (value=128)                               |                                           |
|       | 1        | U8            | RW     | Transmit Byte 1                                             | 2                                         |
|       | 2        | U8            | RW     | Transmit Byte 2                                             | 3                                         |
|       |          |               |        |                                                             |                                           |
|       | 128      | U8            | RW     | Transmit Byte 128                                           | 129                                       |
| 2001h | -        | STRUCT        |        | Transmit Byte 129-256                                       | 130-257                                   |
|       | 0        | U8            | RO     | Number of entries (value=128)                               |                                           |
|       | 1        | U8            | RW     | Transmit Byte 129                                           | 130                                       |
|       | 2        | U8            | RW     | Transmit Byte 130                                           | 131                                       |
|       |          |               |        | · · · · · · · · · · · · · · · · · · ·                       |                                           |
|       | 128      | U8            | RW     | Transmit Byte 256                                           | 257                                       |
| 2002h | -        | STRUCT        |        | Transmit Byte 257-384                                       | 258-385                                   |
|       | 0        | U8            | RO     | Number of entries (value=128)                               |                                           |
|       | 1        | U8            | RW     | Transmit Byte 257                                           | 258                                       |
|       | 2        | U8            | RW     | Transmit Byte 258                                           | 259                                       |
|       |          |               |        |                                                             |                                           |
|       | 128      | U8            | RW     | Transmit Byte 384                                           | 385                                       |
| 2003h | -        | STRUCT        |        | Transmit Byte 385-510                                       | 386-511                                   |
|       | 0        | U8            | RO     | Number of entries (value=126)                               |                                           |
|       | 1        | U8            | RW     | Transmit Byte 385                                           | 386                                       |
|       | 2        | U8            | RW     | Transmit Byte 386                                           | 387                                       |
|       |          |               |        |                                                             |                                           |
|       | 126      | U8            | RW     | Transmit Byte 510                                           | 511                                       |
|       |          |               |        |                                                             |                                           |
| 2010h | -        | STRUCT        |        | Transmit Word 1-128                                         | 2-257                                     |
|       | 0        | U8            | RO     | Number of entries (value=128)                               |                                           |
|       | 1        | U16           | RW     | Transmit Word 1                                             | 2-3                                       |
|       | 2        | U16           | RW     | Transmit Word 2                                             | 4-5                                       |
|       |          |               |        |                                                             |                                           |
| 2011  | 128      | U16<br>STRUCT | RW     | Transmit Word 128                                           | 256-257<br>258-511                        |
| 2011h | 0        | U8            | RO     | Transmit Word 129-255 area<br>Number of entries (value=127) | 230-311                                   |
|       | 1        | U16           | RW     | . ,                                                         | 258-259                                   |
|       | 2        | U16           | RW     | Transmit Word 129<br>Transmit Word 130                      | 258-259                                   |
|       | 2        |               |        |                                                             |                                           |
|       | <br>127  | <br>U16       | RW     | Transmit Word 255                                           | 510-511                                   |
|       |          |               |        |                                                             |                                           |
| 2020h | -        | STRUCT        |        | Transmit Long 1-128 area                                    | 2-511                                     |
|       | 0        | U8            | RO     | Number of entries (value=128)                               |                                           |
|       | 1        | U32           | RW     | Transmit Long 1                                             | 2-5                                       |
|       | 2        | U32           | RW     | Transmit Long 2                                             | 6-9                                       |

| Index | Subindex | Туре | Access | Name              | Position in Input Data area (byte)       |
|-------|----------|------|--------|-------------------|------------------------------------------|
|       |          |      |        |                   |                                          |
|       | 128      | U32  | RW     | Transmit Long 128 | 510-511 (last 2 bytes padded with zeros) |

# 7.3.2 Output Buffer

Contains data received **from** the secondary CANopen network.

| Index | Subindex | Туре         | Access | Name                             | Position in Output Data area (byte)      |
|-------|----------|--------------|--------|----------------------------------|------------------------------------------|
| 2100h | -        | STRUCT       |        | Receive Byte 1-128 area          | 2-129 (0 and 1 reserved for Status Word) |
|       | 0        | U8           | RO     | Number of entries (value=128)    |                                          |
|       | 1        | U8           | RW     | Receive Byte 1                   | 2                                        |
|       | 2        | U8           | RW     | Receive Byte2                    | 3                                        |
|       |          |              |        |                                  | ,,,,                                     |
|       | 128      | U8           | RW     | Receive Byte 128                 | 129                                      |
| 2101h | -        | STRUCT       |        | Receive Byte 129-256             | 130-257                                  |
|       | 0        | U8           | RO     | Number of entries (value=128)    |                                          |
|       | 1        | U8           | RW     | Receive Byte 129                 | 130                                      |
|       | 2        | U8           | RW     | Receive Byte 130                 | 131                                      |
|       |          |              |        | ····                             |                                          |
|       | 128      | U8           | RW     | Receive Byte 256                 | 257                                      |
| 2102h | -        | STRUCT       |        | Receive Byte 257-384             | 258-385                                  |
|       | 0        | U8           | RO     | Number of entries (value=128)    |                                          |
|       | 1        | U8           | RW     | Receive Byte 257                 | 258                                      |
|       | 2        | U8           | RW     | Receive Byte 258                 | 259                                      |
|       |          |              |        | <u>/</u>                         |                                          |
|       | 128      | U8           | RW     | Receive Byte 384                 | 385                                      |
| 2103h | -        | STRUCT       |        | Receive Byte 385-510             | 386-511                                  |
|       | 0        | U8           | RO     | Number of entries (value=126)    |                                          |
|       | 1        | U8           | RW     | Receive Byte 386                 | 386                                      |
|       | 2        | U8           | RW     | Receive Byte 387                 | 387                                      |
|       |          |              |        | ····                             |                                          |
|       | 126      | U8           | RW     | Receive Byte 511                 | 511                                      |
| 21104 |          | CTRUCT       |        | Dessive Ward 1 120               | 2 257                                    |
| 2110h | -        | STRUCT<br>U8 | RO     | Receive Word 1-128               | 2-257                                    |
|       |          |              |        | Number of entries (value=128)    | 2.2                                      |
|       | 1        | U16<br>U16   | RW     | Receive Word 1<br>Receive Word 2 | 2-3<br>4-5                               |
|       | 2<br>    |              |        |                                  | 4-5<br>                                  |
|       | 128      | U16          | RW     | Receive Word 128                 | 256-257                                  |
| 2111h | -        | STRUCT       |        | Receive Word 129-255 area        | 258-511                                  |
|       | 0        | U8           | RO     | Number of entries (value=127)    |                                          |
|       | 1        | U16          | RW     | Receive Word 129                 | 258-259                                  |
|       | 2        | U16          | RW     | Receive Word 130                 | 260-261                                  |
|       |          |              |        |                                  |                                          |
|       | 127      | U16          | RW     | Receive Word 255                 | 510-511                                  |
| 2120h | -        | STRUCT       |        | Receive Long 1-128 area          | 2-511                                    |
|       | 0        | U8           | RO     | Number of entries (value=128)    |                                          |
|       | 1        | U32          | RW     | Receive Long 1                   | 2-5                                      |
|       | 2        | U32          | RW     | Receive Long 2                   | 6-9                                      |
|       |          |              |        |                                  |                                          |
|       | 128      | U32          | RW     | Receive Long 128                 | 510-511 (last 2 bytes padded with zeros) |

# 7.3.3 Local Object Dictionary Index Mapping

The data in the Input/Output Buffers is mapped to three different areas in the Local Object Dictionary: *Byte, Word* and *Long*, using different data types.

### Example:

Application data bytes 2 - 5 are mapped to the following object indices:

- Byte object index 2000h, subindex 1 4
- Word object index 2010h, subindex 1 2
- Long (double word) object index 2020h, subindex 1

Words and double words use Motorola (big-endian) format.

The following relation chart shows the transmit data area. The receive data area has the same structure, but with indices for byte objects starting at 2100h.

**The first two bytes are reserved for the Control Word (transmit buffer) and Status Word (receive buffer)** and cannot be used for data exchange.

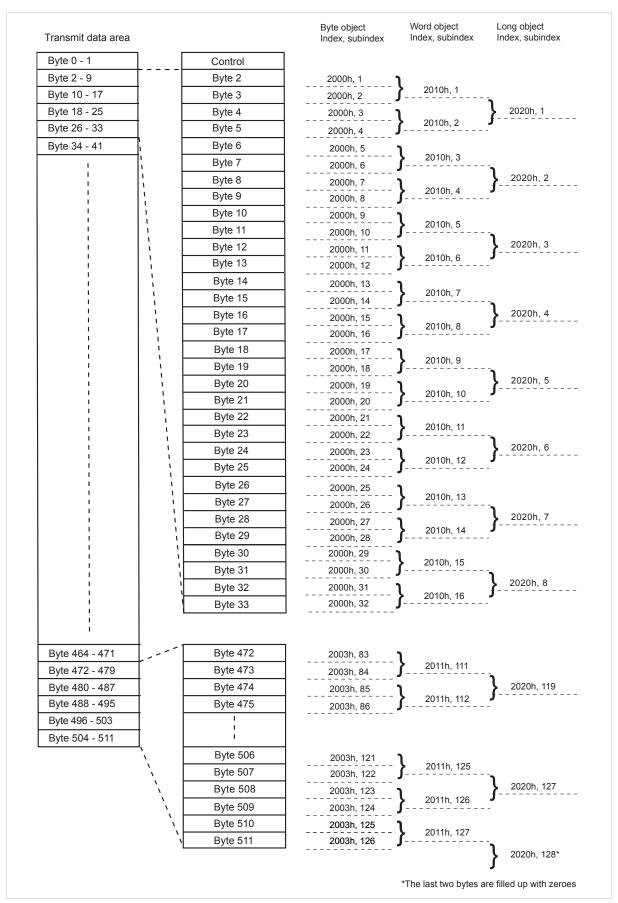



Fig. 27 I/O Buffer Addresses / Object Dictionary relation chart

# 7.3.4 General Fieldbus Parameters

Index range 3000h - 300Fh is allocated for general fieldbus parameters. The valid data range may differ depending on the slave interface.

| Index | Subindex | Туре | Access | Name and Description                    | Comment                         |
|-------|----------|------|--------|-----------------------------------------|---------------------------------|
| 3000h | 128      | U16  | RW     | Input Data Size (to primary network)    | Valid values: 2-512, default 16 |
| 3001h | 0        | U16  | RW     | Output Data Size (from primary network) | Valid values: 2-512, default 16 |

Writing to object 1010h will verify the stored Input/Output Data sizes against the current fieldbus limitations. If the data sizes do not comply, error code 6600h will be generated.

 $\mathbf{i}$  The gateway must be restarted for changes to take effect on the primary network.

## 7.3.5 Primary Network Specific Parameters

Index range 3010h - 30AFh is allocated for parameters that are specific for the different primary networks available in the Anybus X-gateway CANopen model range.

| Index            | Subindex         | Туре         | Access     | Name and Description                                                                                    | Comment                                                          |
|------------------|------------------|--------------|------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| PROFIBUS         | specific parame  | eters:       |            |                                                                                                         |                                                                  |
| 3011h -<br>301Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| CANopen p        | rimary networ    | k specific p | arameters: |                                                                                                         |                                                                  |
| 3020h            | 0                | U8           | RW         | CANopen Offline Option<br>Specifies which event will cause the module<br>to report the bus as offline.  | Valid values:<br>1 (bus error)<br>2 (node guarding or heartbeat) |
| 3021h -<br>302Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| DeviceNet        | specific param   | eters:       |            |                                                                                                         |                                                                  |
| 3031h -<br>303Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| Modbus RT        | U specific para  | meters:      |            |                                                                                                         |                                                                  |
| 3040h            | 0                | U16          | RW         | Offline timeout                                                                                         | Valid values: 0–65535                                            |
| 3041h -<br>304Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| ControlNet       | specific param   | neters:      |            |                                                                                                         |                                                                  |
| 3051h -<br>305Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| Modbus TC        | P specific para  | meters:      |            |                                                                                                         |                                                                  |
| 3060h            | 0                | U16          | RW         | Offline timeout                                                                                         | Valid values: 0–65535                                            |
|                  |                  |              |            | uery/response protocol. The offline timeout par<br>neter is set to zero, the functionality is disabled. | rameter defines the time limit for how                           |
| 3061h -<br>306Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| EtherNet/I       | P specific parar | neters:      |            |                                                                                                         |                                                                  |
| 3071h -<br>307Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| PROFINET I       | O specific para  | meters:      |            |                                                                                                         |                                                                  |
| 3081h -<br>308Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |
| EtherCAT s       | pecific parame   | ters:        |            |                                                                                                         |                                                                  |
| 3091h -<br>309Fh | -                | -            | -          | (reserved for future use)                                                                               |                                                                  |

| Index            | Subindex                          | Туре | Access | Name and Description      | Comment |  |
|------------------|-----------------------------------|------|--------|---------------------------|---------|--|
| PROFINET II      | PROFINET IRT specific parameters: |      |        |                           |         |  |
| 30A1h -<br>30AFh | -                                 | -    | -      | (reserved for future use) |         |  |

This page intentionally left blank

# A Technical Data

# A.1 General Specifications

| Model name             | Anybus X-gateway CANopen PROFINET IRT (2.32)                   |
|------------------------|----------------------------------------------------------------|
| Order code             | AB7329                                                         |
| Dimensions (L x W x H) | 120 x 75 x 27 mm                                               |
| Weight                 | 150 g                                                          |
| Operating temperature  | -25 to +55 °C (IEC 60068-2-1 and IEC 60068-2-2)                |
| Storage temperature    | -40 to +85 °C (IEC 60068-2-1 and IEC 60068-2-2)                |
| Humidity range         | 5–95 % RH, non-condensing (IEC 60068-2-30)                     |
| Power supply           | 24 V ±10 % DC regulated power source                           |
| Current consumption    | Typical: 100 mA @ 24 VDC<br>Maximum: 250 mA @ 24 VDC           |
| Configuration port     | USB (USB to CAN cable not included)                            |
| Galvanic isolation     | Yes, on both secondary CANopen and primary network sides       |
| Mechanical rating      | IP20, NEMA rating 1                                            |
| Mounting               | DIN rail (EN 50022)<br>Network shield conductance via DIN rail |
| Certifications         | CE                                                             |

# A.2 Secondary CANopen Network Interface

| CANopen functionality    | Master (manager) or slave                                                 |
|--------------------------|---------------------------------------------------------------------------|
| Communication profiles   | CiA Draft Standard 301 v4.2<br>CiA Draft Standard Proposal 302 Part 1–5   |
| CANopen I/O data         | 128 Receive PDOs and 128 Transmit PDOs<br>Up to 510 bytes cyclic I/O data |
| PDO message types        | COS (Change of State), Cyclic Synchronous, Acyclic Synchronous            |
| Maximum baud rate        | 1 Mbit/s                                                                  |
| Maximum number of slaves | 126                                                                       |
| Configuration switches   | Node address and baud rate                                                |
| CANopen connector        | D-sub 9 Male (included)                                                   |
| CAN specification        | CAN 2.0A                                                                  |

# A.3 Primary PROFINET IRT (2.32) Network Interface

| PROFINET specification  | 2.32                                                                                                                                                                                                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROFINET functionality  | Isochronous Real-Time (IRT) communication<br>Conformance supporting Class A, B and C<br>Media Redundancy Protocol (MRP) support<br>Discovery and Configuration Protocol (DCP) support<br>Asset Management |
| Isochronous cycle times | 0.250 ms to 16 ms                                                                                                                                                                                         |
| Maximum I/O data        | Up to 512 byte in each direction                                                                                                                                                                          |
| Ethernet                | 100 Mbit/s, full duplex (fixed)<br>Dual port cut-through switch, RJ45 connectors                                                                                                                          |