

Precision, Micropower, High Current Output Voltage References

FEATURES

- Maximum temperature coefficient
 - ▶ 3 ppm/°C (B grade)
 - 6 ppm/°C (A grade)
- Output current capacity (typical): 70 mA sourcing and 20 mA sinking
- Low quiescent current: 65 µA
- Low shutdown current: 1.5 μA
- ▶ Output voltage noise (0.1 Hz to 10 Hz): 3 ppm p-p
- Maximum initial output voltage error
 - ▶ ±0.04% (B grade)
 - ▶ ±0.08% (A grade)
- ▶ Operating temperature range: -40°C to +125°C
- Maximum input voltage: 16 V
- Low dropout voltage
 - ▶ 0.25 V for the ADR3625
 - 0.15 V for the ADR3630 and ADR3650
- ▶ 1.8 V logic compatible
- ▶ 8-Lead MSOP package

APPLICATIONS

- Precision power supplies
- Portable instrumentation
- Process transmitters
- Remote sensors
- Medical instrumentation
- Auto battery monitors

GENERAL DESCRIPTION

The ADR3625\ADR3630\ADR3650 are low power, high precision voltage references that feature a maximum temperature coefficient of 3 ppm/°C for the B grade in an 8-lead MSOP. Capable of sourcing up to 70 mA, the ADR3625\ADR3630\ADR3650 are an exceptional replacement to standard low dropout (LDO) regulators. For high accuracy, the output voltage and temperature coefficient are trimmed during production using the Analog Devices, Inc., proprietary DigiTrim[®] technology.

The low thermal hysteresis (7 ppm) and low long-term drift (160 ppm at 3500 Hr) improve system lifetime accuracy. A minimum load capacitance of 0.1 μ F is required for operation. The ADR3625\ADR3630\ADR3650 is specified over the -40°C to +125°C operating temperature range.

PIN CONFIGURATION

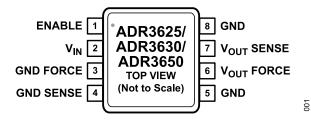


Figure 1. 8-Lead MSOP Pin Configuration

|--|

v		v	
Micropower	Low Power	High Current	
LT6656	ADR391	LT6658	
ADR291	LT1460	LT1461	
REF192	ADR361	ADR431	
LT1461	ADR421	REF192	
LT1790	LTC6652	LT1460	

Rev. A

DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Pin Configuration	
General Description	1
Specifications	
Electrical Characteristics	4
Absolute Maximum Ratings	6
Thermal Resistance	6
Electrostatic Discharge (ESD) Ratings	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Typical Performance Characteristics	8
Terminology	18
Dropout Voltage	
Line Regulation	
Load Regulation	
Solder Heat Resistance Shift	18
Temperature Coefficient	18
Box Method	18
Thermal Hysteresis	18

Long-Term Drift	18
Theory of Operation	
Power Dissipation	19
Internal Protection	19
Long-Term Drift	20
Thermal Hysteresis	
Power Cycle Hysteresis	
Humidity Sensitivity	
Applications Information	
Basic Voltage Reference Connection	
Input and Output Capacitors	22
Start-Up Time	
Settling Time	
ENABLE Pin	
PCB Layout	
Sample Applications	
Outline Dimensions	
Ordering Guide	26
Evaluation Boards	26

REVISION HISTORY

4/2023—Rev. 0 to Rev. A

Added ADR3630 and ADR3650 (Universal)	1
Changes to Features Section and General Description Section	
Changes to Table 2	4
Changes to Figure 3 Caption, Figure 6, and Figure 8 Caption	8
Added Figure 4, Figure 5, and Figure 7; Renumbered Sequentially	8
Deleted Figure 11 and Figure 14; Renumbered Sequentially	10
Added Figure 9	9
Changes to Figure 10 and Figure 11	9
Deleted Figure 16 and Figure 19	
Changes to Figure 18 Caption	10
Added Figure 17, Figure 19, and Figure 20	
Added Figure 21, Figure 23, and Figure 24	
Changes to Figure 22 Caption and Figure 25 Caption	
Changes to Figure 27 Caption, Figure 29 Caption, and Figure 31 Caption	
Added Figure 28, Figure 30, and Figure 32	
Changes to Figure 34 Caption, Figure 36 Caption, and Figure 38 Caption	
Added Figure 35 and Figure 37	
Added Figure 39, Figure 41, Figure 43, and Figure 44	
Changes to Figure 40 Caption	
Deleted Figure 42	
Changes to Figure 45 Caption and Figure 48 Caption	
Added Figure 46, Figure 47, Figure 49, and Figure 50	
Changes to Figure 51 Caption	
Added Figure 52 and Figure 53	
Changes to Power Dissipation Section and Figure 62 Caption	19

TABLE OF CONTENTS

Changes to Long-Term Drift Section	20
Changes to Figure 69, Start-Up Time Section, Figure 70 Caption, and Figure 71 Caption	
Changes to Settling Time Section, Figure 72 Caption Through Figure 75 Caption	23
Changes to Figure 81	25
Changes to Ordering Guide and Evaluation Boards	26

10/2022—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Input voltage (V_{IN}) = 3 V to 16 V, output current capacity (I_L) = 0 mA, load capacitance (C_L) = 1 μ F, ENABLE voltage (V_{EN}) = V_{IN}, and -40°C ≤ T_A ≤ +125°C, unless otherwise noted.

Table 2. Electrical Characteristics

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	V _{OUT}	T _A = 25°C				
A Grade		ADR3625A	2.498	2.500	2.502	V
		ADR3630A	2.998	3.000	3.002	V
		ADR3650A	4.996	5.000	5.004	V
B Grade		ADR3625B	2.499	2.500	2.501	V
		ADR3630B	2.999	3.000	3.001	V
		ADR3650B	4.998	5.000	5.002	V
INITIAL OUTPUT VOLTAGE ERROR	V _{OUT_ERR}	T _A = 25°C				
A Grade					±0.08	%
B Grade					±0.04	%
SOLDER HEAT RESISTANCE SHIFT ¹				±0.06		%
TEMPERATURE COEFFICIENT	TCV _{OUT}	See the Terminology section				
A Grade				4	6	ppm/°C
B Grade				2	3	ppm/°C
LINE REGULATION	ΔV _{OUT} /ΔV _{IN}	$V_{IN} = V_{OUT} + V_{DO}^2$ to 16 V		0.5	2	ppm/V
LOAD REGULATION	$\Delta V_{OUT} / \Delta I_L$					FF
Sourcing		$I_L = 0$ mA to 10 mA, $V_{IN} = V_{OUT} + V_{DO^2}$		10	15	ppm/mA
		$I_{\rm I} = 0$ mA to 50 mA, $V_{\rm IN} = V_{\rm OUT} + V_{\rm DO}^3$		3	5	ppm/mA
Sinking		$I_L = 0$ mA to 10 mA, $V_{IN} = V_{OUT} + V_{DO^2}$		20	30	ppm/mA
	I_					PP:///////
Sourcing		$V_{IN} = V_{OUT} + V_{DO^3}$ to 16 V	50	70		mA
Sinking		$V_{\rm IN} = V_{\rm OUT} + V_{\rm DO^2}$ to 16 V	10	20		mA
Short Circuit to GND		$V_{\rm IN} = 16 \text{ V}$	10	90		mA
Short Circuit to V _{IN}		$V_{\rm IN} = 16 V$		70		mA
	l _Q					
Normal Operation	'Q	V _{EN} ≥ 1.17 V				
		ADR3625		65	75	μA
		ADR3630 and ADR3650		70	90	μΑ
Shutdown		$V_{\text{EN}} \le 0.63 \text{ V}$		1.5	3	μΑ
DROPOUT VOLTAGE	V _{DO}	VEN - 0.00 V		1.0	0	μ, ι
	v DO	ADR3625				
		$I_{\rm L} = 10 \rm{mA}$		0.25	0.5	v
		$I_{L} = 50 \text{ mA}$		0.25	0.5 1	V
		ADR3630 and ADR3650		0.0	I	v
				0.15	0.2	V
		I _L = 10 mA I _L = 50 mA		0.15 0.7	0.3 0.9	V V
ENABLE PIN				0.7	0.9	V
			1.17			N
Input High Voltage	V _{ENH}		1.17		0.00	V
Input Low Voltage	V _{ENL}				0.63	V
Leakage Current	V _{ENLEAK}	T 0520		0.3	1	μA
OUTPUT VOLTAGE NOISE	e _N p-p	$T_A = 25^{\circ}C$				
		0.1 Hz to 10 Hz		3		ppm p-p
				0.55		ppm RM

SPECIFICATIONS

Table 2. Electrical Characteristics (Continued)

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
		10 Hz to 1 kHz		4		ppm RMS
OUTPUT VOLTAGE NOISE DENSITY	e _N	T _A = 25°C, 1 kHz				
		ADR3625		300		nV/√Hz
		ADR3630		360		nV/√Hz
		ADR3650		600		nV/√Hz
THERMAL HYSTERESIS	ΔV _{OUT HYS}	+25°C to +125°C to -40°C to +25°C (full cycle)		7		ppm
	_	25°C to 125°C to 25°C (half cycle)		15		ppm
RIPPLE REJECTION RATIO	RRR	T _A = 25°C, input frequency (f _{IN}) = 60 Hz				
		ADR3625 and ADR3630		64		dB
		ADR3650		60		dB
LONG-TERM DRIFT	ΔV _{OUT LTD}	T _A = 25°C, relative humidity = 30%				
	_	250 hours (early life drift)		90		ppm
		1000 hours		140		ppm
		3500 hours		160		ppm
TURN-ON SETTLING TIME	t _R	T_A = 25°C, output capacitor (C _{OUT}) = 0.1 µF, load resistance (R _L) = 1 kΩ				
		ADR3625		600		μs
		ADR3630		700		μs
		ADR3650		900		μs
OAD CAPACITANCE RANGE		Minimum load capacitance		0.1		μF
		Maximum load capacitance		10		μF

¹ Initial accuracy does not include shift due to solder heat effect (see the Applications Information section.)

 2 V_{DO} is the maximum dropout voltage with a 10 mA sourcing load current.

 $^3~$ V_{DO} is the maximum dropout voltage with a 50 mA sourcing load current.

ABSOLUTE MAXIMUM RATINGS

Table 3. Absolute Maximum Ratings

Parameter	Rating
V _{IN} to GND SENSE	–0.3 V to +18 V
ENABLE to GND SENSE	–0.3 V to +18 V
V _{OUT} FORCE to GND SENSE	–0.3 V to V _{IN} + 0.3 V
V _{OUT} SENSE to V _{OUT} FORCE	–0.3 V to +0.3 V
GND FORCE to GND SENSE	–0.3 V to +0.3 V
Temperature	
Storage Range	–65°C to +150°C
Operating Range	–40°C to +125°C
Junction Range	–65°C to +150°C
Lead, Soldering (10 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JC} is the junction-to-case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
RM-8	132.5	43.9	°C/W

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

ESD Ratings for ADR3625\ADR3630\ADR3650

Table 5. ADR3625\ADR3630\ADR3650, 8-Lead MSOP

ESD Model	Withstand Threshold (kV)	Class	
НВМ	1	1C	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	ENABLE	Enable Connection. The ENABLE pin enables or disables the device.
2	V _{IN}	Input Voltage Connection.
3	GND FORCE	GND Connection.
4	GND SENSE	GND Sensing Connection. Connect GND SENSE directly to the GND connection of the load device.
5	GND	Connect to GND FORCE.
6	V _{OUT} FORCE	Reference Voltage Output.
7	V _{OUT} SENSE	Reference Voltage Output Sensing Connection. Connect VOUT SENSE directly to the voltage input of the load device.
8	GND	Connect to GND FORCE.

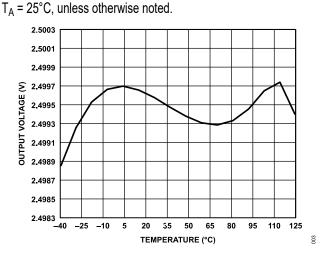


Figure 3. ADR3625 Output Voltage vs. Temperature

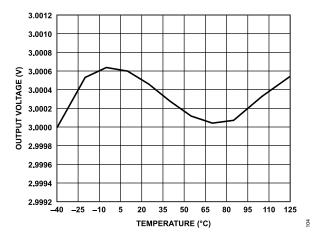


Figure 4. ADR3630 Output Voltage vs. Temperature

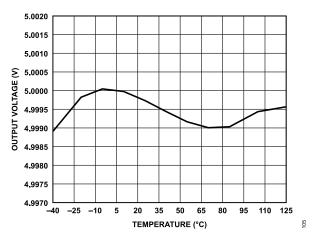


Figure 5. ADR3650 Output Voltage vs. Temperature

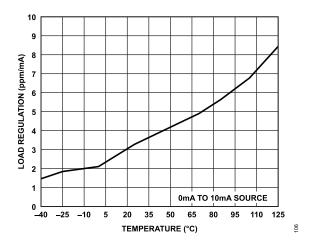


Figure 6. Load Regulation vs. Temperature (0 mA to 10 mA Sourcing)

Figure 7. Load Regulation vs. Temperature (0 mA to 50 mA Sourcing)

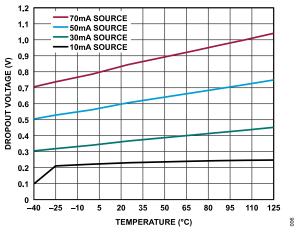


Figure 8. ADR3625 Dropout Voltage vs. Temperature

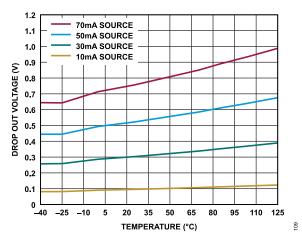
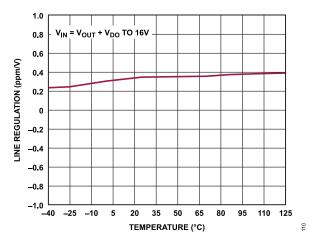



Figure 9. ADR3630/ADR3650 Dropout Voltage vs. Temperature

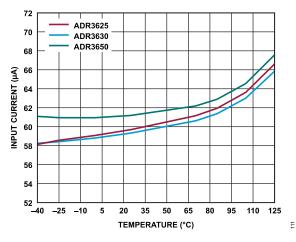


Figure 11. Input Current vs. Temperature

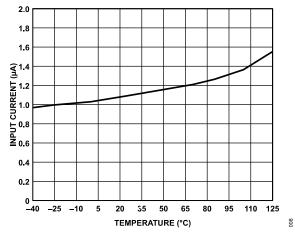
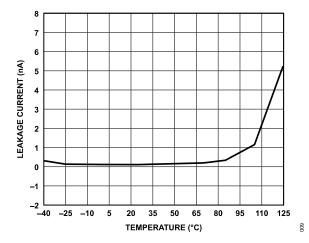



Figure 12. Input Current (Shutdown) vs. Temperature

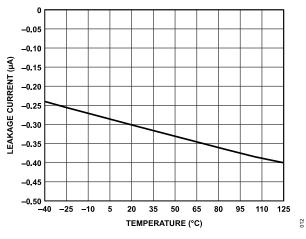


Figure 14. Leakage Current (Shutdown) vs. Temperature

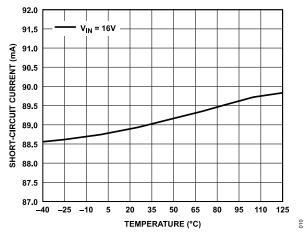
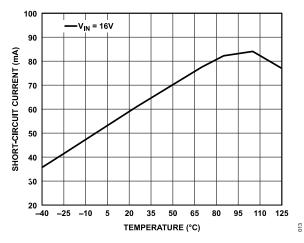
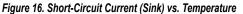




Figure 15. Short-Circuit Current (Source) vs. Temperature

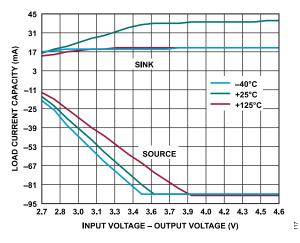


Figure 17. Load Current Capacity vs. Voltage Difference

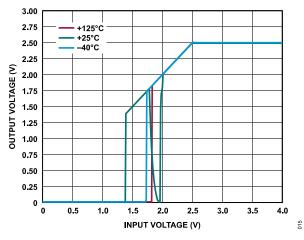


Figure 18. ADR3625 Output Voltage vs. Input Voltage

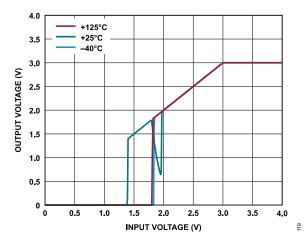


Figure 19. ADR3630 Output Voltage vs. Input Voltage

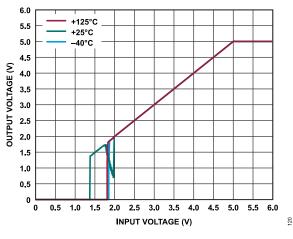
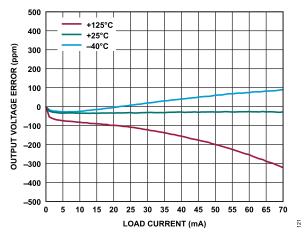
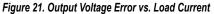
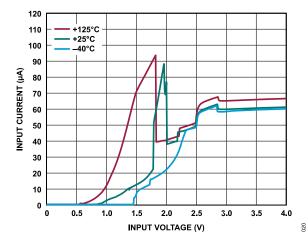





Figure 20. ADR3650 Output Voltage vs. Input Voltage

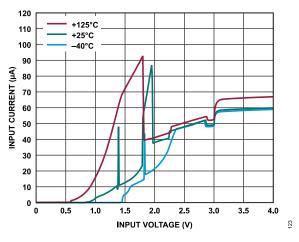


Figure 23. ADR3630 Input Current vs. Input Voltage

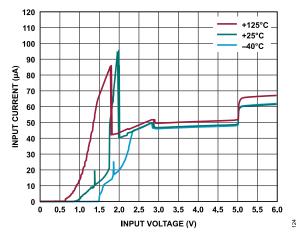
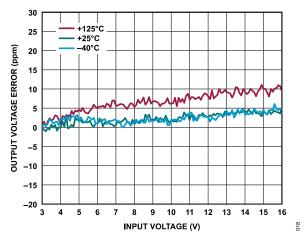
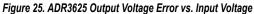




Figure 24. ADR3650 Input Current vs. Input Voltage

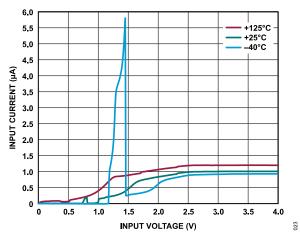
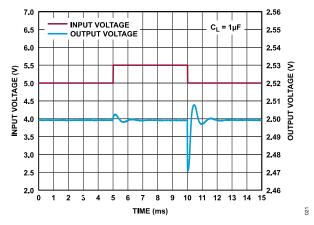



Figure 26. Input Current vs. Input Voltage (Shutdown)

ADR3625/ADR3630/ADR3650

TYPICAL PERFORMANCE CHARACTERISTICS

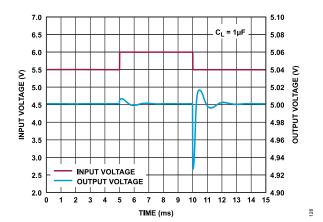
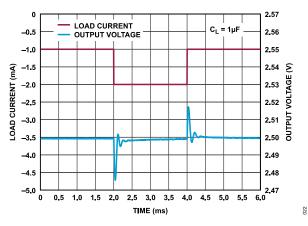
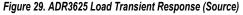




Figure 28. Line Transient Response

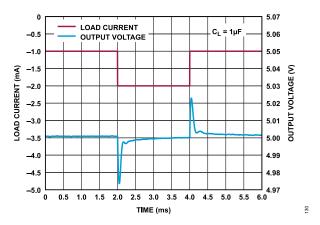
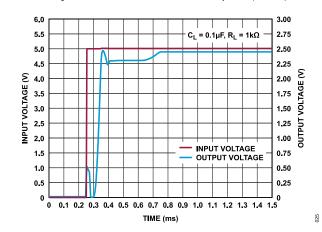



Figure 30. ADR3650 Load Transient Response (Source)

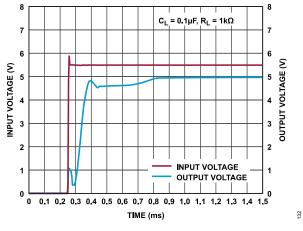
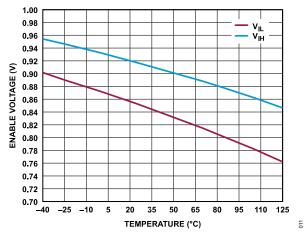



Figure 32. ADR3650 Start-Up Response (Input)

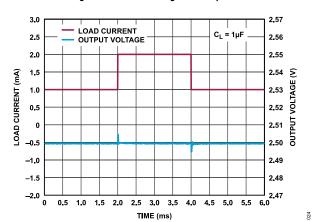
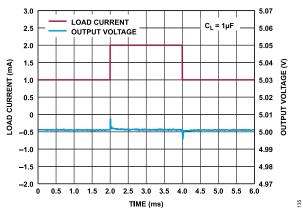



Figure 34. ADR3625 Load Transient Response (Sink)

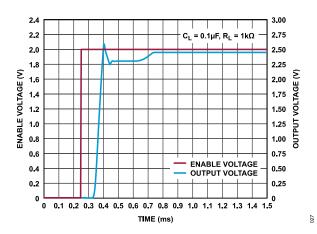


Figure 36. ADR3625 Start-Up Response (Enable)

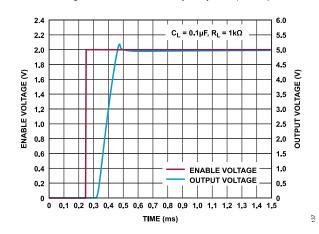


Figure 37. ADR3650 Start-Up Response (Enable)

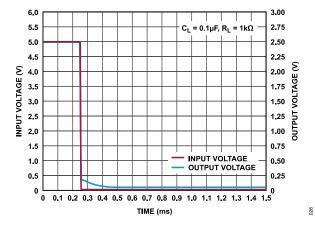
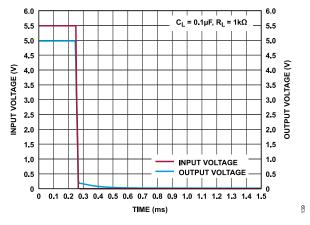
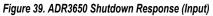




Figure 38. ADR3625 Shutdown Response (Input)

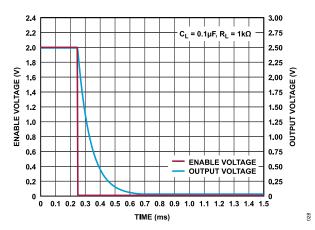


Figure 40. ADR3625 Shutdown Response (Enable)

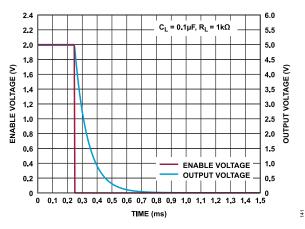


Figure 41. ADR3650 Shutdown Response (Enable)

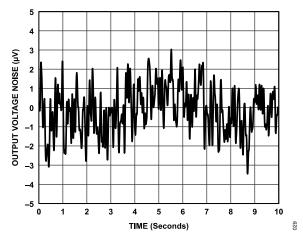


Figure 42. ADR3625 Voltage Noise (0.1 Hz to 10 Hz)



Figure 43. ADR3630 Voltage Noise (0.1 Hz to 10 Hz)

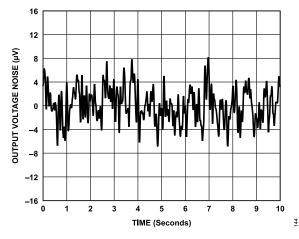


Figure 44. ADR3650 Voltage Noise (0.1 to 10 Hz)

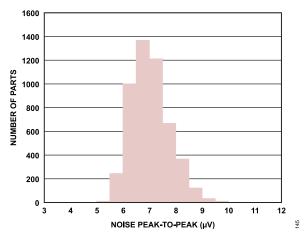


Figure 45. ADR3625 Voltage Noise (0.1 Hz to 10 Hz) Histogram

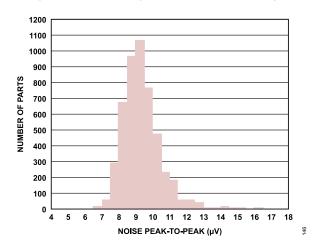


Figure 46. ADR3630 Voltage Noise (0.1 Hz to 10 Hz) Histogram

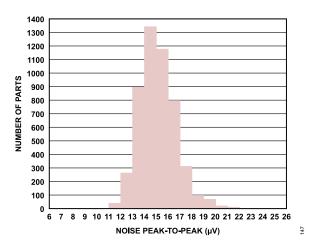


Figure 47. ADR3650 Voltage Noise (0.1 Hz to 10 Hz) Histogram

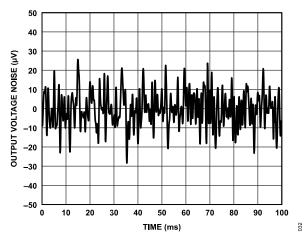


Figure 48. ADR3625 Output Voltage Noise (10 Hz to 1 kHz)

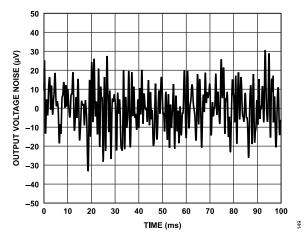
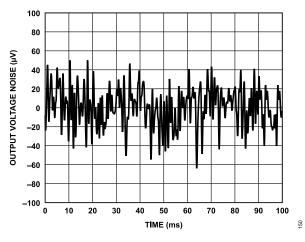


Figure 49. ADR3630 Output Voltage Noise (10 Hz to 1 kHz)



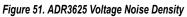


Figure 50. ADR3650 Output Voltage Noise (10 Hz to 1 kHz)

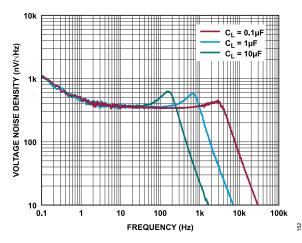


Figure 52. ADR3630 Voltage Noise Density

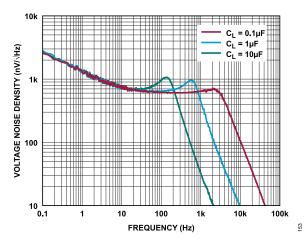


Figure 53. ADR3650 Voltage Noise Density

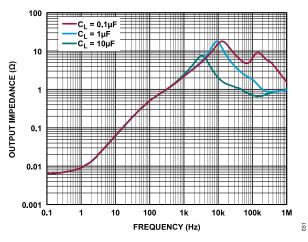
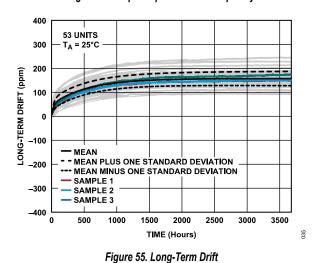



Figure 54. Output Impedance vs. Frequency

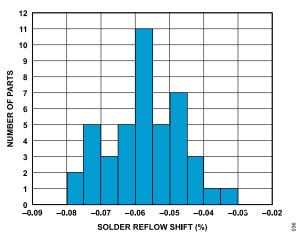
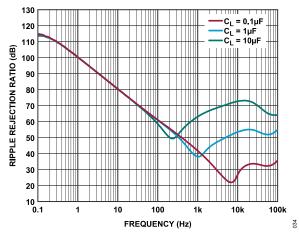
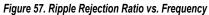
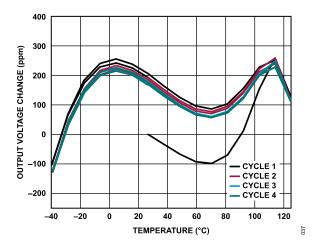
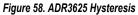






Figure 56. Solder Heat Reflow Shift Histogram

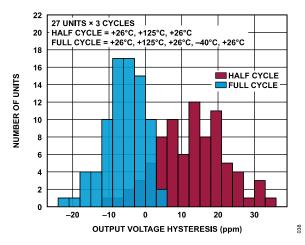


Figure 59. ADR3625 Hysteresis Histogram

TERMINOLOGY

Dropout Voltage

Dropout voltage (V_{DO}), sometimes referred to as supply voltage headroom or supply output voltage differential, is defined as the minimum voltage differential between the input and output such that the output voltage is maintained to within 0.1% accuracy.

$$V_{DO} = (V_{IN} - V_{OUT})_{MIN}$$

Because V_{DO} depends on the current passing through the device, it is always specified for a given load current. In series mode devices, the dropout voltage typically increases proportionally to the load current (see Figure 8 and Figure 9).

Line Regulation

Line regulation refers to the change in output voltage in response to a given change in input voltage and is expressed in percent per volt, ppm per volt, or μ V per volt change in input voltage.

Load Regulation

Load regulation refers to the change in output voltage in response to a given change in load current and is expressed in μ V per mA, ppm per mA, or Ω of dc output resistance.

Solder Heat Resistance Shift

Solder heat resistance shift refers to the permanent shift in output voltage that is induced by exposure to reflow soldering and is expressed as a percentage of the output voltage. This shift is caused by changes in the stress exhibited on the die by the package materials when these materials are exposed to high temperatures. This effect is more pronounced in lead-free soldering processes due to higher reflow temperatures. Solder heat resistance is calculated after three solder reflow cycles to simulate the worst case conditions when assembling a two-sided PCB with surface-mount components with one additional rework cycle. The reflow cycles use the JEDEC standard reflow temperature profile.

Temperature Coefficient

The temperature coefficient (TCV_{OUT}) relates the change in the output voltage to the change in the ambient temperature of the device, as normalized by the output voltage at 25°C. The TCV_{OUT} for the ADR3625\ADR3630\ADR3650 is fully tested over three temperatures: -40° C, $+25^{\circ}$ C, and $+125^{\circ}$ C.

Box Method

The box method is represented by the following equation:

$$TCV_{OUT} = \frac{\left|\frac{max(V_{OUT}(T_1, T_2, T_3)) - min(V_{OUT}(T_1, T_2, T_3)}{V_{OUT}(T_2) \times (T_3 - T_1)}\right| \times 10^6$$

where:

TCV_{OUT} is expressed in ppm/°C. V_{OUT}(Tx) is the output voltage at temperature Tx. $T_1 = -40$ °C.

T₂ = +25°C. T₃ = +125°C.

This box method ensures that TCV_{OUT} accurately portrays the maximum difference between any of the three temperatures at which the output voltage of the device is measured.

Thermal Hysteresis

Thermal hysteresis (ΔV_{OUT_HYS}) represents the change in the output voltage after the device is exposed to a specified temperature cycle. ΔV_{OUT_HYS} is expressed as a difference in ppm from the nominal output.

$$\Delta V_{OUT_HYS} = \frac{V_{OUT1_25^{\circ}C} - V_{OUT2_25^{\circ}C}}{V_{OUT1_25^{\circ}C}} \times 10^{6} (\text{ppm})$$

where:

 $V_{OUT1_{25^{\circ}C}}$ is the output voltage at 25°C. $V_{OUT2_{25^{\circ}C}}$ is the output voltage after temperature cycling.

Long-Term Drift

Long-term drift (ΔV_{OUT_LTD}) refers to the shift in the output voltage vs. time. This is expressed as a difference in ppm from the nominal output.

$$\Delta V_{OUT_LTD} = \left| \frac{V_{OUT}(t_1) - V_{OUT}(t_0)}{V_{OUT}(t_0)} \right| \times 10^6 (\text{ppm})$$

where:

 $V_{OUT}(t_0)$ is the V_{OUT} at the starting time of the measurement. $V_{OUT}(t_1)$ is the V_{OUT} at the end time of the measurement.

THEORY OF OPERATION

The ADR3625\ADR3630\ADR3650 incorporate a proprietary, low-noise design and advanced, curvature correction technology. Combined with micropower design techniques, the ADR3625\ADR3630\ADR3650 have unmatched performance.

The circuit shown in Figure 60 shows the ADR3625\ADR3630\ADR3650 simplified schematic.

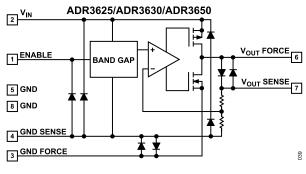


Figure 60. Simplified Schematic

POWER DISSIPATION

While the ADR3625\ADR3630\ADR3650 are a micropower voltage reference, these devices are capable of sourcing 50 mA and sinking current up to 10 mA of load current at room temperature across the rated input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage and load current must be monitored carefully to ensure that the devices do not exceed their maximum allowable power dissipation. To calculate the maximum allowable power dissipation of these devices, use the following equation:

$$P_D = \frac{T_J - T_A}{\theta_{IA}}$$

where:

 P_D is the power dissipation of the devices. T_J is the junction temperature of the devices.

 T_A is the ambient temperature of the devices.

The ADR3625\ADR3630\ADR3650 have a thermal resistance of 132.5°C/W for the 8-lead MSOP. A curve that illustrates the allowed power dissipation vs. temperature for the MSOP is shown in Figure 61. The power dissipation of the ADR3625 as a function of the input voltage is shown in Figure 62. The top curve shows power dissipation with a 50 mA load, and the bottom curve shows power dissipation with no load. When operated within its specified limits of V_{IN} = 16 V and sourcing is 50 mA, the ADR3625 consumes about 800 mW at room temperature. The power derating curve in Figure 61 shows that the ADR3625\ADR3630\ADR3650 can only safely dissipate 120 mW at 125°C, which is less than its maximum power output. Care must be taken when designing the circuit so that the maximum junction temperature is not exceeded. For best performance, keep the junction temperature less than 150°C.

The ADR3625\ADR3630\ADR3650 includes output current-limit circuitry, as well as thermal limit circuitry, to protect the reference

from damage in the event of excessive power dissipation. The ADR3625\ADR3630\ADR3650 is protected from damage by a thermal shutdown circuit. However, changes in performance can occur as a result of operating at above the maximum rating.

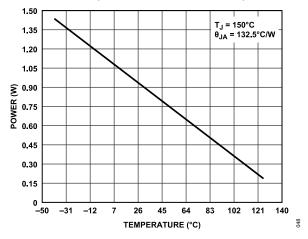


Figure 61. Maximum Allowed Power Dissipation

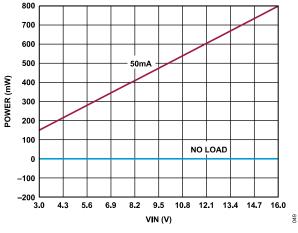


Figure 62. ADR3625 Typical Power Dissipation

INTERNAL PROTECTION

The ADR3625\ADR3630\ADR3650 have two internal protection circuits for monitoring the output current and internal junction temperature.

The ADR3625\ADR3630\ADR3650 have a current-limit circuit that limits the output source current in the event of a short circuit from the V_{OUT} FORCE pin to ground. The limit is set to 90 mA (typical) and does not vary much over temperature or input voltage.

An overtemperature shutdown circuit disables the output source current when the internal junction temperature reaches 178°C. There is 3°C of hysteresis. Once the junction temperature reduces to less than the hysteresis, the output drive circuit re-enables. Degradation can occur or reliability can be affected when the junction temperature of the devices exceeds 150°C.

THEORY OF OPERATION

LONG-TERM DRIFT

The stability of a precision signal path over its lifetime, or between calibration procedures, is dependent on the long-term stability of the analog components in its path, such as op amps, references, and data converters. To help system designers predict the long-term drift of the circuits that use the ADR3625\ADR3630\ADR3650, Analog Devices measured the output voltage of multiple units for more than 3500 hours using a high precision measurement system, including an ultrastable oil bath. To replicate the real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD-020D standard), rather than testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the IC package and contribute to shifts in the offset voltage.

Note that early life drift (0 hours to 250 hours) accounts for 50% of the total drift observed over 3500 hours, as shown in Figure 63. The first 1000 hours account for the 80% of the total drift, and the remaining 2500 hours account for the remaining 20% of the drift. Thus, the early life drift is the dominant contributor, whereas the drift after 1000 hours is significantly lower.

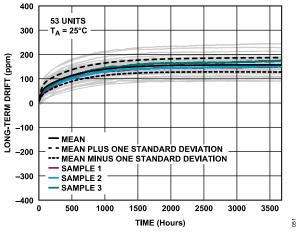


Figure 63. Long-Term Drift

THERMAL HYSTERESIS

In addition to stability over time, as described in the Long-Term Drift section, it is useful to know the thermal hysteresis, that is, the stability vs. cycling of temperature. Thermal hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and the subsequent return to room temperature. Figure 64 shows the change in output voltage as the temperature cycles four times from room temperature to +125°C to -40°C and back to room temperature.

Other than the first full cycle, the output hysteresis is typically –7 ppm. The histogram in Figure 65 shows that the hysteresis is larger when the device cycles through only a half cycle, from

room temperature to 125°C and back to room temperature, typically 15 ppm.

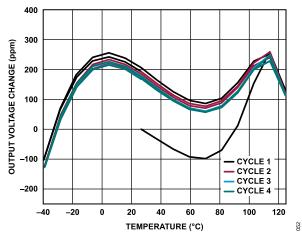


Figure 64. Change in Output Voltage over Four Full Temperature Cycle

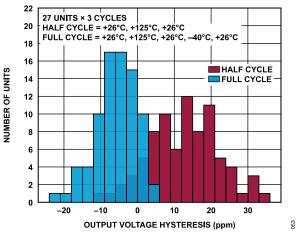


Figure 65. Output Voltage Hysteresis Histogram (-40°C to +125°C)

POWER CYCLE HYSTERESIS

By power cycling large numbers of samples, the power cycle hysteresis can be determined. To keep this measurement independent of other variables and environmental effects, the power cycle testing was performed using a high precision measurement system, including an ultrastable oil bath.

Figure 66 shows the power cycle hysteresis. The units were powered down for approximately four hours and then powered up. The ADR3625\ADR3630\ADR3650 do not have any power cycle hysteresis even after a long power-down period, making these devices suitable for equipment that must maintain calibration accuracy between power cycles.

THEORY OF OPERATION

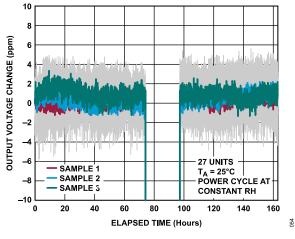


Figure 66. Power Cycle Hysteresis

HUMIDITY SENSITIVITY

The ADR3625\ADR3630\ADR3650 are packaged in an MSOP. However, moisture absorption from the air into the package changes the internal mechanical stresses on the die, causing shifts in the output voltage. Figure 67 shows the effects of a step change in relative humidity on the output voltage over time. The humidity chamber is maintained at an ambient temperature of 25°C, while the relative humidity undergoes a step change from 30% to 70%. The relative humidity is maintained at 70% for the duration of the testing. Note that the output voltage shifts quickly compared to the overall settling time, following the step change in relative humidity.

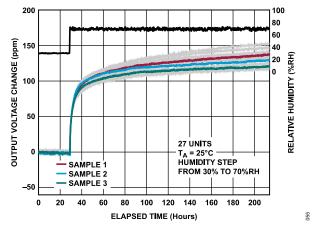


Figure 67. Change in Output Voltage vs. Time After Humidity Step (30% to 70% Relative Humidity (RH))

APPLICATIONS INFORMATION

BASIC VOLTAGE REFERENCE CONNECTION

The basic configuration for the ADR3625\ADR3630\ADR3650 reference is shown in Figure 68. For detailed information on connecting the bypass capacitors, see the Input and Output Capacitors section.

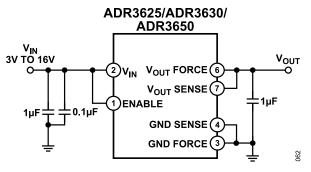


Figure 68. Basic Reference Connection

INPUT AND OUTPUT CAPACITORS

Input Capacitors

A 1 μ F to 10 μ F electrolytic or ceramic capacitor can be connected to the input to improve transient response in applications where the supply voltage can fluctuate. It is recommended to connect an additional 0.1 μ F ceramic capacitor in parallel to reduce supply noise.

Output Capacitors

A C_{OUT} is required for stability and to filter out low level voltage noise. The minimum value of C_{OUT} is 0.1 μF and can go as high as 10 μF for stability.

An additional 1 μ F to 10 μ F electrolytic or ceramic capacitor can be added in parallel to improve transient performance in response to sudden changes in load current.

The larger the output capacitor, the lower the bandwidth of the output is, thus lowering the noise. However, increasing the output capacitor increases the settling time and decreases the response rate.

The ADR3625\ADR3630\ADR3650 are stable with a variety of capacitor types, including ceramic, electrolytic (including polymer), tantalum, and film. Small surface-mount capacitors have low effective series resistance (ESR) and take up little board space. Place and connect the output capacitor as close as possible to the V_{OUT} FORCE pin. Use low ESR capacitors.

START-UP TIME

The start-up time is determined by the output capacitance and output load current. Figure 69 shows an example of the start-up response of the ADR3625 when stepping the supply voltage and Figure 70 shows an example of the start-up response of the ADR3625 when stepping the enable voltage.

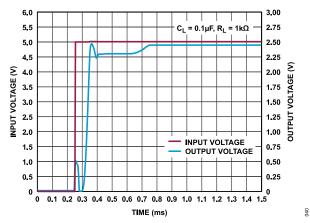


Figure 69. ADR3625 Start-Up Response (Input)

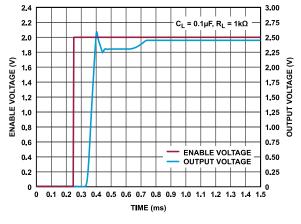


Figure 70. ADR3625 Start-Up Response (Enable)

7

APPLICATIONS INFORMATION

SETTLING TIME

The ADR3625\ADR3630\ADR3650 can take up to 16 V supply, source 50 mA, and sink 10 mA. The output settling time is dependent upon the output capacitance and load current. Figure 71 through Figure 74 show the transient response of the ADR3625 example at different conditions.

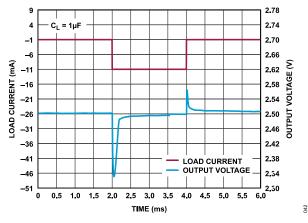


Figure 71. ADR3625 10 mA Sourcing Response

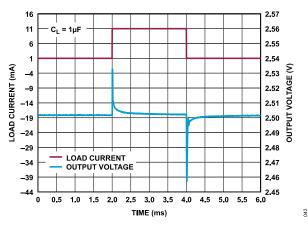


Figure 72. ADR3625 10 mA Sinking Response

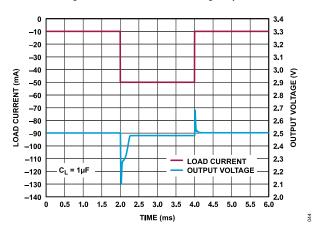


Figure 73. ADR3625 50 mA Sourcing Response

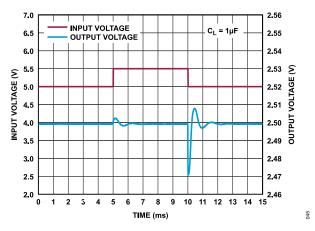


Figure 74. ADR3625 Output Response with a 500 mV Step on VIN

ENABLE PIN

The ENABLE pin is compatible with 1.8 V thresholds and has an internal active pull-up. When powered down, the supply current is only 1.5 μ A typical.

There is no diode connected between the ENABLE pin and V_{IN} . The ENABLE pin can be driven high when V_{IN} is low without drawing current or powering the device through the ENABLE pin as can happen with other references.

PCB LAYOUT

The mechanical stress of soldering a surface-mount voltage reference to a PCB can cause the output voltage to shift and the temperature coefficient to change. These two changes are not correlated. For example, the voltage may shift but the temperature coefficient may not.

To reduce the effects of the stress-related shifts, mount the reference near the short edge of the PCB or in a corner. In addition, slots can be cut into the PCB on two sides of the device. For more information, see Application Note AN82.

Connect the output capacitor close to the V_{OUT} FORCE pin. For good load regulation, connect the V_{OUT} SENSE pin directly at the load, as shown in Figure 75.

APPLICATIONS INFORMATION

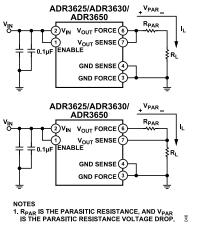


Figure 75. Output Force and Sense

Avoid adding parasitic resistance between the load and the V_{OUT} SENSE pin. Minimize the metal parasitic in the V_{OUT} FORCE line to the load to maintain a low dropout voltage.

The GND_FORCE line carries the load sinking current. Connect the GND_SENSE line directly to the bottom of the load as shown in Figure 76.

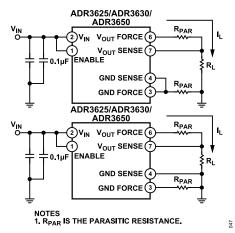
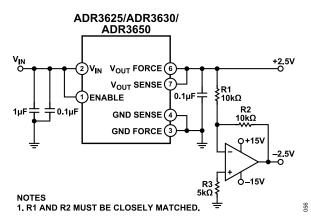



Figure 76. Ground Force and Sense

SAMPLE APPLICATIONS

The ADR3625\ADR3630\ADR3650 can be used in various applications, some of which are shown as follows.

Figure 77. Bipolar Output Reference

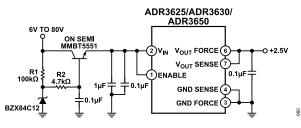


Figure 78. Extended Supply Range

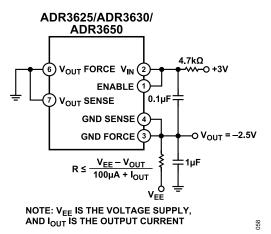


Figure 79. Negative Voltage Output

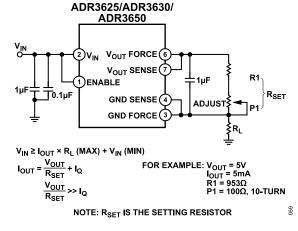


Figure 80. Constant Current