

Tactical Grade, Six Degrees of Freedom Inertial Sensor

Data Sheet **[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)**

FEATURES

Triaxial, digital gyroscope, ±450°/sec dynamic range ±0.05° orthogonal alignment error 6°/hr in-run bias stability 0.3°/√hr angular random walk 0.01% nonlinearity Triaxial, digital accelerometer, ±5 *g* **Triaxial, delta angle, and delta velocity outputs Fast start-up time, ~500 ms Factory calibrated sensitivity, bias, and axial alignment Calibration temperature range: −40°C to +85°C SPI-compatible serial interface Embedded temperature sensor Programmable operation and control Automatic and manual bias correction controls 4 FIR filter banks, 120 configurable taps Digital I/O: data-ready alarm indicator, external clock Alarms for condition monitoring Power-down/sleep mode for power management Optional external sample clock input: up to 2.4 kHz Single command self test Single-supply operation: 3.0 V to 3.6 V 2000** *g* **shock survivability Operating temperature range: −40°C to +105°C**

APPLICATIONS

Platform stabilization and control Navigation Personnel tracking Instruments Robotics

GENERAL DESCRIPTION

Th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) *i*Sensor® device is a complete inertial system that includes a triaxial gyroscope and a triaxial accelerometer. Each inertial sensor in th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) combines industry-leading *i*MEMS® technology with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyroscope bias). As a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements.

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) provides a simple, cost-effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. The SPI and register structure provide a simple interface for data collection and configuration control.

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) uses the same footprint and connector system as the [ADIS16375](https://www.analog.com/ADIS16375?doc=ADIS16485.pdf) and th[e ADIS16488A,](https://www.analog.com/ADIS16488A?doc=ADIS16485.pdf) which greatly simplifies the upgrade process. It comes in a module that is approximately 47 mm \times 44 mm \times 14 mm and has a standard connector interface.

FUNCTIONAL BLOCK DIAGRAM

Rev. H [Document Feedback](https://form.analog.com/Form_Pages/feedback/documentfeedback.aspx?doc=ADIS16485.pdf&product=ADIS16485&rev=H)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012−2019 Analog Devices, Inc. All rights reserved. [Technical Support](https://www.analog.com/en/content/technical_support_page/fca.html) www.analog.com

ADIS16485

TABLE OF CONTENTS

REVISION HISTORY

9/2017—Rev. F to Rev. G

10/2016—Rev. E to Rev. F

2/2015—Rev. D to Rev. E

5/2014—Rev. C to Rev. D

4/2014—Rev. B to Rev. C

12/2013—Rev. A to Rev. B

12/2012—Rev. 0 to Rev. A

5/2012—Revision 0: Initial Version

SPECIFICATIONS

TA = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 *g*, 300 mbar to 1100 mbar, unless otherwise noted.

Table 1.

Data Sheet **[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)**

¹ The repeatability specifications represent analytical projections that are based off of the following drift contributions and conditions: temperature hysteresis (−40°C to +85°C), electronics drift (high temperature operating life test: +110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles, −40°C to +85°C), rate random walk (10 year projection), and broadband noise

² Bias repeatability describes a long-term behavior over a variety of conditions. Short-term repeatability is related to the in-run bias stability and noise density specifications.

³ X-ray exposure may degrade this performance metric.

⁴ The digital I/O signals use a 3.3 V system.

⁵ RST and CS pins are connected to the VDD pin through 10 kΩ pull-up resistors.

⁶ Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C. 7

 7 The data retention specification assumes a junction temperature (T_J) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with T_J.
⁸ These times do not include thermal settling and i

⁹ The RST line must be in a low state for at least 10 μs to assure a proper reset initiation and recovery.

¹⁰ The device functions at clock rates below 0.7 kHz but at reduced performance levels.

¹¹ Supply current transients can reach 600 mA during start-up and reset recovery.

TIMING SPECIFICATIONS

 $T_A = 25^{\circ}$ C, VDD = 3.3 V, unless otherwise noted.

Table 2.

¹ Guaranteed by design and characterization, but not tested in production. ² Se[e Table 3](#page-5-1) for exceptions to the stall time rating.

Table 3. Register Specific Stall Times

Timing Diagrams

Figure 4. Input Clock Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 4.

¹ Extended exposure to temperatures that are lower than −40°C or higher than +105°C can adversely affect the accuracy of the factory calibration.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 5. Package Characteristics

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge Limitian detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Mating Connector Pin Assignments

Figure 6. Axial Orientation (Top Side Facing Up)

10666-106

0666-106

Table 6. Pin Function Descriptions

NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM
2. THE TOP VIEW.
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.
4. DNC = DO NOT CONNECT. 0666-005 10666-005

adis16485 Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS

0.01 0.01 0.1 1 10 100 1000 10000 INTEGRATION PERIOD (Seconds) *Figure 8. Accelerometer Allan Variance, 25°C*

Figure 9. Gyroscope Scale (Sensitivity) Error and Hysteresis vs. Temperature

Figure 10. Gyroscope Bias Error and Hysteresis vs. Temperature

10666-008

BASIC OPERATION

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) is an autonomous sensor system that starts up on its own when it has a valid power supply. After running through its initialization process, it begins sampling, processing, and loading calibrated sensor data into the output registers, which are accessible using the SPI port. The SPI port typically connects to a compatible port on an embedded processor, using the connection diagram i[n Figure 11.](#page-10-2) The four SPI signals facilitate synchronous, serial data communication. Connect RST (Pin 8, see [Table 6\)](#page-8-1) to VDD or leave RST open for normal operation. The factory default configuration provides users with a data-ready signal on the DIO2 pin, which pulses high when new data is available in the output data registers.

Figure 11. Electrical Connection Diagram

Embedded processors typically use control registers to configure their serial ports for communicating with SPI slave devices such as th[e ADIS16485.](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) [Table 8](#page-10-3) provides a list of settings, which describe the SPI protocol of th[e ADIS16485.](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) The initialization routine of the master processor typically establishes these settings using firmware commands to write them into its serial control registers.

REGISTER STRUCTURE

The register structure and SPI port provide a bridge between the sensor processing system and an external, master processor. It contains both output data and control registers. The output data registers include the latest sensor data, a real-time clock, error flags, alarm flags, and identification data. The control registers include sample rate, filtering, input/output, alarms, calibration, and diagnostic configuration options. All communication between th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) and an external processor involves either reading or writing to one of the user registers.

Figure 12. Basic Operation

The register structure uses a paged addressing scheme that is composed of 13 pages, with each one containing 64 register locations. Each register is 16 bits wide, with each byte having its own unique address within the memory map of that page. The SPI port has access to one page at a time, using the bit sequence in [Figure 17.](#page-11-3) Select the page to activate for SPI access by writing its code to the PAGE_ID register. Read the PAGE_ID register to determine which page is currently active[. Table 9](#page-10-4) displays the PAGE_ID contents for each page, together with their basic functions. The PAGE_ID register is located at Address 0x00 on every page.

SPI COMMUNICATION

The SPI port supports full duplex communication, as shown in [Figure 17,](#page-11-3) which enables external processors to write to DIN while reading DOUT, when the previous command was a read request. [Figure 17](#page-11-3) provides a guideline for the bit coding on both DIN and DOUT.

DEVICE CONFIGURATION

The SPI provides write access to the control registers, one byte at a time, using the bit assignments shown i[n Figure 17.](#page-11-3) Each register has 16 bits, where Bits[7:0] represent the lower address (listed i[n Table 10\)](#page-12-1) and Bits[15:8] represent the upper address. Write to the lower byte of a register first, followed by a write to its upper byte. The only register that changes with a single write to its lower byte is the PAGE_ID register. For a write command, the first bit in the DIN sequence is set to 1. Address Bits[A6:A0] represent the target address, and Data Command Bits[DC7:DC0] represent the data being written to the location[. Figure 13](#page-11-4) provides an example of writing 0x03 to Address 0x00 (PAGE_ID [7:0]), using DIN = 0x8003. This write command activates the control page for SPI access.

Dual Memory Structure

Writing configuration data to a control register updates its SRAM contents, which are volatile. After optimizing each relevant control register setting in a system, use the manual flash update command, which is located in GLOB_CMD[3] on Page 3 of the register map. Activate the manual flash update command by turning to Page 3 $(DIN = 0x8003)$ and setting GLOB $CMD[3] = 1 (DIN = 0x8208,$ then $DIN = 0x8300$. Make sure that the power supply is within specification for the entire 375 ms processing time for a flash memory update. [Table 10](#page-12-1) provides a memory map for all of the user registers, which includes a column of flash backup information. A yes in this column indicates that a register has a mirror location in flash and, when backed up properly, automatically restores itself during startup or after a reset. [Figure 14](#page-11-5) provides a diagram of the dual memory structure used to manage operation and store critical user settings.

Figure 14. SRAM and Flash Memory Diagram

READING SENSOR DATA

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) automatically starts up and activates Page 0 for data register access. Write 0x00 to the PAGE_ID register (DIN = 0x8000) to activate Page 0 for data access after accessing any other page. A single register read requires two 16-bit SPI cycles. The first cycle requests the contents of a register using the bit assignments i[n Figure 17,](#page-11-3) and then the register contents follow DOUT during the second sequence. The first bit in a DIN command is zero, followed by either the upper or the lower address for the register. The last eight bits are don't care, but the SPI requires the full set of 16 SCLKs to receive the request[. Figure 15](#page-11-6) includes two register reads in succession, which starts with $DIN = 0x1A00$ to request the contents of the Z_GYRO_OUT register and follows with 0x1800 to request the contents of the Z_GYRO_LOW register.

Figure 15. SPI Read Example

[Figure 16](#page-11-7) provides an example of the four SPI signals when reading PROD_ID in a repeating pattern. This is a good pattern to use for troubleshooting the SPI interface setup and communications because the contents of PROD_ID are predefined and stable.

Figure 16. SPI Read Example, Second 16-Bit Sequence

10666-017

1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0. 2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE

FOR OTHER DEVICES.

Figure 17. SPI Communication Bit Sequence

USER REGISTERS

[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) Data Sheet

Data Sheet **[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)**

¹ The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.

OUTPUT DATA REGISTERS

After th[e ADIS16485 c](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)ompletes its start-up process, the PAGE_ID register contains 0x0000, which sets Page 0 as the active page for SPI access. Page 0 contains the output data, real-time clock, status, and product identification registers.

INERTIAL SENSOR DATA FORMAT

The gyroscope, accelerometer, delta angle, and delta velocity output data registers use a 32-bit, twos complement format. Each output uses two registers to support this resolution. [Figure 18 p](#page-15-9)rovides an example of how each register contributes to each inertial measurement. In this case, X_GYRO_OUT is the most significant word (upper 16 bits), and X_GYRO_LOW is the least significant word (lower 16 bits). In many cases, using the most significant word registers alone provide sufficient resolution for preserving key performance metrics.

Figure 18. Gyroscope Output Format Example, DEC_RATE > 0

The arrows in [Figure 19 d](#page-15-10)escribe the direction of the motion, which produces a positive output response in each output register of the sensor. The accelerometers respond to both dynamic and static forces associated with acceleration, including gravity. When lying perfectly flat, as shown i[n Figure 19,](#page-15-10) the z-axis accelerometer output is 1 *g*, and the x and y accelerometers are 0 *g*.

ROTATION RATE (GYROSCOPE)

The registers that use the x_GYRO_OUT format are the primary registers for the gyroscope measurements (se[e Table 11,](#page-15-4) [Table 12,](#page-15-6) an[d Table 13\)](#page-15-8). When processing data from these registers, use a 16-bit, twos complement data format. [Table 14 p](#page-15-11)rovides x_GYRO_OUT digital coding examples.

Table 13. Z_GYRO_OUT (Page 0, Base Address = 0x1A)

Table 14. X_GYRO_OUT Data Format Examples

The registers that use the x_GYRO_LOW naming format provide additional resolution for the gyroscope measurements (see [Table 15,](#page-15-3) [Table 16,](#page-15-5) and [Table 17\)](#page-15-7). The MSB has a weight of 0.01°/sec, and each subsequent bit has ½ the weight of the previous one.

Figure 19. Inertial Sensor Direction Reference Diagram

ACCELERATION

The registers that use the x_ACCL_OUT format are the primary registers for the accelerometer measurements (se[e Table 18,](#page-16-3) [Table 19,](#page-16-5) an[d Table 20\)](#page-16-7). When processing data from these registers, use a 16-bit, twos complement data format[. Table 21](#page-16-11) provides x_ACCL_OUT digital coding examples.

Table 18. X_ACCL_OUT (Page 0, Base Address = 0x1E)

Table 19. Y_ACCL_OUT (Page 0, Base Address = 0x22)

Table 20. Z_ACCL_OUT (Page 0, Base Address = 0x26)

Table 21. x_ACCL_OUT Data Format Examples

The registers that use the x ACCL_LOW naming format provide additional resolution for the accelerometer measurements (se[e Table 22,](#page-16-2) [Table 23,](#page-16-4) an[d Table 24\)](#page-16-6). The MSB has a weight of 0.125 m*g*, and each subsequent bit has ½ the weight of the previous one.

Table 22. X_ACCL_LOW (Page 0, Base Address = 0x1C) Bits Description

Table 23. Y_ACCL_LOW (Page 0, Base Address = 0x20)

Table 24. Z_ACCL_LOW (Page 0, Base Address = 0x24)

DELTA ANGLES

The x_DELTANG_OUT registers are the primary output registers for the delta angle calculations. When processing data from these registers, use a 16-bit, twos complement data format (see [Table 25,](#page-16-8) [Table 26,](#page-16-9) and [Table 27\)](#page-16-10)[. Table 28](#page-16-12) shows x_DELTANG_OUT digital coding examples.

The delta angle outputs represent an integration of the gyroscope measurements and use the following formula for all three axes (x-axis displayed):

$$
\Delta \theta_{x,nD} = \frac{1}{2f_S} \times \sum_{d=0}^{D-1} \left(\omega_{x,nD+d} + \omega_{x,nD+d-1} \right)
$$

where:

D is the decimation rate = $DEC_RATE + 1$. f_S is the sample rate.

d is the incremental variable in the summation formula. ω_x is the x-axis rate of rotation (gyroscope).

n is the sample time, prior to the decimation filter.

When using the internal sample clock, fS is equal to 2460 SPS. When using the external clock option, fS is equal to the frequency of the external clock, which is limited to a minimum of 2 kHz, to prevent overflow in the x_DELTANG_xxx registers at high rotation rates. Se[e Table 49 a](#page-19-3)nd [Figure 20 f](#page-19-4)or more information on the DEC_RATE register (decimation filter).

The x_DELTANG_LOW registers (se[e Table 29,](#page-17-3) [Table 30, a](#page-17-4)nd [Table 31\)](#page-17-5) provide additional resolution bits for the delta angle and combine with the x_DELTANG_OUT registers to provide a 32-bit, twos complement number. The MSB in the x_DELTANG_LOW registers have a weight of ~0.011° (720°/216), and each subsequent bit carries a weight of ½ of the previous one.

Table 25. X_DELTANG_OUT (Page 0, Base Address = 0x42)

Table 26. Y_DELTANG_OUT (Page 0, Base Address = 0x46)

Table 27. Z_DELTANG_OUT (Page 0, Base Address = 0x4A)

Table 28. x_DELTANG_OUT Data Format Examples

The x_DELTANG_LOW registers (se[e Table 29,](#page-17-3) [Table 30, a](#page-17-4)nd [Table 31\)](#page-17-5) provide additional resolution for the angle measurement and combine with the x_DELTANT_OUT registers to provide a 32-bit, twos complement number. The MSBs in the x_DELTANG_LOW registers have a weight of ~0.011° (720°/2¹⁶), and each subsequent bit carries a weight of ½ of the previous one.

[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) Data Sheet

DELTA VELOCITY

The registers that use the x_DELTVEL_OUT format are the primary registers for the delta velocity calculations. When processing data from these registers, use a 16-bit, twos complement data format (see [Table](#page-17-7) 32, [Table 33,](#page-17-9) an[d Table 34\)](#page-17-11)[. Table 35](#page-17-12) provides x_DELTVEL_OUT digital coding examples.

[15:0] Z-axis delta angle data; additional resolution bits

The delta velocity outputs represent an integration of the accelerometer measurements and use the following formula for all three axes (x-axis displayed):

$$
\Delta V_{x,nD} = \frac{1}{2f_s} \times \sum_{d=0}^{D-1} \left(a_{x,nD+d} + a_{x,nD+d-1} \right)
$$

where:

ax is the x-axis linear acceleration.

fs is the sample rate.

n is the sample time, prior to the decimation filter.

D is the decimation rate = DEC_RATE + 1.

d is the incremental variable in the summation formula.

When using the internal sample clock, fs is equal to 2460 SPS. When using the external clock option, f_s is equal to the frequency of the external clock, which is limited to a minimum of 2 kHz, to prevent overflow in the x_DELTVEL_xxx registers at high rotation rates. Se[e Table 49](#page-19-3) and [Figure 20](#page-19-4) for more information on the DEC_RATE register (decimation filter).

Table 32. X_DELTVEL_OUT (Page 0, Base Address = 0x4E)

Table 33. Y_DELTVEL_OUT (Page 0, Base Address = 0x52)

Table 34. Z_DELTVEL_OUT (Page 0, Base Address = 0x56)

Table 35. x_DELTVEL_OUT, Data Format Examples

The x_DELTVEL_LOW registers (se[e Table 36,](#page-17-6) [Table 37,](#page-17-8) and [Table](#page-17-10) 38) provide additional resolution bits for the delta-velocity measurement and combine with the x_DELTVEL_OUT registers to provide a 32-bit, twos complement number. The MSBs in the x_DELTVEL_LOW registers have a weight of ~0.7629 mm/sec (50 m/sec \div 2¹⁶), and each subsequent bit carries a weight of ½ of the previous one.

INTERNAL TEMPERATURE

The TEMP_OUT register provides an internal temperature measurement that can be useful for observing relative temperature changes inside of th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) (se[e Table 39\)](#page-17-2)[. Table 40](#page-17-13) provides TEMP_OUT digital coding examples. Note that this temperature reflects a higher temperature than ambient, due to self heating.

Table 39. TEMP_OUT (Page 0, Base Address = 0x0E)

Table 40. TEMP_OUT Data Format Examples

STATUS/ALARM INDICATORS

The SYS_E_FLAG register i[n Table 41](#page-18-3) provides the system error flags for a variety of conditions (se[e Table 41\)](#page-18-3). Reading the SYS_E_FLAG register clears all of its error flags and returns each bit to a zero value, with the exception of Bit[7]. If SYS_E_FLAG[7] is high, use the software reset (GLOB_CMD[7], se[e Table 86\)](#page-26-5) to clear this condition and restore normal operation. If any bit in the SYS_E_FLAG register is associated with an error condition that remains after reading this register, this bit automatically returns to an alarm value as 1.

The DIAG_STS register in [Table 42 p](#page-18-4)rovides the flags for the internal self test function, which is from GLOB_CMD[1] (see [Table 86\)](#page-26-5). Note that reading DIAG_STS also resets it to 0x0000.

Table 42. DIAG_STS (Page 0, Base Address = 0x0A)

The ALM_STS register i[n Table 43](#page-18-5) provides the alarm bits for the programmable alarm levels of each sensor. Note that reading ALM_STS also resets its value to 0x0000.

0 \vert X-axis gyroscope alarm flag (1 = alarm is active)

FIRMWARE REVISION

The FIRM_REV register (see [Table 44\)](#page-18-7) provides the firmware revision for the internal processor. Each nibble represents a digit in this revision code. For example, if FIRM_REV = $0x0102$, the firmware revision is 1.02.

The FIRM_DM register (see [Table 45\)](#page-18-8) contains the month and day of the factory configuration date. FIRM_DM[15:12] and FIRM_DM[11:8] contain digits that represent the month of factory configuration. For example, November is the 11th month in a year and represented by FIRM_DM[15:8] = 0x11. FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent the day of factory configuration. For example, the 27th day of the month is represented by $FIRM_DM[7:0] = 0x27$.

Table 45. FIRM_DM (Page 3, Base Address = 0x7A)

Bits	Description
[15:12]	Binary, month 10s digit, range: 0 to 1
[11:8]	Binary, month 1s digit, range: 0 to 9
[7:4]	Binary, day 10s digit, range: 0 to 3
[3:0]	Binary, day 1s digit, range: 0 to 9

The FIRM_Y register (see [Table 46\)](#page-18-9) contains the year of the factory configuration date. For example, the year of 2013 is represented by $FIRM_Y = 0x2013$.

Table 46. FIRM_Y (Page 3, Base Address = 0x7C)

PRODUCT IDENTIFICATION

The PROD_ID register (see [Table 47\)](#page-18-6) contains the binary equivalent of the device number $(16,485 = 0x4065)$, and the SERIAL_NUM register (see [Table 48\)](#page-18-10) contains a lot-specific serial number.

DIGITAL SIGNAL PROCESSING **GYROSCOPES/ACCELEROMETERS**

[Figure 20](#page-19-4) provides a signal flow diagram for all the components and settings that influence the frequency response for the accelerometers and gyroscopes. The sample rate for each accelerometer and gyroscope is 9.84 kHz. Each sensor has its own averaging/decimation filter stage that reduces the update rate to 2.46 kSPS. When using the external sync clock option (FNCTIO_CTRL[7:4], se[e Table 89\)](#page-27-2), the input clock drives a 4-sample burst at a sample rate of 9.84 kSPS, which feeds into the 4× averaging/decimation filter. This results in a data rate that is equal to the input clock frequency.

AVERAGING/DECIMATION FILTER

The DEC_RATE register (se[e Table 49\)](#page-19-3) provides user control for the final filter stage (se[e Figure 20\)](#page-19-4), which averages and decimates the accelerometers, gyroscopes, delta angle, and delta velocity data. The output sample rate is equal to $2460/(\text{DEC_RATE} + 1)$. When using the external sync clock option (FNCTIO_CTRL[7:4], see [Table 89\)](#page-27-2), replace the 2460 number in this relationship with the input clock frequency. For example, turn to Page 3 (DIN = 0x8003), and set DEC_RATE = $0x18$ (DIN = $0x8C18$, then DIN = $0x8D00$) to reduce the output sample rate to 98.4 SPS (2460 \div 25).

NOTES

1. WHEN FNCTIO_CTRL[7] = 1, EACH CLOCK PULSE ON THE DESIGNATED DIOx LINE (FNCTIO_CTRL[5:4]) STARTS A 4-SAMPLE BURST, **AT A SAMPLE RATE OF 9.84kHz. THESE FOUR SAMPLES FEED INTO THE 4x AVERAGE/DECIMATION FILTER, WHICH PRODUCES A DATA RATE THAT IS EQUAL TO THE INPUT CLOCK FREQUENCY.** 10666-019

Figure 20. Sampling and Frequency Response Signal Flow

FIR FILTER BANKS

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) provides four configurable, 120-tap FIR filter banks. Each coefficient is 16 bits wide and occupies its own register location with each page. When designing a FIR filter for these banks, use a sample rate of 2.46 kHz and scale the coefficients so that their sum equals 32,768. For filter designs that have less than 120 taps, load the coefficients into the lower portion of the filter and start with Coefficient 1. Make sure that all unused taps are equal to zero, so that they do not add phase delay to the response. The FILTR_BNK_x registers provide three bits per sensor, which configure the filter bank (A, B, C, D) and turn filtering on and off. For example, turn to Page 3 (DIN = 0x8003), then write $0x002F$ to FILTR_BNK_0 (DIN = 0x962F, DIN = 0x9700) to set the x-axis gyroscope to use the FIR filter in Bank D, to set the y-axis gyroscope to use the FIR filter in Bank B, and to enable these FIR filters in both x- and y-axis gyroscopes. Note that the filter settings update after writing to the upper byte; therefore, always configure the lower byte first. In cases that require configuration to only the lower byte of either FILTR_BNK_0 or FILTR_BNK_1, complete the process by writing 0x00 to the upper byte.

Filter Memory Organization

Each filter bank uses two pages of the user register structure. See [Table 52,](#page-20-3) [Table 53,](#page-20-4) [Table 54](#page-20-5) and [Table 55](#page-21-0) for the register addresses in each filter bank.

Table 53. Filter Bank B Memory Map, FIR_COEF_Bxxx

Table 54. Filter Bank C Memory Map, FIR_COEF_Cxxx

adis16485 Data Sheet

Table 55. Filter Bank D Memory Map, FIR_COEF_Dxxx

Default Filter Performance

The FIR filter banks have factory programmed filter designs. They are all low-pass filters that have unity dc gain[. Table 56](#page-21-1) provides a summary of each filter design, an[d Figure 21](#page-21-2) shows the frequency response characteristics. The phase delay is equal to ½ of the total number of taps.

Figure 21. FIR Filter Frequency Response Curves

CALIBRATION

Th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) factory calibration produces correction formulas for the gyroscopes and the accelerometers and then programs them into the flash memory. In addition, there are a series of user-configurable calibration registers for in-system tuning.

GYROSCOPES

The user calibration for the gyroscopes includes registers for adjusting bias and sensitivity, as shown in [Figure 22.](#page-22-12)

Figure 22. User Calibration Signal Path, Gyroscopes

Manual Bias Correction

The xG_BIAS_HIGH registers (see [Table 57,](#page-22-6) [Table 58,](#page-22-8) and [Table](#page-22-10) 59) and xG_BIAS_LOW registers (se[e Table 60,](#page-22-5) [Table 61,](#page-22-7) an[d Table 62\)](#page-22-9) provide a bias adjustment function for the output of each gyroscope sensor.

Table 57. XG_BIAS_HIGH (Page 2, Base Address = 0x12)

Table 58. YG_BIAS_HIGH (Page 2, Base Address = 0x16)

Table 59. ZG_BIAS_HIGH (Page 2, Base Address = 0x1A)

Table 60. XG_BIAS_LOW (Page 2, Base Address = 0x10)

Table 61. YG_BIAS_LOW (Page 2, Base Address = 0x14)

Table 62. ZG_BIAS_LOW (Page 2, Base Address = 0x18)

Bias Null Command

The continuous bias estimator (CBE) accumulates and averages data in a 64-sample FIFO. The average time (t_A) for the bias estimates relies on the sample time base setting in NULL_CNFG[3:0] (se[e Table 63\)](#page-22-11). Users can load the correction factors of the CBE into the gyroscope offset correction registers (see [Table 57,](#page-22-6) [Table 58,](#page-22-8) [Table](#page-22-10) 59[, Table 60,](#page-22-5) [Table 61,](#page-22-7) an[d Table 62\)](#page-22-9) using the bias null command in GLOB_CMD[0] (se[e Table](#page-26-5) 86). NULL_CNFG[13:8] provide on/off controls for the sensors that update when issuing a bias null command. The factory default configuration for NULL_CNFG enables the bias null command for the gyroscopes, disables the bias null command for the accelerometers, and establishes the average time to ~26.64 seconds. For best results, make sure th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) is stationary for this entire time.

Table 63. NULL_CNFG (Page 3, Base Address = 0x0E)

Turn to Page 3 ($DIN = 0x8003$) and set $GLOB_CMD[0] = 1$ $(DIN = 0x8201,$ then $DIN = 0x8300$ to update the user offset registers with the correction factors of the CBE.

Manual Sensitivity Correction

The x_GYRO_SCALE registers enable sensitivity adjustment (see [Table 64,](#page-22-2) [Table 65,](#page-22-3) an[d Table 66\)](#page-22-4).

Table 64. X_GYRO_SCALE (Page 2, Base Address = 0x04)

Linear Acceleration on Effect on Gyroscope Bias

MEMS gyroscopes typically have a bias response to linear acceleration that is normal to their axes of rotation. Th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) offers an optional compensation function for this effect; the factory default setting (0x00C0) for the CONFIG register enables this function. To turn it off, turn to Page 3 ($DIN = 0x8003$) and set $CONFIG[7] = 0$ (DIN = 0x8A20, DIN = 0x8B00). Note that this also keeps the point of percussion alignment function enabled.

Table 67. CONFIG (Page 3, Base Address = 0x0A)

ACCELEROMETERS

The user calibration for the accelerometers includes registers for adjusting bias and sensitivity, as shown in [Figure 23.](#page-23-11)

Figure 23. User Calibration Signal Path, Gyroscopes

Manual Bias Correction

The xA_BIAS_HIGH (see [Table 68,](#page-23-5) [Table 69,](#page-23-12) and [Table 70\)](#page-23-9) and xA_BIAS_LOW (see [Table 71,](#page-23-4) [Table 72,](#page-23-6) an[d Table 73\)](#page-23-8) registers provide a bias adjustment function for the output of each accelerometer sensor. The xA_BIAS_HIGH registers use the same format as x_ACCL_OUT registers. The xA_BIAS_LOW registers use the same format as x_ACCL_LOW registers.

Table 69. YA_BIAS_HIGH (Page 2, Base Address = 0x22)

Manual Sensitivity Correction

The x_ACCL_SCALE registers enable sensitivity adjustment (see [Table 74,](#page-23-1) [Table 75,](#page-23-2) [Table 76\)](#page-23-3).

Table 74. X_ACCL_SCALE (Page 2, Base Address = 0x0A)


```
[15:0] | Y-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 \div 2^{15} = -0.003052\%
```


Data Sheet **[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)**

RESTORING FACTORY CALIBRATION

Turn to Page 3 ($DIN = 0x8003$) and set $GLOB_CMD[6] = 1$ $(DIN = 0x8240, DIN = 0x8300)$ to execute the factory calibration restore function. This function resets each user calibration register to zero, resets all sensor data to 0, and automatically updates the flash memory within 900 ms. See [Table](#page-26-5) 86 for more information on GLOB_CMD.

POINT OF PERCUSSION ALIGNMENT

CONFIG[6] offers a point of percussion alignment function that maps the accelerometer sensors to the corner of the package identified i[n Figure 24.](#page-24-2) To activate this feature, turn to Page 3 $(DIN = 0x8003)$, then set CONFIG[6] = 1 (DIN = 0x8A40, DIN = 0x8B00). Se[e Table 67](#page-23-10) for more information on the CONFIG register.

Figure 24. Point of Percussion Reference Point

ALARMS

Each sensor has an independent alarm function that provides controls for alarm magnitude, polarity, and enabling a dynamic rate-of-change option. The ALM_STS register (se[e Table 43\)](#page-18-5) contains the alarm output flags and the FNCTIO_CTRL register (see [Table 89\)](#page-27-2) provides an option for configuring one of the digital I/O lines as an alarm indicator.

STATIC ALARM USE

The static alarm setting compares the output of each sensor with the trigger settings in the xx_ALM_MAGN registers (see [Table 77,](#page-25-5) [Table 78,](#page-25-6) [Table 79,](#page-25-7) [Table 80,](#page-25-8) [Table 81,](#page-25-9) and [Table 82\)](#page-25-10) of that sensor. The polarity controls for each alarm are in the ALM_CNFG_x registers(se[e Table 83](#page-25-3) and [Table 84\)](#page-25-4) and establish the relationship for the condition that causes the corresponding alarm flag to be active. For example, when ALM_CNFG_0[13] = 1, the alarm flag for the x-axis accelerometer (ALM_STS[3], see [Table 43\)](#page-18-5) becomes active (equal to 1) when X_ACCL_OUT is greater than XA_ALM_MAGN.

DYNAMIC ALARM USE

The dynamic alarm setting provides the option to compare the change in each sensor output over a period of 48.7 ms with the xx_ALM_MAGN register that sensor.

Table 83. ALM_CNFG_0 (Page 3, Base Address = 0x20)

Table 84. ALM_CNFG_1 (Page 3, Base Address = 0x22)

Alarm Example

[Table 85](#page-25-11) offers an alarm configuration example, which sets the z-axis gyroscope alarm to trip when Z_GYRO_OUT > 131.1°/sec (0x199B).

Table 85. Alarm Configuration Example

SYSTEM CONTROLS

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) provides a number of system level controls for managing its operation, which include reset, self test, calibration, memory management, and I/O configuration.

GLOBAL COMMANDS

The GLOB_CMD register (se[e Table](#page-26-5) 86) provides trigger bits for several operations. Write 1 to the appropriate bit in GLOB_CMD to start a function. After the function completes, the bit restores to 0.

Bits	Description	Execution Time
[15:8]	Not used	Not applicable
	Software reset	120 ms
6	Factory calibration restore	75 ms
$[5:4]$	Not used	Not applicable
3	Flash memory update	375 ms
	Flash memory test	50 ms
	Self test	12 _{ms}
	Bias null	See Table 63

Table 86. GLOB_CMD (Page 3, Base Address = 0x02)

Software Reset

Turn to Page 3 ($DIN = 0x8003$) and then set $GLOB_CMD[7] = 1$ $(DIN = 0x8280, DIN = 0x8300)$ to reset the operation, which removes all data, initializes all registers from their flash settings, and starts data collection. This function provides a firmware alternative to the $\overline{\text{RST}}$ pin (se[e Table 6,](#page-8-1) Pin 8).

Automatic Self Test

Turn to Page 3 ($DIN = 0x8003$) and then set GLOB $CMD[1] = 1$ $(DIN = 0x8202$, then $DIN = 0x8300$ to run an automatic, self test routine, which executes the following steps:

- 1. Measure the output on each sensor.
- 2. Activate the self test on each sensor.
- 3. Measure the output on each sensor.
- 4. Deactivate the self test on each sensor.
- 5. Calculate the difference with the self test on and off.
- 6. Compare the difference with the internal pass/fail criteria.
- 7. Report the pass/fail results for each sensor in DIAG_STS.

After waiting 12 ms for this test to complete, turn to Page 0 $(DIN = 0x8000)$ and read DIAG_STS using $DIN = 0x0A00$. Note that using an external clock can extend this time. When using an external clock of 100 Hz, this time extends to 35 ms. Note that 100 Hz is too slow for optimal sensor performance.

MEMORY MANAGEMENT

The data retention of the flash memory depends on the temperature and the number of write cycles. [Figure 25](#page-26-6) characterizes the dependence on temperature, and the FLSHCNT_LOW and FLSHCNT_HIGH registers (se[e Table 87](#page-26-3) and [Table 88\)](#page-26-4) provide a running count of flash write cycles. The flash updates every time GLOB_CMD[6], GLOB_CMD[3], or GLOB_CMD[0] is set to 1.

Bits	. O Description	
[15:0]	Binary counter; number of flash updates, upper word	
600		
450		
RETENTION (Years) 300		
150		
0	150 85 55 70 100 135 40 125 30	
10666-024 JUNCTION TEMPERATURE (°C)		

Figure 25. Flash Memory Retention

Flash Memory Test

Turn to Page 3 ($DIN = 0x8003$), and then set $GLOB_CMD[2] = 1$ $(DIN = 0x8204, DIN = 0x8300)$ to run a checksum test of the internal flash memory, which compares a factory programmed value with the current sum of the same memory locations. The result of this test loads into SYS_E_FLAG[6]. Turn to Page 0 $(DIN = 0x8000)$ and use $DIN = 0x0800$ to read SYS_E_FLAG.

GENERAL-PURPOSE I/O

There are four general-purpose I/O pins: DIO1, DIO2, DIO3, and DIO4. The FNCTIO_CTRL register controls the basic function of each I/O pin. Each I/O pin only supports one function at a time. In cases where a single pin has two different assignments, the enable bit for the lower priority function automatically resets to zero and is disabled. The priority is (1) data-ready, (2) sync clock input, (3) alarm indicator, and (4) general-purpose, where 1 identifies the highest priority and 4 indicates the lowest priority.

Data-Ready Indicator

FNCTIO_CTRL[3:0] provide some configuration options for using one of the DIOx lines as a data-ready indicator signal, which can drive the interrupt control line of a processor. The factory default assigns DIO2 as a positive polarity, data-ready signal. Use the following sequence to change this assignment to DIO1 with a negative polarity: turn to Page 3 ($\text{DIN} = 0 \times 8003$) and set FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN = 0x8700). The timing jitter on the data-ready signal is ± 1.4 µs.

Input Sync/Clock Control

FNCTIO_CTRL[7:4] provide some configuration options for using one of the DIOx lines as an input synchronization signal for sampling inertial sensor data. For example, use the following sequence to establish DIO4 as a positive polarity, input clock pin and keep the factory default setting for the data-ready function: turn to Page 3 ($DIN = 0x8003$) and set $FNCTIO_CTRL[7:0] = 0xFD$ $(DIN = 0x86FD,$ then $DIN = 0x8700$. Note that this command also disables the internal sampling clock, and no data sampling takes place without the input clock signal. When selecting a clock input frequency, consider the 330 Hz sensor bandwidth, because under sampling the sensors can degrade noise and stability performance.

General-Purpose I/O Control

When FNCTIO_CTRL does not configure a DIOx pin, GPIO_CTRL provides register controls for general-purpose use of the pin. GPIO_CTRL[3:0] provides input/output assignment controls for each pin. When the DIOx pins are inputs, monitor their levels by reading GPIO_CTRL[7:4]. When the DIOx pins are used as outputs, set their levels by writing to GPIO_CTRL[7:4]. For example, use the following sequence to set DIO1 and DIO3 as high and low output pins, respectively, and set DIO2 and DIO4 as input pins. Turn to Page 3 ($DIN = 0x8003$) and set GPIO $CTRL[7:0] =$ $0x15$ (DIN = 0x8815, then DIN = 0x8900).

¹ The GPIO CTRL register, Bits[7:4], reflect the levels on the DIOx pins and do not have a default setting.

POWER MANAGEMENT

The SLP_CNT register (se[e Table 91\)](#page-28-7) provides controls for both power-down mode and sleep mode. The trade-off between powerdown mode and sleep mode is between idle power and recovery time. Power-down mode offers the best idle power consumption but requires the most time to recover. Also, all volatile settings are lost during power-down but are preserved during sleep mode.

For timed sleep mode, turn to Page 3 ($DIN = 0x8003$), write the amount of sleep time to SLP_CNT[7:0] and then, set SLP $CNT[8] = 1$ (DIN = 0x9101) to start the sleep period. For a timed power-down period, change the last command to set $SLP_CNT[9] = 1$ (DIN = 0x9102). To power down or sleep for an indefinite period, set $SLP_CNT[7:0] = 0x00$ first, then set either SLP_CNT[8] or SLP_CNT[9] to 1. Note that the command takes effect when the CS line goes high. To awaken the device from sleep or power-down mode, use one of the following options to restore normal operation:

- Assert \overline{CS} from high to low.
- Pulse $\overline{\text{RST}}$ low, then high again.
- Cycle the power.

For example, set $SLP_CNT[7:0] = 0x64$ (DIN = 0x9064), then set $SLP_CNT[8] = 1$ (DIN = 0x9101) to start a sleep period of 100 seconds.

If the sleep mode and power-down mode bits are both set high, the normal sleep mode (SLP_CNT[8]) bit takes precedence.

General-Purpose Registers

The USER_SCR_x registers (se[e Table 92,](#page-28-3) [Table 93,](#page-28-4) [Table](#page-28-5) 94, an[d Table 95\)](#page-28-6) provide four 16-bit registers for storing data.

Table 93. USER_SCR_2 (Page 2, Base Address = 0x76)

Bits Description [15:0] User-defined

Real-Time Clock Configuration/Data

The VDDRTC power supply pin (see [Table 6,](#page-8-1) Pin 23) provides a separate supply for the real-time clock (RTC) function. This enables the RTC to keep track of time, even when the main supply (VDD) is off. Configure the RTC function by selecting one of two modes in CONFIG[0] (se[e Table 67\)](#page-23-10). The real-time clock data is available in the TIME_MS_OUT register (se[e Table 96\)](#page-28-0), TIME_DH_OUT register (se[e Table 97\)](#page-28-1), and TIME_YM_OUT register (se[e Table 98\)](#page-28-2). When using the elapsed timer mode, the time data registers start at 0x0000 when the device starts up (or resets) and begin keeping time in a manner that is similar to a stopwatch. When using the clock/calendar mode, write the current time to the real-time registers in the following sequence: seconds (TIME_MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]), hours (TIME_DH_OUT[5:0]), day (TIME_DH_OUT[12:8]), month (TIME_YM_OUT[3:0]), and year (TIME_YM_OUT[14:8]).

The updates to the timer do not become active until there is a successful write to the TIME_ YM_OUT[14:8] byte. The realtime clock registers reflect the newly updated values only after the next seconds tick of the clock that follows the write to TIME_YM_OUT[14:8] (year). Writing to TIME_YM_OUT[14:8] activates all timing values; therefore, always write to this location last when updating the timer, even if the year information does not require updating.

Write the current time to each time data register after setting $CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8A01)$. Note that CONFIG[1] provides a bit for managing daylight savings time. After the CONFIG and TIME_xx_OUT registers are configured, set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8208, DIN = 0x8300) to back up these settings up in flash, and use a separate 3.3 V source to supply power to the VDDRTC function. Note that access to time data in the TIME_xx_OUT registers requires normal operation (VDD = 3.3 V and full startup), but the timer function only requires that VDDRTC = 3.3 V when the rest of the [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) is turned off.

Table 96. TIME_MS_OUT (Page 0, Base Address = 0x78)

Table 97. TIME_DH_OUT (Page 0, Base Address = 0x7A)

Table 98. TIME_YM_OUT (Page 0, Base Address = 0x7C)

[ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) Data Sheet

10666-028

1666-

 028

KGG

APPLICATIONS INFORMATION **MOUNTING TIPS**

For best performance, follow these simple rules when installing the [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) into a system.

- 1. Eliminate opportunity for translational force (x-axis and y-axis direction; se[e Figure 6.](#page-8-2)
- 2. Isolate mounting force to the four corners, on the part of the package surface that surrounds the mounting holes.
- 3. Use uniform mounting forces on all four corners. The suggested torque setting is 40 inch-ounces (0.285 N-m).

These three rules help prevent nonuniform force profiles, which can warp the package and introduce bias errors in the sensors. [Figure 26](#page-29-2) provides an example that leverages washers to set the package off the mounting surface and uses 2.85 mm pass-through holes and backside washers/nuts for attachment. [Figure 27](#page-29-3) and [Figure 28](#page-29-4) provide some details from mounting hole and connector alignment pin drill locations. For more information on mounting the [ADIS16485,](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) see th[e AN-1295 Application Note.](https://www.analog.com/AN-1295?doc=ADIS16485.pdf)

Figure 26. Mounting Example

NOTES 1. ALL DIMENSIONS IN mm UNITS. 2. THE CONNECTOR FACES DOWN AND ARE NOT VISIBLE FROM THIS VIEW.

Figure 27. Suggested PCB Layout Pattern, Connector Down

Figure 28. Suggested Layout and Mechanical Design when Using Samtec P/N CLM-112-02-G-D-A for the Mating Connector

EVALUATION TOOLS

Breakout Board, ADIS16IMU/PCBZ

The [ADIS16IMU1/PCBZ](https://www.analog.com/ADIS16IMU1/PCBZ?doc=ADIS16485.pdf) (sold separately) provides a breakout board function for th[e ADIS16485,](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) which means that it provides access to th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) through larger connectors that support standard 1 mm ribbon cabling. It also provides four mounting holes for attachment of th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) to the breakout board. For more information on the [ADIS16IMU1/PCBZ,](https://www.analog.com/ADIS16IMU1/PCBZ?doc=ADIS16485.pdf) see [https://www.analog.com/en/evaluation/eval-adis16imu1/eb.html.](https://www.analog.com/en/evaluation/eval-adis16imu1/eb.html)

PC-Based Evaluation[, EVAL-ADIS2](https://www.analog.com/EVAL-ADIS2?doc=ADIS16485.pdf)

Use th[e EVAL-ADIS](https://www.analog.com/EVAL-ADIS?doc=ADIS16485.pdf) and the [ADIS16IMU1/PCBZ](https://www.analog.com/ADIS16IMU1/PCBZ?doc=ADIS16485.pdf) to evaluate the [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) on a PC-based platform.

POWER SUPPLY CONSIDERATIONS

The [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) has approximately \sim 24 μ F of capacitance across the VDD and GND pins. While this capacitor bank provides a large amount of localized filtering, it also presents an opportunity for excessive charging current when the VDD voltage ramps too quickly. Use the following relationship to help determine the appropriate VDD voltage profile, with respect to any current limit functions that can cause the power supply to lose regulation and potentially introduce unsafe conditions for th[e ADIS16485.](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)

$$
i(t) = C \, \frac{dV}{dt}
$$

In addition to managing the initial voltage ramp, take note of the transient current demand that th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) requires during its start-up/self-initialization process. Once VDD reaches 2.85 V, the [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) begins its start-up process. [Figure 29](#page-30-3) offers a broad connection that communicates when to expect the spikes in current, an[d Figure 30](#page-30-4) provides more detail on the current/time behavior during the peak transient condition, which typically occurs approximately 350 ms after VDD reaches 2.85 V. In [Figure 30](#page-30-4) notice that the peak current approaches 600 mA and the transient condition lasts for approximately 1.75 ms.

X-RAY SENSITIVITY

Exposure to high dose rate X-rays, such as those in production systems that inspect solder joints in electronic assemblies, may affect accelerometer bias errors. For optimal performance, avoid exposing th[e ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf) to this type of inspection.

Data Sheet And a sheet Albert Advanced [ADIS16485](https://www.analog.com/ADIS16485?doc=ADIS16485.pdf)