

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO

FEATURES

- ► Fractional-N synthesizer with low phase noise VCO
- \triangleright K band quadrature demodulator
- ► Programmable via 4-wire SPI
- ► RF operating frequency range: 17 GHz to 22 GHz
- ► LO internal frequency range: 17 GHz to 21.5 GHz
- ► Double sideband noise figure: 5 dB at maximum conversion gain
- ► Output integrated phase noise, 1 kHz to 10 MHz: <1°
- ► Maximum conversion gain of >50 dB
- ► Conversion gain control range of >50 dB
- ► IM3 of -54 dBc at -30 dBm composite input level, Δf_{RF} = 1 MHz
- ► 3 baseband, SPI-selectable LPFs with corner frequencies of: 125 MHz, 250 MHz, and 500 MHz on each baseband path

APPLICATIONS

► Satellite communications

GENERAL DESCRIPTION

The ADMV4540 is a highly integrated quadrature demodulator with integrated synthesizer ideally suited for next generation K band satellite communication.

The RF front end of the ADMV4540 consists of two low noise amplifier (LNA) paths, each with an optimal cascaded, 5 dB, double sideband noise figure at maximum gain, while minimizing external components. The dual paths allow support for antenna polarization. Selection of the LNA path can be done through the SPI.

The LNA output is then downconverted to baseband using an inphase and quadrature (I/Q) mixer. The I/Q mixer output is then fed into fully differential low noise and low distortion programmable filters and variable gain amplifiers (VGAs). Each channel is capable of rejecting large, out of band interferers while reliably boosting the wanted signal, thus reducing the bandwidth and resolution requirements on the analog-to-digital converters (ADCs) of the system. The excellent matching between channels and their high spurious-free dynamic range (SFDR) over all gain and bandwidth settings make the ADMV4540 ideal for satellite communication systems with dense constellations, multiple carriers, and nearby interferers.

The three filter corners of 125 MHz, 250 MHz, and 500 MHz are all programmable via a serial peripheral interface (SPI). The filters provide a sixth-order Butterworth response with −3 dB corner frequencies of 141 MHz, 282 MHz, and 565 MHz. For operation beyond 565 MHz, the filter can be disabled and completely bypassed, thereby extending the −3 dB bandwidth up to 900 MHz.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The high dynamic range baseband output amplifiers of the ADMV4540 provide an overall nominal conversion gain of 57 dB. The three baseband voltage variable attenuator (VVA) pins (VCTRL_BBVVAx) of the ADMV4540 can be used for automatic gain control (AGC), giving the ADMV4540 a wide RF input dynamic range.

This feature rich device contains an integrated fractional-N phaselocked loop (PLL) and a low phase noise voltage controlled oscillator (VCO) that generates the necessary on-chip local oscillator (LO) signal for the two double balanced I/Q mixers, eliminating the need for external frequency synthesis. The VCO utilizes an internal automatic calibration routine that allows the PLL to select the necessary settings and lock.

The reference input (REF_{IN}) to the PLL of the ADMV4540 employs a differentially excited crystal oscillator at 50 MHz. Alternatively, the REF_{IN} can be driven by an external single-ended frequency reference up to 100 MHz. The phase frequency detector (PFD) comparison frequency operates up to 100 MHz, which allows for continuous LO coverage from 17 GHz to 21.5 GHz in extremely fine steps.

The ADMV4540 operates on a 3.3 V supply with less than 3.2 W of total power dissipation. It is available in a 48-terminal, RoHS compliant, 7 mm × 7 mm LGA package with an exposed paddle. The ADMV4540 can operate over the −40℃ to +85℃ temperature range on $a + 3.3$ V power supply.

Rev. 0

[TECHNICAL SUPPORT](http://www.analog.com/en/content/technical_support_page/fca.html) Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

TABLE OF CONTENTS

REVISION HISTORY

10/2021—Revision 0: Initial Version

SPECIFICATIONS

Supply voltage (V_{CC}) = 3.3 V, and T_A = 25°C, unless otherwise noted.

A 50 Ω source input impedance with a single-ended input drive was used, and the evaluation board RF traces were deembedded until the RF_INx pin.

The performance metrics were per the I channel and Q channel, the evaluation board I channel and Q channel traces were deembedded until the I channel and Q channel pins, the I channel and Q channel outputs were ac-coupled with a 1 μF capacitor on each channel output, the I channel and Q channel positive and negative outputs were combined with a 180° balun, and BB_AMP1_GAIN_x = 0, unless otherwise stated.

PLL filter bandwidth = 220 kHz with 60° of phase margin, reference frequency (f_{REF}) = 50 MHz, DOUBLER_EN = 1, PFD frequency (f_{PFD}) = 100 MHz, and the external reference power is set to 3 dBm for the single-ended external reference, unless otherwise stated.

VCTRL_BBVVA1 = 3.3 V, VCTRL_BBVVA2 and VCTRL_BBVA3 are used for automatic gain control (AGC), and the total output power for the I channel and Q channel is set to be −10 dBm each, unless otherwise stated.

SPECIFICATIONS

Table 1.

SPECIFICATIONS

Table 1.

¹ For further optimization of power-down power consumption, contact Analog Devices, Inc., [sales.](https://www.analog.com/en/about-adi/corporate-information/sales-distribution.html)

ABSOLUTE MAXIMUM RATINGS

Table 2.

¹ Based on IPC/JEDEC J-STD-20 MSL classifications.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θ_{JA} is the junction to ambient thermal resistance, and $θ_{JC}$ is the junction to case thermal resistance.

Table 3. Thermal Resistance

 1 Thermal resistance values specified are simulated based on JEDEC specifications in compliance with JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Field induced charged device model (FICDM) per ANSI/ESDA/JE-DEC JS-002.

ESD Ratings for the ADMV4540

Table 4. ADMV4540, 48-Terminal LGA

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

RF BANDWIDTH PERFORMANCE CHARACTERISTIC

Baseband frequency (f_{BB}) = 36 MHz, V_{CC} = 3.3 V, and T_A = 25°C, unless otherwise noted. The evaluation board RF traces were deembedded until RF_INx, unless otherwise noted. The minimum input power was measured with BB_AMP1_GAIN_x = 0, RF_INx = −66 dBm, and VCTRL_BBVVAx = 3.3 V. The maximum input power measurements were made with RF_INx = −30 dBm, BB_AMP1_GAIN_x = 3, VCTRL_BBVVA1 = 3.3 V, AGC using VCTRL_BBVVA2 and VCTRL_BBVA3, and the total output power set to −10 dBm per I and Q through AGC. Performance metrics were per the I channel and Q channel, the evaluation board I channel and Q channel traces were deembedded until the I channel and Q channel pins. The I channel and Q channel outputs were ac-coupled with a 1 μF capacitor on each channel output, and the I channel and Q channel positive and negative outputs were combined with a 180° balun, unless otherwise noted. PLL filter bandwidth = 220 kHz with 60° of phase margin, $f_{RFF} = 50$ MHz, DOUBLER EN = 1, $f_{PFD} = 100$ MHz, and the external reference power was set to 3 dBm for the single-ended external reference, unless otherwise stated.

Figure 3. Conversion Gain vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures and I and Q Channels

Figure 4. Input Return Loss (S11) vs. RF Frequency for RF_IN1 and RF_IN2

Figure 5. LO to RF Leakage vs. LO Frequency at Various Temperatures

Figure 6. Conversion Gain vs. AGC for LO = 17 GHz and 21 GHz at Various Temperatures

Figure 7. RF_IN1 to RF_IN2 Isolation vs. RF Frequency, 20 dB Gain (Maximum Input Power) at Various Temperatures

Figure 8. Conversion Gain vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Supply Voltages (±5%)

Figure 9. IIP3 vs. RF Frequency, Tone Spacing = 1 MHz, at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures and I and Q Channels

Figure 10. IIP3 vs. RF Frequency, Tone Spacing = 12 MHz and 1 MHz at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power)

Figure 11. IIP3 vs. AGC, LO = 17 GHz and 21 GHz at Various Temperatures

Figure 12. IIP3 vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Supply Voltages (±5)

Figure 13. IIP2 vs. RF Frequency, Tone Spacing = 12 MHz at 20 dB Gain (Maximum Input Power) at Various Temperatures

Figure 14. IIP2 vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Supply Voltages (±5)

Figure 15. Double Sideband Noise Figure vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures

Figure 16. Input P1dB vs. RF Frequency, Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures

Figure 17. Input P1dB vs. RF Frequency at Maximum Gain (Minimum Input Power) and 20 dB Conversion Gain (Maximum Input Power) at Various Supply Voltages (±5%)

Figure 18. Double Sideband Noise Figure vs. AGC, LO = 17 GHz and 21 GHz at Various Temperatures

Figure 19. Input P1dB vs. AGC, LO = 17 GHz and 21 GHz at Various Temperatures

Figure 20. Supply Current vs. RF Frequency for Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures

Figure 21. Power Consumption vs. RF Frequency for Maximum Gain (Minimum Input Power) and 20 dB Gain (Maximum Input Power) at Various Temperatures

BASEBAND BANDWIDTH PERFORMANCE CHARACTERISTIC

 $\rm t_{BB}$ = 36 MHz, V \rm_{CC} = 3.3 V, and T \rm_A = 25°C, unless otherwise noted. The evaluation board RF traces were deembedded until RF_INx, unless otherwise noted. The minimum input power was measured with BB_AMP1_GAIN_x = 0, RF_INx= −66 dBm, and VCTRL_BBVVAx = 3.3 V. The maximum input power measurements were made with RF_INx = −30 dBm, BB_AMP1_GAIN_x = 0, VCTRL_BBVVA1 = 3.3 V, AGC using VCTRL_BBVVA2 and VCTRL_BBVA3, and the total output power set to −10 dBm per I and Q through AGC. Performance metrics were per the I channel and Q channel, the evaluation board I channel and Q channel traces were deembedded until the I channel and Q channel pins. The I channel and Q channel outputs were ac-coupled with a 1 μF capacitor on each channel output, and the I channel and Q channel positive and negative outputs were combined with a 180° balun, unless otherwise noted. PLL filter bandwidth = 220 kHz with 60° of phase margin, f_{BEF} = 50 MHz, DOUBLER EN = 1, f_{PFD} = 100 MHz, and the external reference power was set to 3 dBm for the single-ended external reference, unless otherwise stated.

Figure 22. 125 MHz, SPI-Selectable Baseband LPF Frequency Response, Conversion Gain vs. Baseband Frequency at Various Temperature

Figure 23. 125 MHz, SPI-Selectable Baseband LPF, I and Q Differential Return Loss (SD11) vs. Baseband Frequency

Figure 24. 125 MHz, SPI-Selectable Baseband LPF, IIP3 vs. Baseband Frequency at Various Temperatures at 20 dB Gain (Maximum Input Power)

Figure 25. 125 MHz, SPI-Selectable Baseband LPF, Group Delay vs. Baseband Frequency at Various Temperatures and the I and Q Channels

Figure 26. 125 MHz, SPI-Selectable Baseband LPF, Phase Error vs. Baseband Frequency at Various Temperatures

Figure 27. 125 MHz, SPI-Selectable Baseband LPF, Amplitude Mismatch vs. Baseband Frequency at Various Temperatures

Figure 28. 250 MHz, SPI-Selectable Baseband LPF Frequency Response, Conversion Gain vs. Baseband Frequency at Various Temperatures

Figure 29. 250 MHz, SPI-Selectable Baseband LPF, I and Q SD11 vs. Baseband Frequency

Figure 30. 250 MHz, SPI-Selectable Baseband LPF, IIP3 vs. Baseband Frequency at Various Temperatures at 20 dB Gain (Maximum Input Power)

Figure 31. 250 MHz, SPI-Selectable Baseband LPF, Group Delay vs. Baseband Frequency at Various Temperatures and the I and Q Channels

Figure 32. 250 MHz, SPI-Selectable Baseband LPF, Phase Error vs. Baseband Frequency at Various Temperatures

Figure 33. 250 MHz, SPI-Selectable Baseband LPF, Amplitude Mismatch vs. Baseband Frequency at Various Temperatures

Figure 34. 500 MHz, SPI-Selectable LPF Frequency Response, Conversion Gain vs. Baseband Frequency at Various Temperatures

Figure 35. 500 MHz, SPI-Selectable LPF, I and Q SD11 vs. Baseband Frequency

Figure 36. 500 MHz, SPI-Selectable LPF, IIP3 vs. Baseband Frequency at Various Temperatures at 20 dB Gain (Maximum Input Power)

Figure 37. 500 MHz, SPI-Selectable LPF, Group Delay vs. Baseband Frequency at Various Temperatures and the I and Q Channels

Figure 38. 500 MHz, SPI-Selectable LPF, Phase Error vs. Baseband Frequency at Various Temperatures

Figure 39. 500 MHz, SPI-Selectable LPF, Amplitude Mismatch vs. Baseband Frequency at Various Temperatures

Figure 40. Harmonic Distortion 2 (HD2) vs. Baseband Frequency at 20 dB Gain (Maximum Input Power) and at Various Temperatures

Figure 41. Bypass, SPI-Selectable LPFs, I and Q Differential SD11 vs. Baseband Frequency

Figure 42. Bypass, SPI-Selectable LPFs, Conversion Gain vs. Baseband Frequency at Various Temperatures

Figure 43. Harmonic Distortion 3 (HD3) vs. Baseband Frequency at 20 dB Gain (Maximum Input Power) and at Various Temperatures

Figure 45. Bypass, SPI-Selectable LPFs, Group Delay vs. Baseband Frequency at Various Temperatures and the I and Q Channels

Figure 46. Bypass, SPI-Selectable LPFs, Phase Error vs. Baseband Frequency at Various Temperatures

Figure 47. Bypass, SPI-Selectable LPFs, Amplitude Mismatch vs. Baseband Frequency at Various Temperatures

TEMPERATURE SENSOR AND ADC

Figure 48. Analog Temperature Sensor at AGPIO Pin vs. Temperature with Device Under Test (DUT) Disabled and Enabled

Figure 49. ADC Reading vs. AGPIO for ADC_LOG_SEL = 1

Figure 50. ADC Reading vs. AGPIO for ADC_LOG_SEL = 0

PLL AND VCO PERFORMANCE CHARACTERISTIC

The I channel and Q channel outputs are ac-coupled with a 1 μF capacitor on each channel output, and the I channel and Q channel positive and negative outputs are combined with a 180° balun, unless otherwise noted. f_{BB} = 100 MHz, V_{CC} = 3.3 V, and T_A = 25°C, unless otherwise noted. PLL filter bandwidth = 220 kHz with 60° of phase margin, f_{REF} = 50 MHz, DOUBLER_EN = 1, f_{PFD} = 100 MHz, and the external reference power is set to 3 dBm for the single-ended external reference, unless otherwise stated.

Figure 51. LO Frequency vs. SI_VCO_BAND, VTUNE = 1.5 V at Various Temperatures, Open Loop, SI_VCO_CORE = 1 and = 4

Figure 52. VCO Sensitivity vs. SI_VCO_BAND, VTUNE = 1.5 V, Open Loop at Various Temperatures, SI_VCO_CORE = 1 and = 4

Figure 53. VCO Pushing vs. SI_VCO_BAND, Open Loop, VTUNE = 1.5 V, at Various Temperatures, SI_VCO_CORE = 1 and = 4

Figure 54. LO Frequency vs. VTUNE over Temperature, Four Bands (Two Bands for VCO Core 1 and Two Bands for VCO Core 2)

Figure 56. LO Phase Noise vs. Offset Frequency at 17.1 GHz and at Various Temperatures, CP_CURRENT = 4 and SI_VCO_CORE = 1

Figure 57. LO Phase Noise vs. Offset Frequency at 18.6 GHz and at Various Temperatures, CP_CURRENT = 4 and SI_VCO_CORE = 1

Figure 58. LO Phase Noise vs. Offset Frequency at 18.6 GHz and at Various Temperatures, CP_CURRENT = 4 and SI_VCO_CORE = 4

Figure 59. LO Phase Noise vs. Offset Frequency, CP_CURRENT = 1 to 7, LO = 17 GHz, and SI_VCO_CORE = 1

Figure 60. LO Phase Noise vs. Offset Frequency, CP_CURRENT = 1 to 7, LO = 18.5 GHz, and SI_VCO_CORE = 1

Figure 61. LO Phase Noise vs. Offset Frequency, CP_CURRENT = 1 to 7, LO = 19 GHz, and SI_VCO_CORE = 4

Figure 62. LO Phase Noise vs. Offset Frequency at 21 GHz and at Various Temperatures, CP_CURRENT = 4 and SI_VCO_CORE = 4

Figure 63. Integrated Phase Noise, 1 kHz to 10 MHz vs. LO Frequency and at Various Temperatures, CP_CURRENT = 4

Figure 64. 100 kHz and 1 MHz Offset, Phase Noise vs. LO Frequency and at Various Temperatures, CP_CURRENT = 4

Figure 65. LO Phase Noise vs. Offset Frequency, CP_CURRENT = 1 to 7, LO = 21 GHz, and SI_VCO_CORE = 1

Figure 66. Integrated Phase Noise, 1 kHz to 10 MHz vs. LO Frequency, CP_CURRENT = 2, 3, and 4

Figure 67. 100 kHz and 1 MHz Offset, Phase Noise vs. LO Frequency at Various Temperatures, CP _CURRENT = 2, 3, and 4

Figure 68. 1 MHz and 100 kHz Offset, Phase Noise vs. BICP at Various Temperatures, CP_CURRENT = 4, and LO = 21 GHz

Figure 69. VTUNE and Lock Detect vs. LO Frequency at Various Temperatures

Figure 70. 100 kHz and 1 MHz Offset, Phase Noise vs. BICP, CP_CURRENT = 2, 3, and 4 and LO = 21 GHz

Figure 71. Phase Noise vs. Offset Frequency over the External Reference Input Power, LO = 21 GHz

Figure 72. 1 × PFD Spur vs. LO Frequency at Various Temperatures, Spur Referred to the Main I Channel and Q Channel Output Frequency

PERFORMANCE WITH CONTROLLING VCTRL_BBVVA1, VCTRL_BBVVA2, AND VCTRL_BBVVA3 TOGETHER

 f_{BB} = 36 MHz, V_{CC} = 3.3 V, and T_A = 25°C, unless otherwise noted. The evaluation board RF traces were deembedded until RF_INx, unless otherwise noted. The minimum input power was measured with RF_INx= −66 dBm and VCTRL_BBVVAx = 3.3 V. The maximum input power measurements were made with RF_INx = −30 dBm, AGC using VCTRL_BBVVAx, and the total output power set to −10 dBm per I and Q through AGC. Performance metrics were per the I channel and Q channel, the evaluation board I channel and Q channel traces were deembedded until the I channel and Q channel pins. The I channel and Q channel outputs were ac-coupled with a 1 μF capacitor on each channel output, and the I channel and Q channel positive and negative outputs were combined with a 180° balun, unless otherwise noted. PLL filter bandwidth = 220 kHz with 60° of phase margin, f_{REF} = 50 MHz, DOUBLER_EN = 1, f_{PFD} = 100 MHz, and the external reference power was set to 3 dBm for the single-ended external reference, unless otherwise stated.

Figure 74. Conversion Gain vs. RF Frequency at Maximum Gain (Minimum Input Power) at Various Temperatures and Various BB_AMP1_GAIN_x Settings

Figure 75. Double Sideband Noise Figure vs. RF Frequency at Maximum Gain (Minimum Input Power) at Various Temperatures and Various BB_AMP1_GAIN_x Settings

Figure 76. IIP3 vs. AGC, LO = 21 GHz at Maximum Gain (Minimum Input Power) at Various Temperatures and Various BB_AMP1_GAIN_x Settings

Figure 77. Conversion Gain vs. AGC, LO = 17 GHz, Maximum Gain (Minimum Input Power) at Various Temperatures and Various BB_AMP1_GAIN_x Settings

Figure 78. Double Sideband Noise Figure vs. RF Frequency 20 dB Gain (Minimum Input Power) at Various Temperatures and Various BB_AMP1_GAIN_x Settings

Figure 79. IP1dB vs. AGC, LO = 21 GHz Various Temperatures

The ADMV4540 is a highly integrated quadrature demodulator with integrated fractional-N PLL and LO ideally suited for next generation K band satellite communication. The fractional-N PLL locks the LO to a precise reference input signal for low noise operation. The LO signal is then amplified to generate the necessary LO level for the I/Q mixer. The I/Q mixer generates differential baseband outputs that are amplified using differential baseband amplifiers whose gain can be controlled using external control voltages. The differential baseband output is then filtered using three SPI-selectable LPFs or optionally bypassed.

SPI PROTOCOL

The SPI of the ADMV4540 allows the user to configure the device for specific operation using a 4-wire SPI (SCLK, SDIO, SDO, and CS). The SPI is compatible with 3.3 V dc logic. See Table 6 for the digital lock timing.

The ADMV4540 protocol consists of a write or read bit, followed by 15 register address (A14 to A0) bits and 8 data bits (D7 to D0). The default for both the address and data fields are organized MSB first and end with the LSB when Register 0x000, Bit 6 is set to 0. For a write, set the first bit (MSB) to 0, and for a read, set this bit to 1. The CS, SCLK, SDIO, and optional SDO are used to communicate with the ADMV4540. The rising edge of the SCLK is used to latch the data. Figure 80 shows a typical write sequence, and Figure 81 shows a typical 4-wire SPI read sequence.

Table 6. Digital Logic Timing

Figure 80. SPI Register Timing Diagram for Analog Devices, Inc., Standard SPI, MSB First

Figure 81. Timing Diagram for Analog Devices Standard SPI Register Read, 4-Wire Mode

SUPPLY SEQUENCING

The ADMV4540 is designed so that all supply pins can be turned on simultaneously. If the different supply pins cannot be turned on simultaneously, turn on VCC3P3_DIG at 3.3 V before all other supply pins. An arbitrary power supply sequence is not recommended. Contact [Analog Devices Sales](https://www.analog.com/en/about-adi/corporate-information/sales-distribution.html) if additional guidance is needed.

SPI START-UP SEQUENCES

The ADMV4540 SPI settings require the SPI to be configured for the required mode of operation. On startup, the SPI mode must be selected along with the RF input port and baseband filter settings.

Soft Reset and 3-Wire and 4-Wire Mode

To set the soft reset in 3-wire mode, take the following steps:

- **1.** Write 0x81 to Register 0x000.
- **2.** Write 0x00 to Register 0x000.

To set the soft reset in 4-wire mode, take the following steps:

- **1.** Write 0x81 to Register 0x000.
- **2.** Write 0x18 to Register 0x000.

Baseband and Common-Mode Recommended Settings

Program the following registers to the recommended settings listed after performing a soft reset and choosing either 3-wire or 4-wire mode:

- **1.** Write 0xCC to Register 0x133.
- **2.** Write 0xFF to Register 0x134.
- **3.** Write 0xFF to Register 0x135.
- **4.** Write 0x4e to Register 0x10A.
- **5.** Write 0x4e to Register 0x10B.

RF Input Port Selection

Either RF_IN1 or RF_IN2 must be selected at startup. Both inputs cannot be selected at the same time.

For the RF IN1 input port, write 0x3E to Register 0x100, and for the RF IN2 input port, write 0x3D to Register 0x100.

Baseband Filter Settings

One of the four filter settings must be selected at startup, which include the following:

- ► For the baseband filter 125 MHz setting, write 0x00 to Register 0x013C.
- ► For the baseband filter 250 MHz setting, write 0x05 to Register 0x013C.
- ► For the baseband filter 500 MHz setting, write 0x0A to Register 0x013C.

 \triangleright For the baseband filter bypass setting, write 0x0F to Register 0x013C.

FREQUENCY UPDATE SEQUENCE

After the SPI start-up sequences (see the SPI Start-Up Sequences section) are performed, the output frequency can be updated by programming the registers as detailed in [LO Lock Write Sequence](#page-28-0) When DOUBLER EN = 0 section and the [LO Lock Write Sequence](#page-28-0) for DOUBLER $EN = 1$ section.

LO Synthesizer Calculations

The following are the LO synthesizer calculations required to calculate the register values when doing a frequency update as indicated in the LO Lock Write Sequence When DOUBLER EN = 0 section and the [LO Lock Write Sequence for DOUBLER_EN = 1](#page-28-0) section:

$$
f_{PFD} = \text{Reference} \quad \text{Multiplier} \times f_{REF} \tag{2}
$$

$$
VCO Frequency = \frac{LO Frequency}{1.5}
$$
 (3)

$$
N = \frac{VCO\,Frequency}{f_{PFD}}\tag{4}
$$

 $INT_DIV = Integer Value of N$ (5)

 $FRAC$ Value Required = $N - INT_D IV$ (6)

$$
FRAC1\ Required = FRAC ValueRequired \times MOD1
$$
 (7)

$$
FRAC1 = Integer Value of FRAC1Required
$$
\n(8)

If FRAC1 is 0, SD_EN_OUT_OFF = 1, SD_EN_FRAC0 = 0, and $BICP = 0.$

If FRAC1 is not 0, SD_EN_OUT_OFF = 0, SD_EN_FRAC0 = 0, and BICP= 4 or 130.

FRAC1 Remainder = FRAC1 Required
- FRAC $- FRAC$ (9)

$$
FRAC2 = FRAC1 \quad Remainder \times MOD2 \tag{10}
$$

$$
VCO Frequency = \frac{LO Frequency}{1.5}
$$
 (11)

where:

For DOUBLER $EN = 1$, CP CURRENT = 4. For DOUBLER $EN = 0$, CP CURRENT = 8. R DIV = 1. REF DIV $2 = 0$. f_{RFF} = 50 MHz. MOD1 = is a 24-bit primary modulus with a fixed value of 2^{24} = 16777216.

MOD2 is a programmable, 14-bit auxiliary fractional modulus (2 to 16,383) with a recommended value = 3.

LO Lock Write Sequence When DOUBLER_EN = 0

Use the following write sequence to update the LO frequency when DOUBLER $EN = 0$ and use the values calculated in [LO](#page-27-0) [Synthesizer Calculations](#page-27-0) section.

- **1.** Write 0xA1 to Register 0x22D.
- **2.** Write 0x02 to Register 0x240.
- **3.** If the LO frequency is greater than 18.6 GHz, write 0x04 to Register 0x217, and if the LO frequency is less than or equal to 18.6 GHz, write 0x01 to Register 0x217.
- **4.** Write the BICP value to Register 0x22F.
- **5.** Write the CP_CURRENT value to Register 0x022E.
- **6.** Write the R_DIV value to Register 0x20C.
- **7.** Write 0x04 to Register 0x20E.
- **8.** Write the SD_EN_OUT_OFF value and the SD_EN_FRAC0 value to Register 0x22A.
- **9.** Write the MOD2 value to Register 0x208 to Register 0x209 from the highest to the lowest register.
- **10.** Write the FRAC2 value to Register 0x233 and Register 0x234 from the highest to the lowest register.
- **11.** Write 0x01 to Register 0x20B.
- **12.** Write 0x0A to Register 0x22B.
- **13.** Write the FRAC1 value to Register 0x202 to Register 0x204 from the highest to the lowest register.
- **14.** Write the INT_DIV value to Register 0x200 and Register 0x201 from the highest to the lowest register.
- **15.** Read Register 0x24D. If Register 0x24D data is 0x01, the synthesizer is locked.

LO Lock Write Sequence for DOUBLER_EN = 1

Use the following write sequence to update the LO frequency when DOUBLER $EN = 1$ and use the values calculated in [LO](#page-27-0) [Synthesizer Calculations](#page-27-0) section. Note that, DOUBLER_EN = 1 is the recommended mode for optimal integrated phase noise performance.

- **1.** Write 0x80 to Register 0x21F.
- **2.** Lock the device with DOUBLER_EN = 0 based on the LO synthesizer calculations (see the [LO Synthesizer Calculations](#page-27-0) section) and the procedure outlined in LO Lock Write Sequence When DOUBLER $EN = 0$ section.
- **3.** Verify that the synthesizer is locked by reading Register 0x24D. If the readback is 0x01, the synthesizer is locked.
- **4.** Write 0xC0 to Register 0x21F.
- **5.** Go through the LO synthesizer calculations (see the [LO Syn](#page-27-0)[thesizer Calculations](#page-27-0) section) again based on DOUBLER EN = 1. Make note of these values for the next steps.
- **6.** Write 0xA1 to Register 0x022D.
- **7.** Write 0x02 to Register 0x240.
- **8.** If the LO frequency is greater than 18.6 GHz, write 0x04 to Register 0x217, and if the LO frequency is less than or equal to 18.6 GHz, write 0x01 to Register 0x217.
- **9.** Write the BICP value to Register 0x22F.
- **10.** Write the CP_CURRENT value to Register 0x022E. Program with half the value used in Step 2 to keep the loop gain constant.
- **11.** Write the R_DIV value to Register 0x20C.
- **12.** Write 0x0C to Register 0x20E.
- **13.** Write the SD_EN_OUT_OFF value and the SD_EN_FRAC0 value to Register 0x22A.
- **14.** Write the MOD2 value to Register 0x208 to Register 0x209 from the highest to the lowest register.
- **15.** Write the FRAC2 value to Register 0x233 and Register 0x234 from the highest to the lowest register.
- **16.** Write 0x01 to Register 0x20B.
- **17.** Write 0x0A to Register 0x22B.
- **18.** Write the FRAC1 value to Register 0x202 to Register 0x204 from the highest to the lowest register.
- **19.** Write the INT_DIV value to Register 0x200 and Register 0x201 from the highest to the lowest register.
- **20.** Read Register 0x24D. If Register 0x24D data is 0x01, the synthesizer is locked.
- **21.** Write 0x80 to Register 0x21F.

N COUNTER

The N counter allows a division ratio in the PLL feedback path from the LO. Note that the signal from the N counter is multiplied by 1.5 to achieve the LO frequency at the input of the mixer. The division ratio is determined by using the Integer N (INT_DIV), fractional-N (FRAC1 and FRAC2), and modulus (MOD2) values that this counter comprises. The applicable registers for setting the INT_DIV, FRAC1, MOD2, and FRAC2 values are Register 0x200 to Register 0x204, Register 0x208 to Register 0x209 and Register 0x233 to Register 0x234.

Figure 82. N Counter Functional Block Diagram

DOUBLE BUFFERED REGISTERS

The PLL inside the ADMV4540 contains several double buffered bit fields that take effect only after a write to the lower portion of the N counter integer value (Register 0x200). This register applies any changes to these double buffered bit fields and initiates the autocalibration routine. The following is a list of the double buffered bit fields and their corresponding registers:

- ► RDIV2_SEL (Register 0x20E)
- ► DOUBLER_EN (Register 0x20E)
- ► R_DIV (Register 0x20C)
- ► CP_CURRENT (Register 0x22E)
- ► FRAC2 (Register 0x233 and Register 0x234)
- ► FRAC1 (Register 0x202 through Register 0x204)
- ► MOD2 (Register 0x208 and Register 0x209)
- ► INT_DIV (Register 0x200 and Register 0x201)

LOOP FILTER

Figure 83 shows the loop filter configuration for the ADMV4540. Resistor and capacitor values must be within 1% tolerance. The loop filter is optimized for integrated phase noise and to operate from 17 GHz to 21.5 GHz. When the doubler is enabled, use a charge pump current setting of 4. When the doubler is disabled, use a charge pump setting of 8.

The loop filter, as implemented is a third-order passive filter (see Figure 83). The filter is designed with the following simulation input parameters: f_{PFD} = 50 MHz/100 MHz, K_{VCO} = 190 MHz/V, LO frequency = 21.2 GHz, and I_{CP} = 1.5 mA (CP CURRENT = 4). The resulting loop filter bandwidth and phase margin are 220 kHz and 60°, respectively, for the following component values: C1 = 220 pF, C2 = 15 nF, C3 = 150 pF, R1 = 750 Ω, and R2 = 750 Ω. Ensure that C1 is placed as close as possible to CPOUT (Pin 18).

Figure 83. Loop Filter

REFERENCE INPUT

Figure 84 shows the reference input stage. There is an internal reference multiply by 2 block (×2 doubler) that allows generation of higher f_{PFD.} A higher f_{PFD} is useful for improving overall system phase noise performance. Typically, doubling the f_{PPD} improves the in band phase noise performance by up to 3 dBc/Hz. Use the DOUBLER_EN bit (Register 0x20E, Bit 3) to enable the reference doubler. Following the reference doubler block, there are two frequency dividers: a 5-bit R counter (1 to 32 allowed) and a divide by 2 block. These dividers allow the REF_{IN} frequency to be divided down to produce lower f_{PFD} , which helps minimize the fractional-N integer boundary spurs at the output. Use the R_DIV bits (Bits[4:0]) in Register 0x20C to set the R counter. If R_DIV = 1, the R counter is bypassed. Additionally, R_DIV = 0 corresponds to a divide by 32 value for the R counter. To enable the reference divide by 2 block, use the RDIV2_SEL bit (Register 0x020E, Bit 0).

Figure 84. Reference Input Stage

The ADMV4540 has two options to input the reference signal into the device: a single-ended external reference and a differential crystal oscillator.

The schematic to configure for the single-ended external reference is shown in Figure 85.

Figure 85. External Circuitry for Single-Ended Reference

To set the ADMV4540 single-ended external reference option, set the EN_XTAL_BUFMODE bit in Register 0x129 (Bit 1) to 1 and vice versa to disable this option.

See the Crystal Oscillator section for how to set the differential crystal oscillator option.

CRYSTAL OSCILLATOR

To set the ADMV4540 differential crystal oscillator option, set the EN_XTAL_BUFMODE bit in Register 0x129 (Bit 1) to 0 and vice versa to disable this option. The circuit for the crystal oscillator is shown in Figure 86.

Figure 86. External Circuitry for Crystal Oscillator

CHARGE PUMP CURRENT SETUP

For a specifically designed loop filter, set the I_{CP} by adjusting the CP CURRENT value in Bits[3:0], Register 0x22E. To calculate I_{CP} , use the following equation:

 $I_{CP} = (CP_CURRENT + 1) \times 300 \mu A$ (12)

where *CP* CURRENT is an integer value (0 to 15).

The recommended value for a 100 MHz f_{PFD} is CP_CURRENT = 4, which yields a current of 1.5 mA based on the recommended loop filter configuration. The applicable range is 0.30 mA to 4.8 mA, with 0.30 mA steps.

To change the f_{PFD} , if no change has been made to the existing loop filter components, it is recommended to scale I_{CP} by using the following equation:

$$
I_{CP (NEW)} = \frac{I_{CP (DEFAULT)} \times f_{PFD (DEFAULT)}}{f_{PFD (NEW)}}
$$
(13)

where:

 $I_{CP(NEW)}$ is the new desired I_{CP} . I_{CP} (*DEFAULT*) is the default I_{CP} . $f_{\text{PFD}}/ \rho_{\text{EFAULT}}$ is the default f_{PFD}. f_{PFD}/NFW is the new desired f_{PFD} .

When I_{CP(NEW)} is obtained, the CP_CURRENT value in Register 0x22E can be updated using the round function,

$$
CP_CURRENT = ROUND \frac{(I_{CP(NEW)})}{300 \mu A} - 1 \tag{14}
$$

where *ROUND* is the mathematical round function.

BLEED CURRENT (BICP) SETUP

The charge pump includes a binary scaled bleed current (I_{BIFFD}) that is set by using the BICP value in Register 0x22F. The bleed current introduces a slight phase offset in the phase frequency detector to improve integer boundary spurs and phase noise when operating in fractional-N mode. To enable the bleed current for fractional-N mode, set BLEED_EN = 1 (Register 0x22D, Bit 0). For integer mode, BLEED_EN must be set to 0.

Generally, the optimum bleed current value is either 4 or 130, and this value provides optimal performance for most applications. However, there can be additional performance improvements by empirically determining the appropriate bleed current value from the actual measurements for the intended application. The applicable range is 0 μ A to 956.25 μ A, with 3.75 μ A steps.

$$
I_{BLEED} = BICP \times 3.75 \mu \text{A}
$$
\n⁽¹⁵⁾

where *BICP* is an integer value (0 to 255).

DIGITAL LOCK DETECT

A digital lock detect bit (LOCK_DETECT) is available in Bit 0 of Register 0x24D. A logic high indicates that the digital lock detect has declared the PLL is locked.

The digital lock detect function has some adjustable settings in Register 0x214. The LD_BIAS and LDP bits of Register 0x214 adjust an internal precision window. It is recommended to keep the settings listed in the register map.

The lock detect output is also available on the MUXOUT pin by selecting EN_MUXOUT (Register 0x120, Bit 7) to 1 and the MUX SEL bit field (Register 0x24E, Bits[7:0]) to 1.

(16)

THEORY OF OPERATION

PFD AND CHARGE PUMP

The PFD takes inputs from the R counter and N counter to produce an output that is proportional to the phase and frequency differences between these counters. This proportional information is then output to a charge pump circuit that generates current to drive an external loop filter that is then used to appropriately increase or decrease VTUNE.

Figure 87 shows a simplified schematic of the PFD and charge pump. Note that the PFD includes a fixed delay element that ensures that there is no dead zone in the PFD transfer function for consistent reference spur levels.

Figure 87. PFD and Charge Pump Simplified Schematic

VCO AUTOCALIBRATION

The internal VCO uses an internal autocalibration routine that optimizes the VCO settings for a particular frequency and allows the PLL to lock after the lower portion of the N counter integer value (Register 0x200) is programmed. For nominal applications, maintain the autocalibration default values in the register map unless suggested as in the [LO Lock Write Sequence for DOUBLER_EN =](#page-28-0) [1](#page-28-0) section for operation at higher PFD frequencies.

AUTOCALIBRATION LOCK TIME

The PLL lock time divides into a number of settings. The total lock time for changing frequencies is the sum of three separate times: synthesizer lock, VCO band selection, and PLL settling.

SYNTHESIZER LOCK TIMEOUT

The synthesizer lock timeout ensures that the VCO calibration digital-to-analog converter (DAC), which forces the VCO tune voltage (VTUNE), has settled to a steady value for the band select circuitry. The SYNTH_LOCK_TIMEOUT bits (Register 0x218) and the VCO_TIMEOUT bits (Register 0x21C and Register 0x21D) select the length of time the DAC is allowed to settle to the final voltage before the VCO calibration process continues to the next phase (VCO band selection). The PFD frequency is the clock for this logic, and the duration is set by using the following equation:

 $(SYNTH_LOCK_TIMEOUT \times 1024$ $+ VCO_TIMEOUT)/f_{PFD}$

where:

SYNTH_LOCK_TIMEOUT is programmed in Bits[4:0], Register 0x218. *VCO_TIMEOUT* is programmed in Bits[7:0], Register 0x21C and Bits[1:0], Register 0x21D.

The calculated time must be greater than or equal to 30 µs. For the SYNTH_LOCK_TIMEOUT bits, the minimum value is 2, and the maximum value is 31. For VCO TIMEOUT, the minimum value is 2, and the maximum value is 1023 .

VCO BAND SELECTION TIME

Use the VCO_BAND_DIV bits (Bits[7:0], Register 0x21E) and the f_{PFD} to generate the VCO band selection clock (f_{BSC}) as follows:

 $f_{BSC} = (f_{PFD}/VCO_BAND_DIV)$

The calculated frequency must be less than 2.4 MHz.

Note that 16 clock cycles are required for one VCO core and band calibration step, and the total band selection process takes 11 steps, resulting in the following equation:

$$
11 \times \left(\frac{16 \times VCO_BAND_DIV}{f_{PFD}}\right) \tag{17}
$$

The minimum value for VCO_BAND_DIV is 1, and the maximum value is 255.

PLL SETTING TIME

The time taken for the loop to settle is inversely proportional to the loop filter bandwidth.

VCO CALIBRATION BAND READ BACK

To read back the VCO calibration band data, load the required registers, let the device lock using the procedures stated in [LO Lock](#page-28-0) Write Sequence When DOUBLER EN = 0 section and the [LO Lock](#page-28-0) Write Sequence for DOUBLER EN = 1 section, and read the VCO band for each frequency once the device is locked by reading Bit 1 in Register 0x24D. If Bit 0 of Register 0x24D is 1, the VCO band can be read back by reading SI_VCO_FSM_CAPS_RB in Register 0x248, Bits[7:1]. The ADMV4540 has two VCO cores with each VCO core comprising 128 bands.

TEMPERATURE SENSOR CONFIGURATION

The ADMV4540 has an on-chip temperature sensor. This temperature sensor output can be configured so that the temperature sensor value appears on the AGPIO pin (Pin 4) of the ADMV4540. Note that this pin must not be loaded down less than 1 kΩ to get an accurate measurement.

To configure the temperature sensor to read its outputs on the AGPIO pin, write 0x06 to Register 0x301.

The following equation relates the temperature sensor voltage reading from the AGPIO pin to the temperature at the temperature sensor:

Temperature on the Chip near the Temperature Sensor $({\degree}C) = APIO(V)$ \times 314 – 179 (18)

The temperature sensor output can also be configured to be read from the on-chip ADC. To configure the temperature sensor to read its outputs from the on-chip ADC, write 0x0E to Register 301.

See the ADC Configuration section for how to read its outputs by the ADC.

ADC CONFIGURATION

The ADMV4540 has an 8-bit resolution on-chip ADC that can be used to either read the temperature sensor output or read a voltage between 0 V to 2.3 V from the AGPIO pin.

To configure the ADC to read from the AGPIO pin, write 0x0F to Register 0x301.

Take the following steps to read a voltage from the ADC from the temperature sensor:

- **1.** Enable the ADC (ENABLE_ADC), Bit 0 on Register 0x302.
- **2.** Set the ADC_START bit, Bit 1 on Register 0x302 to 0.
- **3.** Set the ADC_START, Bit 1 on Register 0x302 to 1.
- **4.** Keep reading Register 0x303 (ADC_STATUS) until the ADC_EOC bit (Bit 0) is 1 and the ADC_BUSY bit (Bit 1) is 0.
- **5.** Read Register 0x304 (ADC_DATA) to get the ADC data.

The ADC range can be configured from 0 V to 1.2 V by setting the ADC HALF SEL bit, Bit 2 in Register 0x302, to 0.

The ADC range can be configured from 0 V to 2.3 V by setting the ADC_HALF_SEL bit, Bit 2 in Register 0x302, to 1.

The ADC range can be configured to be linear in volts by setting the ADC_LOG_SEL bit, Bit 3 in Register 0x302, to 0.

The ADC range can be configured to be logarithmic by setting the ADC_LOG_SEL bit, Bit 3 in Register 0x302, to 1.

The ADC clock (ADC CLK) is generated from the f_{RFF} .

$$
ADC_CLOCAL = \frac{f_{REF}}{(2 \times SEL_ADC_CLKDIV)} \tag{19}
$$

where *SEL_ADC_CLKDIV* is stored in Bits[7:4] of Register 0x302.

GAIN POLICY

The ADMV4540 has three baseband VCTRL pins: VCTRL_BBVVA1 (Pin 39), VCTRL_BBVVA2 (Pin 38), and VCTRL_BBVVA3 (Pin 37). The recommended gain policy to optimize noise figure over temperature at the maximum specified RF input power is as follows:

- ► Keep VCTRL_BBVVA1 (Pin 39) at 3.3 V.
- ► VCTRL_BBVA2 (Pin 38) and VCTRL_BBVVA3 (Pin 37) are swept together to attenuate the ADMV4540.

The three baseband VCTRL_BBVVAx pins can also be swept together. The RF performance for this condition is shown in the [Performance with Controlling VCTRL_BBVVA1, VCTRL_BBVVA2,](#page-24-0) [and VCTRL_BBVVA3 Together](#page-24-0) section.

POWER DOWN

The ADMV4540 has a power-down pin (PD, Pin 43) to reduce power dissipation while keeping the synthesizer locked. The rest of the analog circuitry, temperature sensor, and ADC are disabled when the ADMV4540 is in a power-down state. Set to a logic high of 3.3 V to power down the device with a power dissipation of approximately 0.6 W, and set to logic low to power up the device.

MUXOUT

The output multiplexer on the ADMV4540 allows the user to access various internal signals on the chip. The MUX_SEL bit field (Register 0x24E, Bits[7:0]) shown in [MUXOUT](#page-49-0) register lists the available signals. When the EN_MUXOUT bit (Register 0x120, Bit 7) is set to 1, the MUXOUT signal is enabled. Otherwise, the MUXOUT signal is disabled.

GPIOS

The ADMV4540 has two GPIO pins that can be configured to be outputs or inputs. GPIO1 is Pin 44 and GPIO2 is Pin 45. To set both the GPIOx pins as outputs, set the EN_GPIO_OUT bits, Bits[5:4] in Register 0x307 (see the [Control of GPIOx Pins](#page-51-0) section), to 0x3. To set both the GPIOx pins as outputs, set the EN_GPIO_OUT bits, Bits[5:4] in Register 0x307, to 0x0.

To set the GPIOx pins as 3.3 V logic, set the SEL_GPIO_LEVELS bits, Bits[2:1] in Register 0x307, to 0x3. To set the GPIOx pins as 1.8 V logic, set the SEL_GPIO_LEVELS bits, Bits[2:1] in Register 0x307, to 0x0.

When the GPIOx pins are set to output, the output values for the two GPIOx pins are set in the GPIO_WRITEVALS bits, Bits[2:1] in Register 0x305. Bit 1 sets the GPIO1 logic level, and Bit 2 sets the GPIO2 logic level (see the [GPIOx Write Register](#page-50-0) section).

When the GPIOx pins are set to input, the input values for the two GPIOs pins are read in the GPIO_READVALS bits, Bits[2:1] in Register 0x306. Bit 1 sets the GPIO1 logic level, and Bit 2 sets the GPIOs2 logic level (see the [GPIO Read Register](#page-50-0) section).

LNA SELECTION

The ADMV4540 has two RF input paths that are SPI selectable. Only use one path at a time. The SPI settings are used to turn on the specific LNA for each path as follows:

- ► To select RF IN1 (Pin 2), write 0x3E to Register 0x0100.
- ► To select RF_IN1 (Pin 47), write 0x3D to Register 0x0100.

BASEBAND FILTER SELECTION

The ADMV4540 features three $6th$ -order Butterworth LPF configurations on the I channel and the Q channel that can be digitally

selected and a fourth digitally selectable configuration that can bypass all of the filters. These three LPFs are approximately 125 MHz, 250 MHz, and 500 MHz bandwidth on each I channel and Q channel. To select one of these four configurations, take the following steps:

- ► To select the baseband filter 125 MHz settings, write 0x00 to Register 0x013C.
- ► To select the baseband filter 250 MHz settings, write 0x05 to Register 0x013C.
- ► To select the baseband filter 500 MHz settings, write 0x0A to Register 0x013C.
- ► To select the baseband filter bypass settings, write 0x0F to Register 0x013C.

IMAGE REJECT OPTIMIZATION

The ADMV4540 provides an uncalibrated 35 dBc of image rejection. The image rejection can be further optimized by tuning the phase bits (LO_PHASE_I, Register 0x128, Bits[2:0], and LO PHASE Q,

Register 0x128, Bits[5:3]), which have up to 6° of phase range and approximately 0.4° resolution, and by tuning the 0.1 dB DSA bits (SEL_BB_ATT_I, Register 0x140, Bits[3:0], and SEL_BB_ATT_Q, Register 0x140, Bits[7:4]) with up to a 1.5 dB range.

DC OFFSET CORRECTION LOOP

The ADMV4540 has a dc offset correction loop in the I path and Q path, respectively. The dc offset correction loop is enabled by default (EN_BB_OFS_LOOP_I, Bit 4 in Register 0x130 and EN_BB_OFS_LOOP_Q, Bit 4 in Register 0x131). Keep the dc offset correction loop enabled; otherwise, the dc offset saturates the baseband amplifiers clipping the output signal.

APPLICATIONS INFORMATION

The ADMV4540 is intended to be used in receiver terrestrial satellite communication systems. The ADMV4540 integrates a low noise downconverter, fractional-N PLL and synthesizer, baseband amplifiers, and low-pass baseband filters. The integrated solution can directly interface with the receiver ADC and supports the

DVB-S2X standard and is backwards compatible with earlier standards. Figure 88 shows a simplified system block diagram of the ADMV4540.

Figure 88. System Block Diagram of the ADMV4540

APPLICATIONS INFORMATION

POWERING THE ADMV4540

The ADMV4540 has two power supply domains where low noise LDO regulators of 3.3 V each are recommended, such as the [ADM7172,](https://www.analog.com/ADM7172) which is shown in the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) user guide, for optimum phase noise and noise figure performance:

- ► VCC3P3_VCO (Pin 14)
- ► VCC3P3_BBI (Pin 35), VCC3P3_BBQ (Pin 27), and VCC3P3_BB (Pin 42)

All other supply lines can be connected to a single low noise 3.3 V supply voltage to ensure low noise power delivery.

All supplies require 0.01 µF decoupling capacitors placed as close as possible to the supply pins.

Ensure that the three baseband supply pins have their own power plane for minimal voltage drop from the low noise LDO regulator to each of the baseband supply pins.

HEAT SINK SELECTION

The ADMV4540 requires a bottom side heat sink for efficient heat transfer. The bottom side heat sink requires a large, exposed copper area on the PCB bottom layer under the device. Ensure that the exposed pad is filled with thermal vias for efficient heat transfer from the top of the PCB, where the ADMV4540 is attached to the bottom, where the heat sink is placed. Connect the thermal vias to a ground plane on each layer that the vias cross. Make sure that the vias are plated shut and sit flush with the top and bottom ground plane. A heat sink with embedded copper is recommended for more efficient heat transfer. Place a thin thermal interface material (TIM) with high conductivity between the PCB bottom layer and bottom side heat sink for efficient heat transfer.

The exposed pad requires a solder coverage of more than 90% for optimum heat transfer between the bottom of the ADMV4540 and the exposed pad. Ensure that there are no solder voids. Solder voids underneath the ADMV4540 degrade the RF performance of the ADMV4540.

RECOMMENDED LAND PATTERN

Solder the exposed pad on the underside of the ADMV4540 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) evaluation board. Connect these ground vias to all other ground layers on the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) evaluation board to maximize heat transfer from the device package. See the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) gerber files on the recommended solder mask for the ADMV4540. See the Heat Sink Selection section for more information on the solder coverage of the exposed pad.

LAYOUT CONSIDERATIONS

All measurements in this data sheet are measured on the [ADMV4540-EVALZ.](https://www.analog.com/EVAL-ADMV4540) The design of the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) serves as a layout recommendation for ADMV4540 application. See the [ADMV4540-EVALZ](https://www.analog.com/EVAL-ADMV4540) user guide for more information on using the evaluation board.

RF Trace Routing

The two RF inputs of the ADMV4540 require 50 Ω traces. These traces must use optimal RF transmission line layout techniques and can be either coplanar waveguide (CPWG) or stripline traces. These traces must also use tight via fences with a typical via to via spacing of 1/8 the minimum wavelength or less up to the ground pin next to these pins. Ensure that these via fences also cover the RF INx pins (Pin 2 and Pin 47) for further isolation.

External Reference and Crystal Oscillator Routing

It is recommended that the reference traces to REF/XTAL1 (Pin 22) and GND/XTAL2 (Pin 21) are 50 Ω. Route these traces mostly on the bottom layer, or a layer different from where the I and Q traces and the traces of the loop filter are located. This routing is recommended for maximizing reference spur rejection at the I and Q outputs of the ADMV4540.

Baseband Trace Routing

The IOUTP and IOUTN traces require 100 Ω differential and 50 Ω single-ended traces. Similarly, the QOUTP and QOUTN require 100 Ω differential and 50 Ω single-ended traces. Ensure that there is sufficient isolation between the IOUTx and QOUTx traces using tight via fences with typical via to via spacing of 1/8 the minimum wavelength or less.

REGISTER SUMMARY

Table 7. Register Summary

REGISTER SUMMARY

Table 7. Register Summary

REGISTER SUMMARY

Table 7. Register Summary

ANALOG DEVICES SPI STANDARD REGISTER

Address: 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG

Table 8. Bit Descriptions for ADI_SPI_CONFIG

PRODUCT ID (LOWER 8 BITS OF THE 16 BITS) REGISTER

Address: 0x004, Reset: 0x4A, Name: PRODUCT_ID_L

Table 9. Bit Descriptions for PRODUCT_ID_L

PRODUCT ID (UPPER 8 BITS OF THE 16 BITS) REGISTER

Address: 0x005, Reset: 0x00, Name: PRODUCT_ID_H

Table 10. Bit Descriptions for PRODUCT_ID_H

REVISION NUMBER FOR ANALOG DEVICES SPI DEFINITION REGISTER

Address: 0x00B, Reset: 0x01, Name: SPI_REV

Table 11. Bit Descriptions for SPI_REV

RF SIGNAL CHAIN ENABLES REGISTER

Address: 0x100, Reset: 0x3D, Name: RF_CKT_ENABLES

Table 12. Bit Descriptions for RF_CKT_ENABLES

I PATH COMMON-MODE REGISTER

Address: 0x10A, Reset: 0x4A, Name: COMMON_MODE_I

Table 13. Bit Descriptions for COMMON_MODE_I

Q PATH COMMON-MODE REGISTER

Address: 0x10B, Reset: 0x4A, Name: COMMON_MODE_Q

Table 14. Bit Descriptions for COMMON_MODE_Q

LO SIGNAL CHAIN ENABLES REGISTER

Address: 0x120, Reset: 0xFF, Name: LO_CKT_ENABLES

Table 15. Bit Descriptions for LO_CKT_ENABLES

Table 15. Bit Descriptions for LO_CKT_ENABLES

LO PHASE ADJUST REGISTER

Address: 0x128, Reset: 0x00, Name: LO_PHASE_IMR

Table 16. Bit Descriptions for LO_PHASE_IMR

CRYSTAL OSCILLATOR BITS REGISTER

Address: 0x129, Reset: 0x0F, Name: XTAL_OSC

Table 17. Bit Descriptions for XTAL_OSC

BASEBAND I PATH CIRCUIT ENABLES REGISTER

Address: 0x130, Reset: 0xBF, Name: BB_CKT_ENABLES_I

Table 18. Bit Descriptions for BB_CKT_ENABLES_I

BASEBAND Q PATH CIRCUIT ENABLES REGISTER

Address: 0x131, Reset: 0xBF, Name: BB_CKT_ENABLES_Q

Table 19. Bit Descriptions for BB_CKT_ENABLES_Q

Table 19. Bit Descriptions for BB_CKT_ENABLES_Q

BASEBAND COMMON BLOCKS ENABLES REGISTER

Address: 0x132, Reset: 0x01, Name: BB_CKT_ENABLES_COMMON

Table 20. Bit Descriptions for BB_CKT_ENABLES_COMMON

BASEBAND SELECT AMPLIFIER 1 IQ GAIN AND BIAS REGISTER

Address: 0x133, Reset: 0xEE, Name: BB_AMP1_SEL_IQ

Table 21. Bit Descriptions for BB_AMP1_SEL_IQ

BASEBAND SELECT AMPLIFIER 2 IQ GAIN AND BIAS REGISTER

Address: 0x134, Reset: 0xEE, Name: BB_AMP2_SEL_IQ

Table 22. Bit Descriptions for BB_AMP2_SEL_IQ

BASEBAND SELECT AMPLIFIER 3 IQ GAIN AND BIAS REGISTER

Address: 0x135, Reset: 0xEE, Name: BB_AMP3_SEL_IQ

Table 23. Bit Descriptions for BB_AMP3_SEL_IQ

BASEBAND IQ FILTERS BANDWIDTH SELECT REGISTER

Address: 0x13C, Reset: 0x0A, Name: BB_FLT_SEL_IQ

Table 24. Bit Descriptions for BB_FLT_SEL_IQ

BASEBAND DIGITAL STEP ATTENUATION SETTING REGISTER

Address: 0x140, Reset: 0x77, Name: BB_DSA_IQ

Table 25. Bit Descriptions for BB_DSA_IQ

N DIVIDER INT LSB AND TRIGGER REGISTER

Address: 0x200, Reset: 0x89, Name: INT_L

Table 26. Bit Descriptions for INT_L

N DIVIDER INT MSB REGISTER

Address: 0x201, Reset: 0x01, Name: INT_H

Table 27. Bit Descriptions for INT_H

N DIVIDER FRAC1 LSB REGISTER

Address: 0x202, Reset: 0x00, Name: FRAC1_L

Table 28. Bit Descriptions for FRAC1_L

N DIVIDER FRAC1 MIDDLE REGISTER

Address: 0x203, Reset: 0x00, Name: FRAC1_M

Table 29. Bit Descriptions for FRAC1_M

N DIVIDER FRAC1 MSB REGISTER

Address: 0x204, Reset: 0x00, Name: FRAC1_H

Table 30. Bit Descriptions for FRAC1_H

AUXILIARY FRACTIONAL MODULUS LSB WHEN USING THE EXACT FREQUENCY MODE REGISTER

Address: 0x208, Reset: 0x00, Name: MOD_L

Table 31. Bit Descriptions for MOD_L

AUXILIARY FRACTIONAL MODULUS MSB WHEN USING THE EXACT FREQUENCY MODE REGISTER

Address: 0x209, Reset: 0x00, Name: MOD_H

Table 32. Bit Descriptions for MOD_H

N DIVIDER ENABLE AND MODE SELECT REGISTER

Address: 0x20B, Reset: 0x01, Name: SYNTH

Table 33. Bit Descriptions for SYNTH

R DIVIDER SETPOINT REGISTER

Address: 0x20C, Reset: 0x03, Name: R_DIV

Table 34. Bit Descriptions for R_DIV

Table 34. Bit Descriptions for R_DIV

R DIVIDER CONTROLS REGISTER

Address: 0x20E, Reset: 0x04, Name: SYNTH_0

Table 35. Bit Descriptions for SYNTH_0

LOCK DETECT CONFIGURATION REGISTER

Address: 0x214, Reset: 0x48, Name: MULTI_FUNC_SYNTH_CTRL_0214

Table 36. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_0214

SPI OVERRIDE VALUE FOR VCO BAND REGISTER

Address: 0x215, Reset: 0x00, Name: SI_BAND_0

Table 37. Bit Descriptions for SI_BAND_0

SPI OVERRIDE VALUE FOR VCO SELECT REGISTER

Address: 0x217, Reset: 0x00, Name: SI_VCO_CORE

Table 38. Bit Descriptions for SI_VCO_CORE

SYNTH_LOCK_TIMEOUT

Address: 0x218, Reset: 0x1F, Name: SYNTH_LOCK_TIMEOUT

Table 39. Bit Descriptions for SYNTH_LOCK_TIMEOUT

VCO CALIBRATION TIMEOUT LSB REGISTER

Address: 0x21C, Reset: 0x20, Name: VCO_TIMEOUT_L

Table 40. Bit Descriptions for VCO_TIMEOUT_L

VCO CALIBRATION TIMEOUT MSB REGISTER

Address: 0x21D, Reset: 0x00, Name: VCO_TIMEOUT_H

Table 41. Bit Descriptions for VCO_TIMEOUT_H

AUTOMATIC FREQUENCY CALIBRATION (AFC) MEASUREMENT RESOLUTION REGISTER

Address: 0x21E, Reset: 0x14, Name: VCO_BAND_DIV

Table 42. Bit Descriptions for VCO_BAND_DIV

ALC_SELECT REGISTER

Address: 0x21F, Reset: 0x80, Name: ALC_SELECT

Table 43. Bit Descriptions for ALC_SELECT

MISCELLANEOUS CONTROL REGISTER 1

Address: 0x22A, Reset: 0x02, Name: SD_CTRL

Table 44. Bit Descriptions for SD_CTRL

Table 44. Bit Descriptions for SD_CTRL

MISCELLANEOUS CONTROL REGISTER 2

Address: 0x22B, Reset: 0x09, Name: MULTI_FUNC_SYNTH_CTRL_022B

Table 45. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022B

CHARGE PUMP HIGH-Z REGISTER

Address: 0x22C, Reset: 0x03, Name: MULTI_FUNC_SYNTH_CTRL_022C

Table 46. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022C

CHARGE PUMP CONTROL REGISTER

Address: 0x22D, Reset: 0x81, Name: MULTI_FUNC_SYNTH_CTRL_022D

Table 47. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022D

CHARGE PUMP CURRENT REGISTER

Address: 0x22E, Reset: 0x0F, Name: CP_CURR

Table 48. Bit Descriptions for CP_CURR

CHARGE PUMP BLEED CURRENT REGISTER

Address: 0x22F, Reset: 0x08, Name: BICP

Table 49. Bit Descriptions for BICP

FRAC2 LSB REGISTER

Address: 0x233, Reset: 0x00, Name: FRAC2_L

Table 50. Bit Descriptions for FRAC2_L

FRAC2 MSB REGISTER

Address: 0x234, Reset: 0x00, Name: FRAC2_H

Table 51. Bit Descriptions for FRAC2_H

VCO AND BAND SELECTION ADJUSTMENT REGISTER

Address: 0x240, Reset: 0x00, Name: VCO_FORCE

Table 52. Bit Descriptions for VCO_FORCE

VCO CALIBRATION FSM REGISTER

Address: 0x248, Reset: 0x00, Name: VCO_FSM_CAPS_RB

Table 53. Bit Descriptions for VCO_FSM_CAPS_RB

LOCK DETECT READBACK REGISTER

Address: 0x24D, Reset: 0x00, Name: LOCK_DETECT

Table 54. Bit Descriptions for LOCK_DETECT

MUXOUT

Address: 0x24E, Reset: 0x00, Name: MUXOUT

Table 55. Bit Descriptions for MUXOUT

PLL MUXOUT LEVEL CONTROL REGISTER

Address: 0x300, Reset: 0x01, Name: PLLMUXOUT_CONTROL

Table 56. Bit Descriptions for PLLMUXOUT_CONTROL

AGPIO MUX AND PIN CONTROL REGISTER

Address: 0x301, Reset: 0x00, Name: AGPIO_CONTROL

Table 57. Bit Descriptions for AGPIO_CONTROL

ADC CONTROL BITS REGISTER

Address: 0x302, Reset: 0xCA, Name: ADC_CONTROL

Table 58. Bit Descriptions for ADC_CONTROL

Table 58. Bit Descriptions for ADC_CONTROL

ADC STATUS BITS REGISTER

Address: 0x303, Reset: 0x00, Name: ADC_STATUS

Table 59. Bit Descriptions for ADC_STATUS

ADC RESULT REGISTER

Address: 0x304, Reset: 0x00, Name: ADC_DATA

Table 60. Bit Descriptions for ADC_DATA

GPIOX WRITE REGISTER

Address: 0x305, Reset: 0x00, Name: GPIO_WRITEVALS

Table 61. Bit Descriptions for GPIO_WRITEVALS

GPIO READ REGISTER

Address: 0x306, Reset: 0x00, Name: GPIO_READVALS

Table 62. Bit Descriptions for GPIO_READVALS

CONTROL OF GPIOX PINS

Address: 0x307, Reset: 0x00, Name: GPIO_CONTROL

Table 63. Bit Descriptions for GPIO_CONTROL

SPARE READ REGISTER 1

Address: 0x600, Reset: 0x00, Name: SPARE_READREG1

Table 64. Bit Descriptions for SPARE_READREG1

SPARE READ REGISTER 2

Address: 0x601, Reset: 0xFF, Name: SPARE_READREG2

Table 65. Bit Descriptions for SPARE_READREG2

SPARE READ REGISTER 3

Address: 0x602, Reset: 0x00, Name: SPARE_READREG3

SPARE WRITE REGISTER 1

Address: 0x603, Reset: 0x00, Name: SPARE_WRITEREG1

Table 67. Bit Descriptions for SPARE_WRITEREG1

SPARE WRITE REGISTER 2

Address: 0x604, Reset: 0xFF, Name: SPARE_WRITEREG2

Table 68. Bit Descriptions for SPARE_WRITEREG2

SPARE WRITE REGISTER 3

Address: 0x605, Reset: 0x00, Name: SPARE_WRITEREG3

Table 69. Bit Descriptions for SPARE_WRITEREG3

