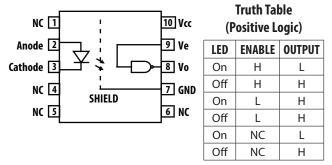
ACNV260E

2mm DTI, 10MBd Digital Optocoupler

Data Sheet


Description

The new ACNV260E is an optically coupled gate that combines a AlGaAs light emitting diode and an integrated photo detector housed in a widebody package. ACNV260E is designed and manufactured to comply with EN60079-11 ATEX and IECEx. The distance-through-insulation (DTI) between the emitting diode and photodetector is at 2mm. The output of the detector IC is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 20,000 V/µs at V_{cm} = 1500V

This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility.

The new ACNV260E is suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Functional Diagram

A 0.1 μF bypass capacitor must be connected between pins V_{CC} and GND.

Features

- Compliant to EN60079-11 ATEX and IECEx (375V)
- 2mm DTI
- 13mm creepage and clearance
- 20 kV/ μ s Minimum Common Mode Rejection (CMR) at VCM = 1500 V
- High Speed: 10 MBd Typical
- TTL Compatible
- Guaranteed ac and dc performance over temperature: -40°C to +105°C
- Available in 10-Pin widebody packages
- Safety Approval
 - Approval at 5000 Vrms for 1 minute per UL1577
 - CSA

Applications

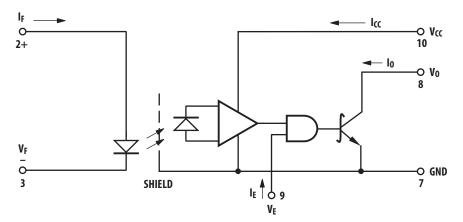
- High Voltage insulation
- Intrinsic safety circuit
- PCB Board Power System Isolation
- Industrial Equipment Power Isolation

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

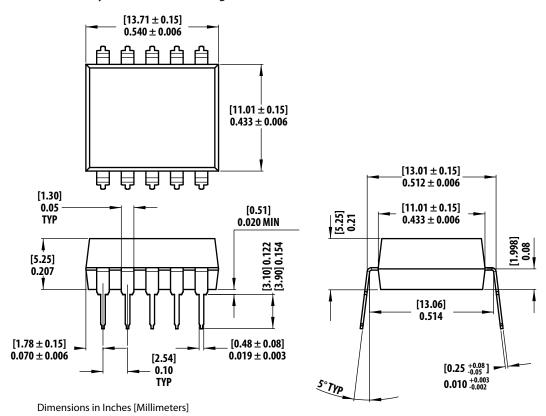
	Option		Surface			UL 5000 V _{rms} /		
Part number	RoHS Compliant	Package	Mount	Gull Wing	Tape & Reel	1 Minute rating	Quantity	
ACNV260E	-000E	500 mil				Х	35 per tube	
	-300E	DIP-10	Х	Х		Х	35 per tube	
	-500E		Х	Х	Х	Х	500 per reel	

ACNV260E is UL Recognized with 5000 Vrms for 1 minute per UL1577.

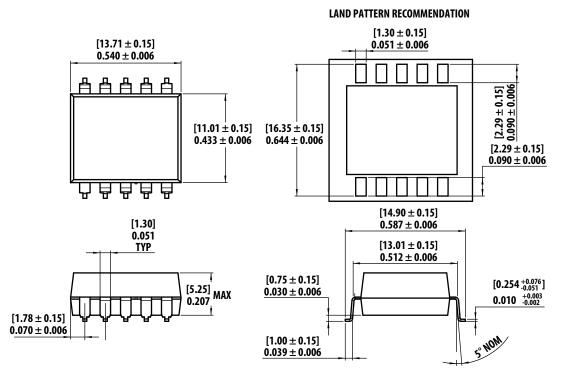

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACNV260E-500E to order product of 500mil DIP-10 Widebody with Gull Wing Surface Mount package in Tape and Reel packaging with UL 5000Vrms/1min Safety Approval in RoHS compliant.


Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic



Use of a 0.1µF bypass capacitor connected between pins of 7 and 10 is recommended (see note 5).

10-Pin Widebody (500mils) DIP Package

10-Pin Widebody (500mils) DIP Package with Gull Wing Surface Mount Option 300

Dimension in Inches [Millimeter]

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Insulation and Safety Related Specifications

Parameter	Symbol	ACNV260E	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	13	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	13	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		2.0	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Minimum Internal Tracking (Internal Creepage)		4.6	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	V	DIN IEC 112/VDE 0303 Part 1.
Maximum Working Insulation Voltage	VIORM	375	V _{peak}	Per IEC 60079-11.
Safety-limiting values – maximu	m values allow	ed in the even	t of a failure.	
Case Temperature	Τ _S	150	°C	
Input Current**	I _{S, INPUT}	400	mA	—
Output Power**	Ps, output	1	W	
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1).

Note:

** Refer to Figure 14 for dependence of PS and IS on ambient temperature.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	Ts	-55	125	°C
Operating Temperature	T _A	-40	105	°C
Average Input Current	I _{F(AVG)}		20	mA
Reverse Input Voltage	VR		3	V
Input Power Dissipation	PI		40	mW
Supply Voltage (1 Minute Maximum)	V _{CC}		7	V
Enable Input Voltage (Not to Exceed V _{CC} by more than 500mV)	VE		V _{CC} +0.5	V
Enable Input Current	Ι _Ε		5	mA
Output Collector Current	Ι _Ο		50	mA
Output Collector Voltage	Vo		7	V
Output Collector Power Dissipation	Po		85	mW
Lead Solder Temperature	T _{LS}		245°C for 10 sec up to seat plane	
Solder Reflow Temperature Profile	See Packa	age Outline	Drawings section	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current, Low Level	I _{FL} *	0	250	μΑ	
Input Current, High Level	I _{FH} **	9	16	mA	1
Power Supply Voltage	V _{CC}	4.5	5.5	V	
Low Level Enable Voltage	V _{EL}	0	0.8	V	
High Level Enable Voltage	V _{EH}	2.0	V _{CC}	V	
Operating Temperature	T _A	- 40	105	°C	
Fan Out (at $R_L = 1 k \Omega$)	Ν		5	TTL Loads	
Output Pull-up Resistor	RL	330	4k	Ω	

* The off condition can also be guaranteed by ensuring that $V_{FL} \leq 0.8$ volts.

** The initial switching threshold is 8mA or less. It is recommended that 9mA to 16mA be used for best performance and to permit at least a 20% LED degradation guardband.

Electrical Specifications (DC)

Over recommended operating conditions unless otherwise specified. All typicals at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Parameter	Symbol Min. Typ. Max. Units Test Conditions		Fig.	Note				
High Level Output Current	I _{OH}		5.5	100	μΑ	$V_{CC} = 5.5 \text{ V}, V_E = 2.0 \text{V}$ $V_O = 5.5 \text{ V}, I_{FL} = 250 \mu\text{A}$		12
Input Threshold Current	I _{TH}		3.5	8	mA	$V_{CC} = 5.5 \text{ V}, V_E = 2.0 \text{ V},$ $V_O = 0.6 \text{ V}, I_{OL} > 13 \text{ mA}$	1, 2	12
Low Level Output Voltage	V _{OL}		0.35	0.6	V	$V_{CC} = 5.5 V, V_E = 2.0V,$ $I_F = 8 mA, I_{OL(Sinking)} = 13 mA$	1, 2, 3, 4	12
High Level Supply Current	I _{CCH}		7.0	12	mA	$V_{E} = 0.5V$ $V_{CC} = 5.5 V$,		
			6.5			$V_E = V_{CC}$ $I_F = 0 \text{ mA}$		
Low Level Supply Current	I _{CCL}		9.0	13	mA	$V_{E} = 0.5V$ $V_{CC} = 5.5 V$,		
			8.5			$V_{\rm E} = V_{\rm CC}$ $I_{\rm F} = 10 \rm mA$		
High Level Enable Current	I _{EH}		-0.7		mA	$V_{CC} = 5.5 \text{ V}, \ V_E = 2.0 \text{ V}$		
Low Level Enable Current	I _{EL}		-0.9		mA	$V_{CC} = 5.5 \text{ V}, \ V_{E} = 0.5 \text{ V}$		
High Level Enable Voltage	V _{EH}	2.0			mA	$V_{CC} = 5.5 \text{ V}, \ V_E = 2.0 \text{V}$		12
Low Level Enable Voltage	V _{EL}			0.8	mA	$V_{CC} = 5.5 \text{ V}, \ V_E = 0.5 \text{ V}$		
Input Forward Voltage	V _F	1.25	1.64	1.85	V	$T_A = 25^{\circ}C$ $I_F = 10 \text{ mA}$	5	
		1.2		2.05				
Input Reverse Breakdown Voltage	BV _R	5			V	$I_R=100~\mu\text{A}, T_A=25^\circ\text{C}$		
Input Capacitance	C _{IN}		60		pF	$f = 1 MHz$, $V_F = 0 V$		
Input Diode Temperature Coefficient	$\Delta V_F / \Delta T_A$		-1.9		mV/°C	I _F = 10 mA		

Switching Specifications (AC)

Over recommended temperature ($T_A = -40^{\circ}C$ to $105^{\circ}C$), $V_{CC} = 5$ V, $I_F = 10$ mA unless otherwise specified. All typicals are at $T_A = 25^{\circ}C$, $V_{CC} = 5$ V.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition	s	Fig.	Note
Propagation Delay Time to	t _{PLH}	30	50	80	ns	$T_A = 25^{\circ}C$	$R_L = 350\Omega$,	6, 7, 8	3, 12
High Output Level				120			$C_{L} = 15 \text{ pF}$		
Propagation Delay Time to	t _{PHL}	35	55	80	ns	$T_A = 25^{\circ}C$			4,12
Low Output Level				120					
Pulse Width Distortion	t _{PHL} - t _{PLH}		5	40	ns	$R_L = 350 \Omega,$ $C_L = 15 pF$		6, 7, 8, 9	6, 12
Propagation Delay Skew	t _{psk}			50	ns				5, 6, 12
Output Rise Time (10%-90%)	T _r		25		ns	_		10	12
Output Fall Time (10%-90%)	T _f		10		ns			10	12
Propagation Delay Time of Enable from V _{EH} to V _{EL}	t _{ELH}		30		ns	$R_L = 350 \Omega$, C V _{EL} = 0V, V _{EH}		11, 12	7
Propagation Delay Time of Enable from V _{EL} to V _{EH}	tehl		20		ns	$R_L = 350 \Omega$, C $V_{EL} = 0V$, $V_{EH} =$	= 1 /	11, 12	8
Output High Level Common Mode Transient Immunity	CM _H	20	25		kV/μs	$\begin{split} V_{CC} &= 5 \text{ V, I}_F = 0 \text{ mA,} \\ V_{O(MIN)} &= 2 \text{ V, R}_L = 350 \ \Omega, \\ T_A &= 25^\circ\text{C}, V_{CM} = 1500 \text{ V} \end{split}$		13	9, 11, 12
Output Low Level Common Mode Transient Immunity	CM _L	20	25		kV/μs	$V_{CC} = 5 V, I_F = V_{O(MAX)} = 0.8$ $T_A = 25^{\circ}C, V_{CN}$	V, R _L = 350 Ω,		10, 11, 12

Package Characteristics

All typicals at $T_A = 25^{\circ}C$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Insulation	V _{ISO}	5000			V _{rms}	RH < 50% for 1 min. T _A = 25°C		13, 14
Input-Output Resistance	R _{I-O}	10 ¹²			Ω	$V_{I-O} = 500 V$		13
Input-Output Capacitance	C _{I-O}		0.5	0.6	pF	f = 1 MHz, T _A = 25°C		13

Notes:

1. Peaking circuits may produce transient input currents up to 50mA, 50ns maximum pulse width, provided average current does not exceed 20mA.

2. By passing of power supply line is required, with a 0.1μF ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 15. Total lead length between both ends of the capacitor and the isolator pins should ot exceed 20mm.

3. The t_{PLH} propagation delay is measured from the 5 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.

4. The t_{PHL} propagation delay is measured from the 5 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.

5. t_{PSK} is equal to the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature and specified test conditions.

6. See application section titled "Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew" for more information.

7. The t_{ELH} enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse.

8. The t_{EHL} enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse.

9. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., V₀ > 2.0 V).

10. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., V₀ < 0.8 V).

11. For sinusoidal voltages, $(|dV_{CM}| / dt)_{max} = \pi f_{CM} V_{CM(p-p)}$.

12. No external pull up is required for a high logic state on the enable input. If the V_E pin is not used, tying V_E to V_{CC} will result in improved CM_R performance.

13. Device considered a two-terminal device: pins 1, 2, 3, 4 and 5 shorted together, and pins 6, 7, 8, 9 and 10 shorted together.

14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage \geq 6000 V_{rms} for one second (leakage detection current limit, I_{LO} \leq 5 µA).

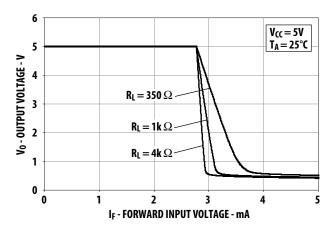
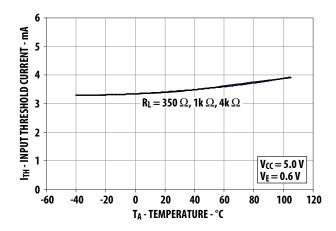



Figure 1. Typical output voltage vs. forward input voltage current.

 $V_{CC} = 5.5 V$ $V_E = 2.0 V$ $V_{OL} = 0.6 V$

 $I_{\rm F} = 14-16 \, {\rm mA}$

80

100

120

 $I_F = 8 mA$

60

Figure 2. Typical input threshold current vs. temperature.

70

60

50

40

30

20

-60

-40

IoL - LOW LEVEL OUTPUT CURRENT - mA

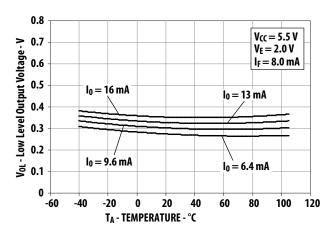


Figure 3. Typical low level output voltage vs. temperature.

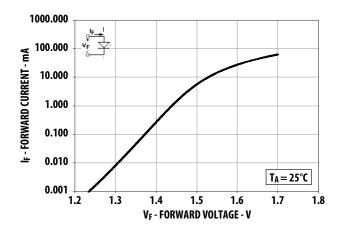


Figure 5. Typical input diode forward characteristic.

Figure 4. Typical low level output current vs. temperature.

0

20

T_A - TEMPERATURE - °C

40

 $I_F = 10 \text{ mA}$

-20

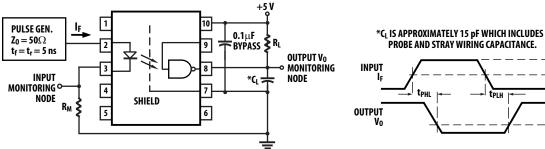


Figure 6. Test circuit for t_{PHL} and t_{PLH}

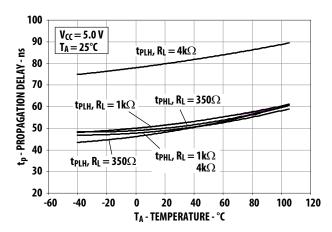
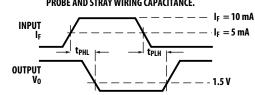



Figure 7. Typical propagation delay vs. temperature.

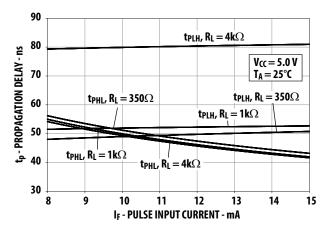


Figure 8. Typical propagation delay vs. pulse input current.

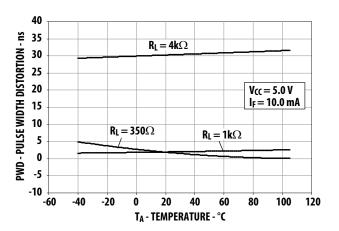


Figure 9. Typical pulse width distortion vs. temperature.

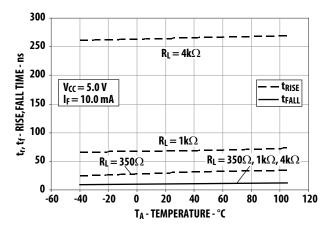
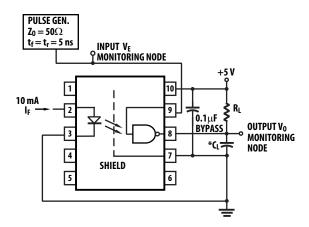
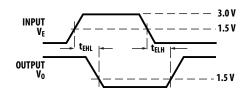




Figure 10. Typical rise and fall time vs. temperature.

*CL IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 11. Test circuit for t_{EHL} and t_{ELH} .

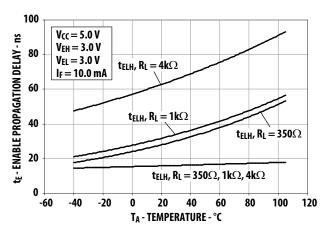


Figure 12. Typical enable propagation delay vs. temperature.