

ACS108-8TN

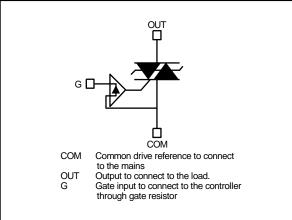
Overvoltage protected AC switch (ACS[™])

Datasheet - production data

Features

- Enables equipment to meet IEC 61000-4-5 surge with overvoltage crowbar technology
- High noise immunity against static dV/dt and IEC 61000-4-4 burst
- Needs no external protection snubber or varistor
- Interfaces directly with the microcontroller ECOPACK[®]2 and RoHS compliant component

Applications


- Alternating current on/off static switching in appliances and industrial control systems
- Driving low power high inductive or resistive loads like:
 - Relay, valve, solenoid, dispenser
 - Pump, fan, low power motor, door lock
 - lamp

Description

The ACS108-8TN belongs to the AC switch range (built with A.S.D.[®] technology). This high performance switch can control a load of up to 0.8 A.

The ACS108-8TN switch includes an overvoltage crowbar structure to absorb the inductive turn-off energy, and a gate level shifter driver to separate the digital controller from the main switch. It is triggered with a negative gate current flowing out of the gate pin.

Table 1: Device summary

Symbol	Value
I _{T(RMS)}	0.8 A
V _{DRM} /V _{RRM}	800 V
Igt	5 mA

DocID029064 Rev 1

This is information on a product in full production.

1 Characteristics

Symbol	Par	Value	Unit			
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)	T _{tab} = 104 °C	0.8	А		
1	Non repetitive surge peak	t _p = 16.7 ms	T _i initial = 25 °C	13.7	^	
I _{TSM}	on-state current	t _p = 20 ms	r_j militar = 25°C	13	A	
l ² t	I ² t value for fusing	t _p = 10 ms	T _j = 25 °C	1.1	A ² s	
V _{RRM} / Vdrm	Repetitive peak off-state voltag	T _j = 125 °C	800	V		
dl/dt			f = 120 Hz	100	A/µs	
V _{pp} ⁽¹⁾	Non repetitive peak pulse line voltage		T _j = 25 °C	2	kV	
Igм	Peak gate current t _p = 20 µs		T _j = 125 °C	1	А	
V _{GM}	Peak positive gate voltage $T_j = 125 \text{ °C}$			10	V	
P _{G(AV)}	Average gate power dissipation $T_j = 125 \text{ °C}$			0.1	W	
T _{stg}	Storage junction temperature range			-40 to +150	°C	
Tj	Maximum operating junction temperature range			-40 to +125	°C	

Table 2: Absolute ratings (limiting values)

Notes:

 $^{(1)}$ According to test described by IEC 61000-4-5 standard and test per *Figure 18*.

Table 5. Electrical characteristics (1)= 25°C unless otherwise specified)					
Symbol	Test Conditions Quadrant			Value	Unit
Іст ⁽¹⁾	V 12 V P 22 O	-	Max.	5	mA
Vgt	V _{OUT} = 12 V, R _L = 33 Ω	-	Max.	1	V
Vgd	$V_{OUT} = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 125 \text{ °C}$	-	Min.	0.15	V
IΗ	$I_T = 100 \text{ mA}, \text{ gate open}$			10	mA
١L	Ig = 1.2 x Igt Max. 20			mA	
dV/dt	$V_D = 402 \text{ V}$, gate open, $T_j = 125 \text{ °C}$		Max.	600	V/µs
uv/ul	$V_D = 536 \text{ V}, \text{ gate open}, T_j = 125 \text{ °C}$ 300				v/µs
(dl/dt)c	$(dI/dt)c < 15 \text{ V/}\mu\text{s}, \text{ turn-off time} \le 20 \text{ ms}, \text{ T}_{j} = 125 ^{\circ}\text{C} \qquad \qquad \text{Min.} \qquad 0.8 \qquad \text{A/ms}$			A/ms	
Vcl	$I_{CL} = 1 \text{ mA}, t_p = 1 \text{ ms}, T_j = 125 \text{ °C} $ Min. 850 V			V	

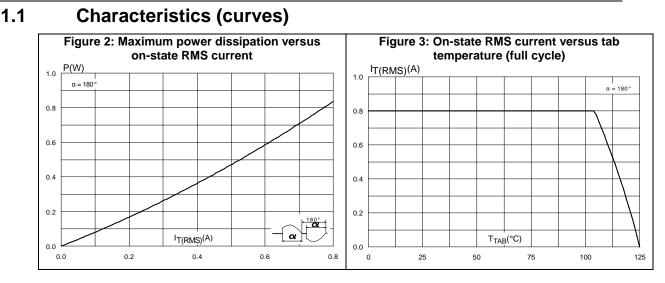
Table 3: Electrical characteristics (T_j = 25 °C unless otherwise specified)

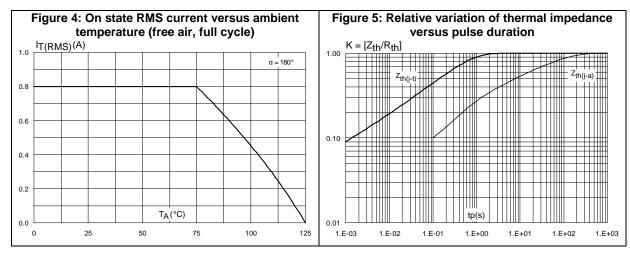
Notes:

 $^{(1)}\mbox{Minimum Igt}$ is guaranteed at 10% of Igt max.

Characteristics

Table 4: Static electrical characteristics						
Symbol	Test conditions			Value	Unit	
Vтм ⁽¹⁾	I _{TM} = 1.1 A, t _ρ = 380 μs	T _j = 25 °C	Max.	1.3	V	
V _{to}	Threshold voltage	T _j = 125 °C	Max.	0.85	V	
RD	Dynamic resistance $T_j = 125 \text{ °C}$ M			350	mΩ	
I _{DRM}	Vout = Vdrm = Vrrm	T _j = 25 °C	Max.	2	μA	
I _{RRM}	VOUI = VDRM = VRRM	T _j = 125 °C	iviax.	0.2	mA	


Notes:


⁽¹⁾For both polarities

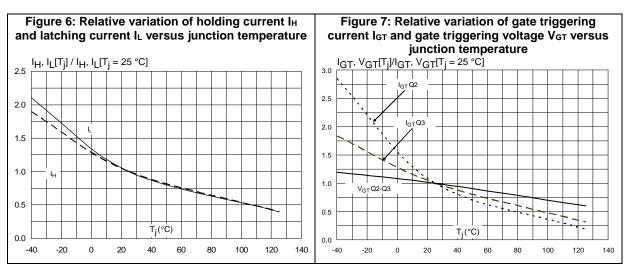
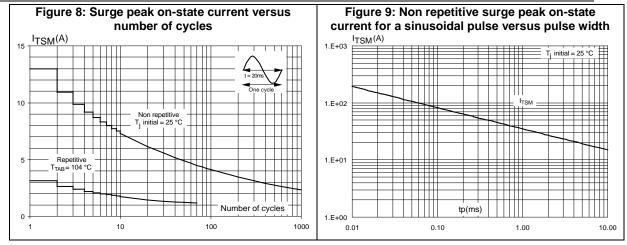
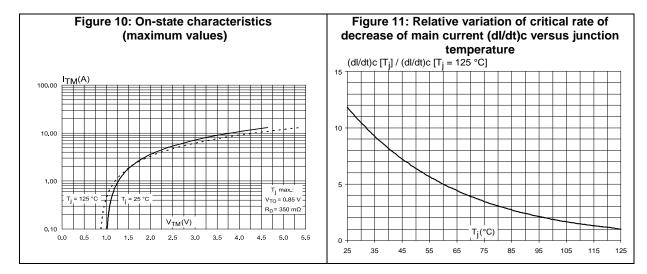
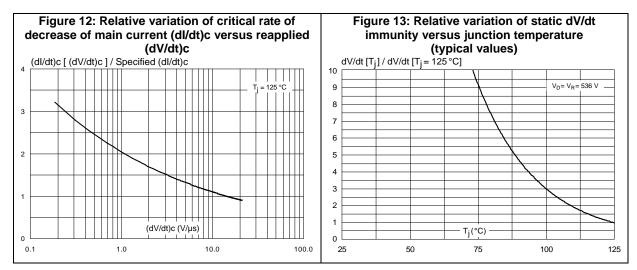

Symbol	Parameter Value			Unit
R _{th(j-t)}	Junction to tab (AC)	Max.	25	°C/M
R _{th} (j-a)	Junction to ambient ($S_{cu} = 5 \text{ cm}^2$)	Тур.	. 60 °C/W	

Table 5: Thermal resistance

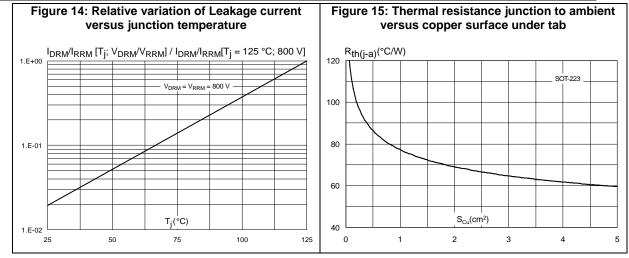



DocID029064 Rev 1



ACS108-8TN

Characteristics

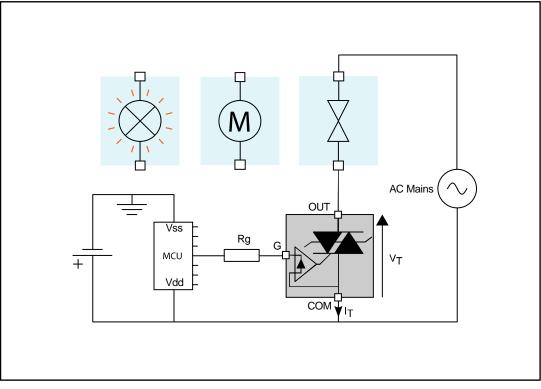

57

DocID029064 Rev 1

5/14

Characteristics

ACS108-8TN

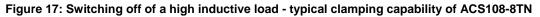

DocID029064 Rev 1

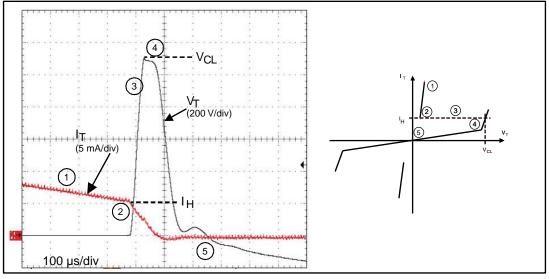
2 Alternating current mains switch - basic application

The ACS108-8TN switch is triggered by a negative gate current flowing from the gate pin G. The switch can be driven directly by the digital controller through a resistor as shown in *Figure 16: "Typical application schematic"*.

Thanks to its over-voltage protection and turn-off commutation performance, the ACS108-8TN switch can drive a small power high inductive load with neither varistor nor additional turn-off snubber.

2.1 Protection against overvoltage: the best choice is ACS

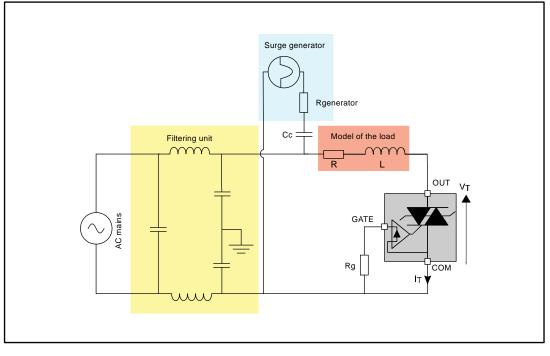

In comparison with standard Triacs the ACS108-8TN is overvoltage self-protected, as specified by the new parameter V_{CL} . This feature is useful in two operating conditions: in case of turn-off of very inductive load, and in case of surge voltage that can occur on the electrical network.


57

2.1.1 High inductive load switch-off: turn-off over-voltage clamping

With high inductive and low rms current loads the rate of decrease of the current is very low. An overvoltage can occur when the gate current is removed and the OUT current is lower than $I_{\rm H}$.

As shown in *Figure 17*, at the end of the last conduction half-cycle, the load current decreases (1). The load current reaches the holding current level I_H (2), and the ACS turns off (3). An inductive load (up to 15 H) reacts as a current generator and an overvoltage is created, which is clamped by the ACS (4). The current flows through the ACS avalanche and decreases linearly to zero. During this time, the voltage across the switch is limited to the clamping voltage V_{CL}. The energy stored in the inductance of the load is dissipated in the clamping section that is designed for this purpose. When the energy has been dissipated, the ACS voltage falls back to the mains voltage value (230 V RMS, 50 Hz) (5).


2.1.2 Alternating current mains transient voltage ruggedness

The ACS108-8TN switch is able to withstand safely the AC mains transients either by clamping the low energy spikes or by breaking-over when subjected to high energy shocks, even with high turn-on current rises.

The test circuit shown in *Figure 18* is representative of the final ACS108-8TN application, and is also used to test the AC switch according to the IEC 61000-4-5 standard conditions. Thanks to the load limiting the current, the ACS108-8TN switch withstands the voltage spikes up to 2 kV above the peak mains voltage. The protection is based on an overvoltage crowbar technology. Actually, the ACS108-8TN breaks over safely as shown in *Figure 19*. The ACS108-8TN recovers its blocking voltage capability after the surge (switch off back at the next zero crossing of the current).

Such non-repetitive tests can be done 10 times on each AC mains voltage polarity.

Figure 18: Overvoltage ruggedness test circuit for resistive and inductive loads, T_{amb} = 25 °C (conditions equivalent to IEC 61000-4-5 standard)

R = 150 Ω , L = 5 μ H, V_{pp} = 2 kV (Surge Generator), Rg = 220 Ω , AC mains = 230 V_{RMS} 50 Hz, C_c = 18 μ F.

Alternating current mains switch - basic application

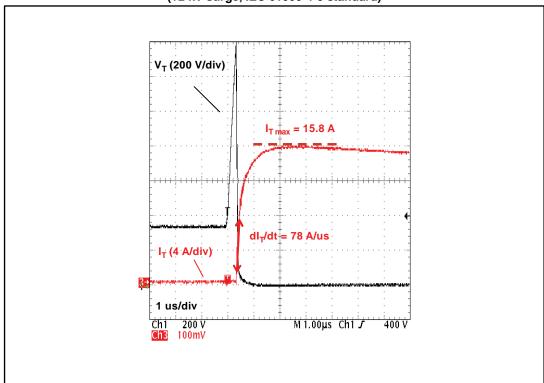
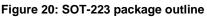
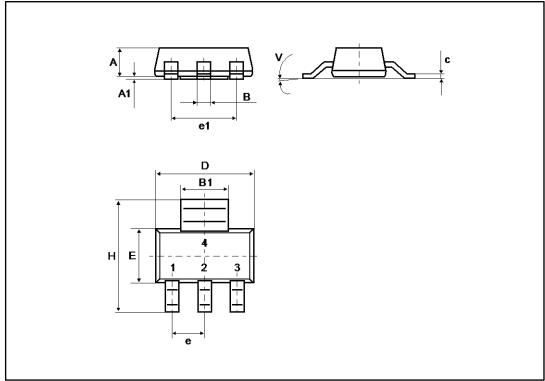


Figure 19: Typical current and voltage waveforms across the ACS108-8TN (+2 kV surge, IEC 61000-4-5 standard)

DocID029064 Rev 1

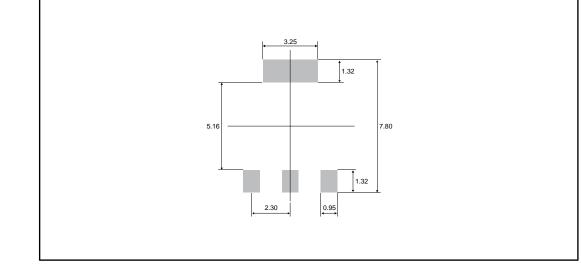



3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Epoxy meets UL94, V0
- Lead-free packages

3.1 SOT-223 package information



Package information

ACS108-8TN

	Table 6: SOT-223 package mechanical data						
	Dimensions						
Ref.		Millimeters					
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.80			0.071	
A1		0.02	0.10		0.001	0.004	
В	0.60	0.70	0.85	0.024	0.027	0.033	
B1	2.90	3.00	3.15	0.114	0.118	0.124	
с	0.24	0.26	0.35	0.009	0.010	0.014	
D	6.30	6.50	6.70	0.248	0.256	0.264	
е		2.3			0.090		
e1		4.6			0.181		
E	3.30	3.50	3.70	0.130	0.138	0.146	
Н	6.70	7.00	7.30	0.264	0.276	0.287	
V			1	0° max.			

Figure 21: SOT-223 footprint (dimensions in mm)

4 Ordering information

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
ACS108-8TN-TR	ACS1088T	SOT-223	0.11 g	1000	Tape and reel

5 Revision history

Table 8: Document revision history

Date	Revision	Changes
02-Jun-2016	1	Initial release.

