

# Reflective, Silicon SP8T Switch, 100 MHz to 20 GHz

#### **FEATURES**

- ▶ Ultrawideband frequency range: 100 MHz to 20 GHz
- ▶ Low insertion loss
  - ▶ 1.3 dB up to 6 GHz
  - ▶ 1.5 dB up to 12 GHz
  - ▶ 1.85 dB up to 20 GHz
- ▶ High isolation: >40 dB up to 20 GHz
- ▶ High input linearity
  - ▶ P0.1dB: 33 dBm typical
  - ▶ IP3: 55 dBm typical
- ▶ High RF power handling
  - ▶ Insertion loss path
    - ▶ Average: 30 dBm
    - ▶ Pulse (100 µs pulse width, 15% duty cycle): 33 dBm
  - ▶ Hot switching: 30 dBm
- ▶ Switching on and off time: 65 ns
- ▶ 0.1 dB settling time (50% V<sub>CTRL</sub> to 0.1 dB final RF<sub>OUT</sub>): 50 ns
- ▶ Single-supply operation with derated power handling
- ▶ All off state control
- ▶ Logic select control
- ▶ No low frequency spurs
- ▶ 36-terminal, 5.50 mm x 5.50 mm LGA package

#### **APPLICATIONS**

- ▶ Test and instrumentation
- ▶ Military radios, radars, and electronic counter measures (ECMs)
- Microwave radios and very small aperture terminals (VSATs)

### **FUNCTIONAL BLOCK DIAGRAM**

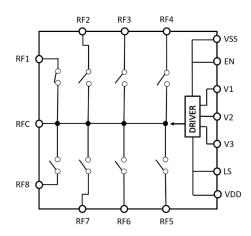



Figure 1. Functional Block Diagram

## **GENERAL DESCRIPTION**

The ADRF5080 is a reflective, SP8T switch manufactured in the silicon process. The ADRF5080 operates from 100 MHz to 20 GHz with an insertion loss of lower than 1.85 dB and an isolation higher than 40 dB. The device has an RF input power handling capability of 30 dBm continuous wave power for the insertion loss path.

The ADRF5080 operates with a dual-supply voltage, +3.3 V and -3.3 V. The device can also operate with a single-supply voltage (VDD) applied while the negative supply pin (VSS) is tied to ground. The single-supply operation condition requires a lower operating power while the excellent small signal performance is maintained (see Table 2).

The ADRF5080 employs complementary metal-oxide semiconductor (CMOS)-/low voltage transistor to transistor logic (LVTTL)-compatible controls. The logic select pin is functioned to the toggle state sequence.

The ADRF5080 comes in a 36-terminal, 5.50 mm × 5.50 mm, RoHS compliant, land grid array (LGA) package and can operate from -40°C to +105°C.

## **TABLE OF CONTENTS**

| reatures                                    | 1 |
|---------------------------------------------|---|
| Applications                                | 1 |
| Functional Block Diagram                    | 1 |
| General Description                         | 1 |
| Specifications                              | 3 |
| Single-Supply Operation Specifications      | 4 |
| Absolute Maximum Ratings                    | 5 |
| Thermal Resistance                          | 5 |
| Power Derating Curve                        | 5 |
| Electrostatic Discharge (ESD) Ratings       | 5 |
| ESD Caution                                 | 5 |
| Pin Configuration and Function Descriptions | 6 |

| Features1                                     | Interface Schematics                       | /  |
|-----------------------------------------------|--------------------------------------------|----|
| Applications 1                                | Typical Performance Characteristics        | 8  |
| Functional Block Diagram1                     | Insertion Loss, Return Loss, and Isolation | 8  |
| General Description1                          | Input Power Compression and Third-Order    |    |
| Specifications3                               | Intercept                                  | 11 |
| Single-Supply Operation Specifications4       | Theory of Operation                        | 12 |
| Absolute Maximum Ratings5                     | RF Input and Output                        | 12 |
| Thermal Resistance5                           | Power Supply                               | 12 |
| Power Derating Curve5                         | Single-Supply Operation                    | 12 |
| Electrostatic Discharge (ESD) Ratings5        | Applications Information                   | 13 |
| ESD Caution5                                  | Recommendations for PCB Design             | 13 |
| Pin Configuration and Function Descriptions 6 | Outline Dimensions                         | 14 |
|                                               |                                            |    |

Rev. PrF | 2 of 14 analog.com

## **SPECIFICATIONS**

 $VDD = 3.3 \text{ V, VSS} = -3.3 \text{ V, LS voltage (V_{LS})}, \text{ EN voltage (V_{EN})}, \text{ V1, V2 or V3} = 0 \text{ V or VDD}, \text{ and } T_{CASE} = 25^{\circ}\text{C}, \text{ with a 50 } \Omega \text{ system, unless otherwise noted. RFx refers to RF1 to RF8, and } V_{CTRL} \text{ is the digital control inputs voltage of the V1, V2, and V3 pins.}$ 

Table 1. Specifications

| Parameter                       | Symbol                                | Test Conditions/Comments                                                           | Min 1 | ур Мах         | Unit   |
|---------------------------------|---------------------------------------|------------------------------------------------------------------------------------|-------|----------------|--------|
| FREQUENCY RANGE                 | f                                     |                                                                                    | 100   | 20,000         | MHz    |
| INSERTION LOSS                  |                                       |                                                                                    |       |                |        |
| Between RFC and RFx (On)        |                                       | 100 MHz to 6 GHz                                                                   | 1     | .3             | dB     |
|                                 |                                       | 6 GHz to 12 GHz                                                                    | 1     | .5             | dB     |
|                                 |                                       | 12 GHz to 20 GHz                                                                   | 1     | .85            | dB     |
| ISOLATION                       |                                       |                                                                                    |       |                |        |
| Between RFC and RFx             |                                       | 100 MHz to 12 GHz                                                                  | 5     | 50             | dB     |
|                                 |                                       | 12 GHz to 20 GHz                                                                   |       | 15             | dB     |
| Between RFx and RFx             |                                       | 100 MHz to 12 GHz                                                                  |       | 16             | dB     |
|                                 |                                       | 12 GHz to 20 GHz                                                                   | 4     | 10             | dB     |
| RETURN LOSS                     |                                       |                                                                                    |       | · <del>·</del> |        |
| RFC (On)                        |                                       | 100 MHz to 6 GHz                                                                   |       | 21             | dB     |
| 14 0 (011)                      |                                       | 6 GHz to 20 GHz                                                                    |       | 7              | dB     |
| RFx (On)                        |                                       | 100 MHz to 6 GHz                                                                   |       | 22             | dB     |
| 14 A (OII)                      |                                       | 6 GHz to 12 GHz                                                                    |       | 9              | dB     |
|                                 |                                       | 12 GHz to 20 GHz                                                                   |       | 7              | dB     |
| CIMITCHING CHARACTERISTICS      |                                       | 12 31 12 10 20 31 12                                                               |       | 1              | uD uD  |
| SWITCHING CHARACTERISTICS       |                                       | 100/ to 000/ of DE output /DE                                                      |       | 0              | ne     |
| Rise Time and Fall Time         | t <sub>RISE</sub> , t <sub>FALL</sub> | 10% to 90% of RF output (RF <sub>OUT</sub> )                                       |       | 0              | ns     |
| On Time and Off Time            | t <sub>ON</sub> , t <sub>OFF</sub>    | 50% V <sub>CTRL</sub> to 90% of RF <sub>OUT</sub>                                  | 5     | 55             | ns     |
| RF Settling Time                |                                       | 500/ V                                                                             |       | 00             |        |
| 0.1 dB                          |                                       | 50% V <sub>CTRL</sub> to 0.1 dB of final RF <sub>OUT</sub>                         | 1     | 00             | ns     |
| INPUT LINEARITY <sup>1</sup>    |                                       |                                                                                    |       |                |        |
| Compression Point               |                                       |                                                                                    |       |                |        |
| 0.1 dB                          | P0.1dB                                | f = 100 MHz to 20 GHz                                                              |       | 33             | dBm    |
| 1 dB                            | P1dB                                  | f = 100 MHz to 20 GHz                                                              |       | 33.5           | dBm    |
| Third-Order Intercept           | IIP3                                  | Two tone input power = 15 dBm each tone, f = 100 MHz to 20 GHz, $\Delta f$ = 1 MHz | 5     | 55             | dBm    |
| VIDEO FEEDTHROUGH <sup>2</sup>  |                                       |                                                                                    | 1     | BD             | mV p-p |
| SUPPLY CURRENT                  |                                       | VDD and VSS pins                                                                   |       |                |        |
| Positive Supply Current         | I <sub>DD</sub>                       |                                                                                    | 2     | 220            | μA     |
| Negative Supply Current         | I <sub>SS</sub>                       |                                                                                    | 5     | 580            | μA     |
| DIGITAL CONTROL INPUTS          |                                       | LS, EN, V1, V2, and V3 pins                                                        |       |                |        |
| Voltage                         |                                       |                                                                                    |       |                |        |
| Low                             | V <sub>INL</sub>                      |                                                                                    | 0     | 0.8            | V      |
| High                            | V <sub>INH</sub>                      |                                                                                    | 1.2   | 3.3            | V      |
| Current                         |                                       |                                                                                    |       |                |        |
| Low                             | I <sub>INL</sub>                      |                                                                                    |       | <b>:</b> 1     | μA     |
| High                            | I <sub>INH</sub>                      | V1, V2, and V3 pins                                                                |       | ·<br>1         | μA     |
| 3                               | IIVII                                 | EN and LS pins                                                                     |       | 33             | μA     |
| RECOMMENDED OPERATING CONDITONS |                                       |                                                                                    |       | · <del>-</del> | L., ,  |
| Supply Voltage                  |                                       |                                                                                    |       |                |        |
| Positive                        | V <sub>DD</sub>                       |                                                                                    | 3.15  | 3.45           | V      |
| Negative                        |                                       |                                                                                    | -3.45 | -3.15          | V      |
| _                               | V <sub>SS</sub>                       |                                                                                    |       | -3.15<br>VDD   |        |
| Digital Control Input Voltage   | V <sub>CTRL</sub>                     | f = 100 MHz to 20 CHz T = 25°C4                                                    | 0     | עטע            | V      |
| RF Power Handling <sup>3</sup>  | P <sub>IN</sub>                       | $f = 100 \text{ MHz to } 20 \text{ GHz}, T_{CASE} = 85^{\circ}C^{4}$               |       |                |        |
| Insertion Loss Path             |                                       |                                                                                    |       |                |        |

analog.com Rev. PrF | 3 of 14

### **SPECIFICATIONS**

Table 1. Specifications (Continued)

| Parameter        | Symbol            | Test Conditions/Comments           | Min | Тур | Max  | Unit |
|------------------|-------------------|------------------------------------|-----|-----|------|------|
| Average          |                   |                                    |     |     | 30   | dBm  |
| Pulse            |                   | 100 µs pulse width, 15% duty cycle |     |     | 33   | dBm  |
| Hot Switching    |                   |                                    |     |     | 30   | dBm  |
| Case Temperature | T <sub>CASE</sub> |                                    | -40 |     | +105 | °C   |

<sup>&</sup>lt;sup>1</sup> For input linearity performance over frequency, see the Input Power Compression and Third-Order Intercept section.

## SINGLE-SUPPLY OPERATION SPECIFICATIONS

VDD = 3.3 V, VSS = 0 V,  $V_{CTRL}$  = 0 V or VDD, and  $T_{CASE}$  = 25°C, with a 50  $\Omega$  system, unless otherwise noted.

The small signal and bias characteristics are maintained for the single-supply operation.

Table 2. Single-Supply Operation Specifications

| Parameter                        | Symbol                                | Test Conditions/Comments                                                   | Min | Тур | Max    | Unit |
|----------------------------------|---------------------------------------|----------------------------------------------------------------------------|-----|-----|--------|------|
| FREQUENCY RANGE                  |                                       |                                                                            | 100 |     | 20,000 | MHz  |
| SWITCHING                        |                                       |                                                                            |     |     |        |      |
| Rise Time and Fall Time          | t <sub>RISE</sub> , t <sub>FALL</sub> | 10% to 90% of RF <sub>OUT</sub>                                            |     | TBD |        | ns   |
| On Time and Off Time             | t <sub>ON</sub> , t <sub>OFF</sub>    | 50% V <sub>CTRL</sub> to 90% of RF <sub>OUT</sub>                          |     | TBD |        | ns   |
| 0.1 dB Settling Time             |                                       | 50% V <sub>CTRL</sub> to 0.1 dB of final RF <sub>OUT</sub>                 |     | TBD |        | ns   |
| INPUT LINEARITY                  |                                       |                                                                            |     |     |        |      |
| 0.1 dB Power Compression         | P0.1dB                                | f = 100 MHz to 20 GHz                                                      |     | TBD |        | dBm  |
| Third-Order Intercept            | IP3                                   | Two-tone input power = 15 dBm each tone, f = 100 MHz to 20 GHz, Δf = 1 MHz |     | TBD |        | dBm  |
| Second-Order Intercept           | IP2                                   | Two-tone input power = 15 dBm each tone, f = TBD GHz, $\Delta$ f = 1 MHz   |     | TBD |        | dBm  |
| RECOMMENDED OPERATING CONDITIONS |                                       |                                                                            |     |     |        |      |
| RF Power Handling                |                                       | f = 100 MHz to 20 GHz, T <sub>CASE</sub> = 85°C                            |     |     |        |      |
| Insertion Loss Path              |                                       |                                                                            |     |     |        |      |
| Average                          |                                       |                                                                            |     |     | TBD    | dBm  |
| Pulse                            |                                       | 100 μs pulse width, 15% Duty cycle                                         |     |     | TBD    | dBm  |
| Hot Switching                    |                                       |                                                                            |     |     | TBD    | dBm  |
| Case Temperature                 | T <sub>CASE</sub>                     |                                                                            | -40 |     | +105   | °C   |

analog.com Rev. PrF | 4 of 14

<sup>&</sup>lt;sup>2</sup> Video feedthrough is the peak transient measured at the RF ports in a 50 Ω test setup, without an RF signal present while switching the control voltage.

<sup>&</sup>lt;sup>3</sup> For power derating over frequency, see Figure 2.

<sup>&</sup>lt;sup>4</sup> For 105°C operation, the power handling derates from the T<sub>CASE</sub> = 85°C specification by 3 dB.

#### **ABSOLUTE MAXIMUM RATINGS**

For recommended operating conditions, see Table 1 and Table 2.

Table 3. Absolute Maximum Ratings

| Parameter                                                                                                                                             | Rating                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Supply Voltage                                                                                                                                        |                                |
| VDD                                                                                                                                                   | -0.3 V to +3.6 V               |
| VSS                                                                                                                                                   | -3.6 V to +0.3 V               |
| Digital Control Input <sup>1</sup>                                                                                                                    |                                |
| Voltage                                                                                                                                               | -0.3 V to VDD + 0.3 V or 3.3 V |
| Current                                                                                                                                               | 3 mA                           |
| RF Input Power <sup>2</sup>                                                                                                                           |                                |
| Dual Supply (VDD = 3.3 V, VSS = $-3.3$ V, f = 100 MHz to 20 GHz, $T_{CASE}$ = 85°C <sup>3</sup> )                                                     |                                |
| Through Path                                                                                                                                          | 33.5 dBm                       |
| Hot Switching                                                                                                                                         | 30.5 dBm                       |
| Single Supply (VDD = $3.3 \text{ V}$ , VSS = $0 \text{ V}$ , f = $100 \text{ MHz}$ to $20 \text{ GHz}$ , $T_{\text{CASE}} = 85^{\circ}\text{C}^{3}$ ) |                                |
| Through Path                                                                                                                                          | TBD dBm                        |
| Hot Switching                                                                                                                                         | TBD dBm                        |
| Unbiased (VDD, VSS = 0V)                                                                                                                              | TBD dBm                        |
| Temperature                                                                                                                                           |                                |
| Junction (T <sub>J</sub> )                                                                                                                            | 135°C                          |
| Storage                                                                                                                                               | -65°C to +150°C                |
| Reflow                                                                                                                                                | 260°C                          |

- Overvoltages at digital control inputs are clamped by internal diodes. Current must be limited to the maximum rating given.
- <sup>2</sup> For power derating over frequency, see Figure 2.
- For 105°C operation, the power handling degrades from the T<sub>CASE</sub> = 85°C specification by 3 dB.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{\text{JC}}$  is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

| Package Type        | $\theta_{JC}^{1}$ | Unit |
|---------------------|-------------------|------|
| CC-36-2             |                   |      |
| Insertion Loss Path | 130               | °C/W |

 $<sup>^{1}~\</sup>theta_{JC}$  was determined by simulation under the following conditions: the heat transfer is due solely to thermal conduction from the channel through the

round pad to the PCB, and the ground pad is held constant at the operating temperature of 85°C.

#### **POWER DERATING CURVE**

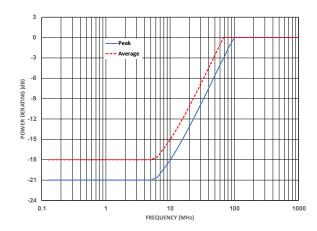



Figure 2. Power Derating vs. Frequency, T<sub>CASE</sub> = 85°C

### **ELECTROSTATIC DISCHARGE (ESD) RATINGS**

The following ESD information is provided for handling of ESD sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

#### **ESD Ratings for ADRF5080**

Table 5. ADRF5080, 36-Terminal LGA

| ESD Model               | Withstand Threshold (V) | Class |
|-------------------------|-------------------------|-------|
| HBM                     |                         |       |
| RFx and RFC Pins        | 2000                    | 2     |
| Supply and Control Pins | 2000                    | 2     |
| CDM                     | 500                     | C2A   |

### **ESD CAUTION**



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. PrF | 5 of 14

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

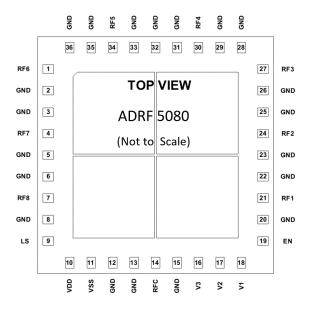



Figure 3. Pin Configuration (Top View)

Table 6. Pin Function Descriptions

| Pin No.                                    | Mnemonic | Description                                                                                                                                                                                                     |
|--------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                          | RF6      | RF Throw Port 6. The RF6 pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required                                                                                                  |
|                                            |          | when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.                                                                                                                        |
| 2, 3, 5, 6, 8, 12, 13, 15, 20, 22, 23, 25, | GND      | Ground. The GND pins must be connected to the RF and DC ground of the PCB.                                                                                                                                      |
| 26, 28, 29, 31 to 33, 35, 36               | DE7      | DETI DIZ TI DEZ : : DO LI I OV LAO II II 500 NI DOLI I:                                                                                                                                                         |
| 4                                          | RF7      | RF Throw Port 7. The RF7 pin is DC-coupled to 0 V and AC matched to 50 $\Omega$ . No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic. |
| 7                                          | RF8      | RF Throw Port 8. The RF8 pin is DC-coupled to 0 V and AC matched to 50 $\Omega$ . No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic. |
| 9                                          | LS       | Logic Select. See Table 7 for the truth table. See Figure 6 for the interface schematic.                                                                                                                        |
| 10                                         | VDD      | Positive Supply Voltage.                                                                                                                                                                                        |
| 11                                         | VSS      | Negative Supply Voltage.                                                                                                                                                                                        |
| 14                                         | RFC      | RF Common Port. The RFC pin is DC-coupled to 0 V and AC matched to 50 $\Omega$ . No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.  |
| 16                                         | V3       | Digital Input 3. See Table 7 for the truth table. See Figure 5 for the interface schematic.                                                                                                                     |
| 17                                         | V2       | Digital Input 2. See Table 7 for the truth table. See Figure 5 for the interface schematic.                                                                                                                     |
| 18                                         | V1       | Digital Input 1. See Table 7 for the truth table. See Figure 5 for the interface schematic.                                                                                                                     |
| 19                                         | EN       | Enable Input. See Table 7 for the truth table. See Figure 6 for the interface schematic.                                                                                                                        |
| 21                                         | RF1      | RF Throw Port 1. The RF1 pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.         |
| 24                                         | RF2      | RF Throw Port 2. This pin is dc-coupled to 0 V and ac matched to 50 $\Omega$ . No dc blocking capacitor is required when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.    |
| 27                                         | RF3      | RF Throw Port 3. The RF3 pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.         |
| 30                                         | RF4      | RF Throw Port 4. The RF4 pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.         |
| 34                                         | RF5      | RF Throw Port 5. The RF5 pin is DC-coupled to 0 V and AC matched to 50 Ω. No DC blocking capacitor is required when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.         |
|                                            | EPAD     | Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.                                                                                                                              |

analog.com Rev. PrF | 6 of 14

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

## **INTERFACE SCHEMATICS**

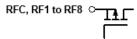



Figure 4. RFx (RFC, RF1 to RF8) Interface Schematic

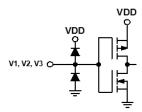



Figure 5. V1 to V3 Interface Schematic

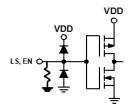



Figure 6. EN and LS Interface Schematic

analog.com Rev. PrF | 7 of 14

## **INSERTION LOSS, RETURN LOSS, AND ISOLATION**

VDD = 3.3 V, VSS = -3.3 V, V<sub>LS</sub>, V<sub>EN</sub>, V1, V2, or V3 = 0 V or V<sub>DD</sub>, and T<sub>CASE</sub> =  $25^{\circ}$ C in a 50  $\Omega$  system, unless otherwise noted. Measured on the evaluation board.

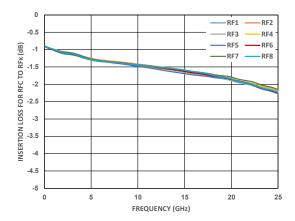



Figure 7. Insertion Loss for RFC to RFx (On) vs. Frequency

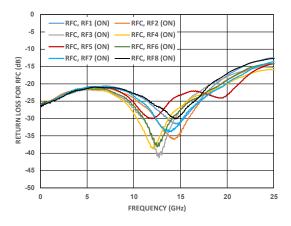



Figure 8. Return Loss for RFC (On) vs. Frequency

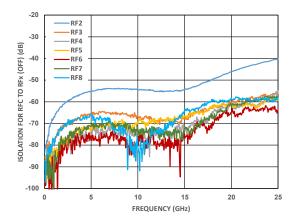



Figure 9. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF1 Path On

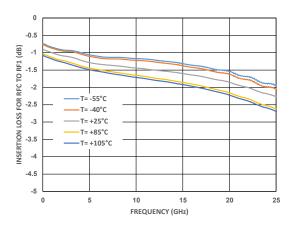



Figure 10. Insertion Loss for RFC to RF1 (On) vs. Frequency over Temperature

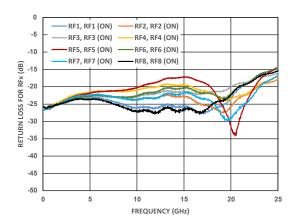



Figure 11. Return Loss for RFx (On) vs. Frequency

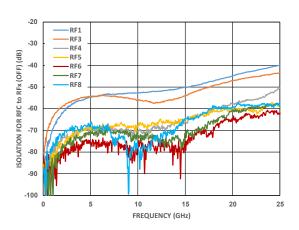



Figure 12. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF2 Path On

analog.com Rev. PrF | 8 of 14

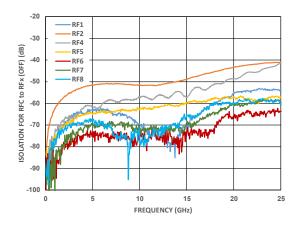



Figure 13. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF3 Path On

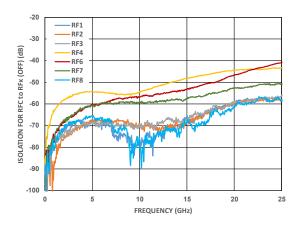



Figure 14. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF5 Path On

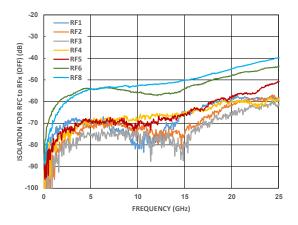



Figure 15. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF7 Path On

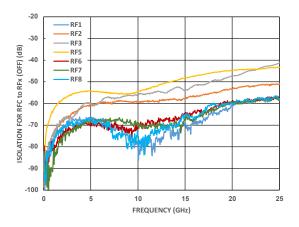



Figure 16. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF4 Path On

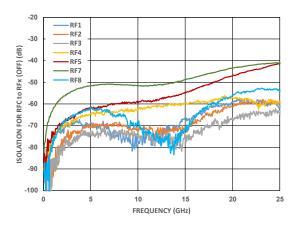



Figure 17. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF6 Path On

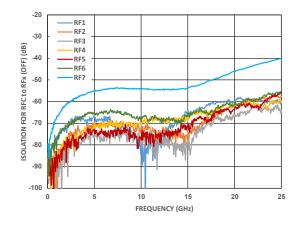



Figure 18. Isolation for RFC to RFx (Off) vs. Frequency, RFC to RF8 Path On

analog.com Rev. PrF | 9 of 14

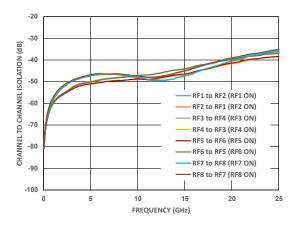



Figure 19. Channel to Channel Isolation (Worst Case) vs. Frequency, RFC to RFx Path On

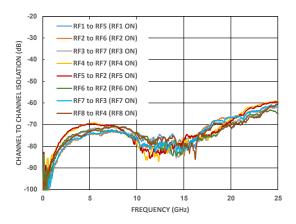



Figure 20. Channel to Channel Isolation (Best Case) vs. Frequency, RFC to RFx Path On

analog.com Rev. PrF | 10 of 14

## INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

VDD = 3.3 V, VSS = -3.3 V, V<sub>LS</sub>, V<sub>EN</sub>, V1, V2, or V3 = 0 V or V<sub>DD</sub>, and T<sub>CASE</sub> = 25°C on a 50  $\Omega$  system, unless otherwise noted. Measured on the evaluation board.

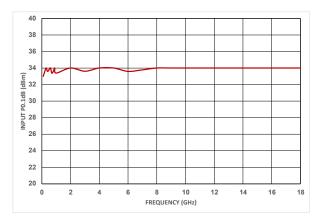



Figure 21. Input P0.1dB vs. Frequency

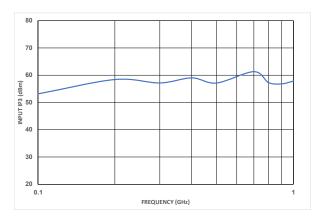



Figure 24. Input IP3 vs. Frequency, Low Frequency Detail

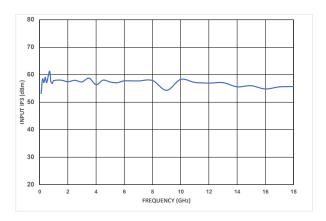



Figure 22. Input IP3 vs. Frequency

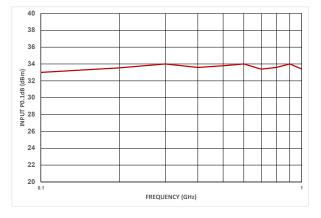



Figure 23. Input P0.1dB vs. Frequency, Low Frequency Detail

analog.com Rev. PrF | 11 of 14

#### THEORY OF OPERATION

The ADRF5080 integrates a driver to perform logic function internally and to provide the advantage of a simplified CMOS-/LVTTL-compatible control interface. The driver features five digital control input pins (LS, EN, V1, V2, and V3) that control the state of the RFx paths (see Table 7).

When the EN pin is logic low, the logic level applied to the CMOS control input pin determines which RF port is in the insertion loss state and which RF port is in the isolation state. The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The isolation path provides high loss between the insertion loss path and the unselected RF throw port. The unselected RF port of the ADRF5080 is reflective.

When the EN pin is logic high, the switch is in an all off state regardless of the logic state of the LS, V1, V2 and V3 pins, and all of the RFx to RFC path is in an isolation state.

The LS input allows the user to define the control input logic sequence for the RF path selections. The logic level applied to the V1, V2, and V3 pins determine which RF port is in the insertion loss state while the other three paths are in the isolation state.

#### RF INPUT AND OUTPUT

All of the RF ports (RFC, RF1to RF8) are DC-coupled to 0 V, and no DC blocking is required at the RF ports when the RF line potential is equal to 0 V. The RF ports are internally matched to 50  $\Omega$ . Therefore, external matching networks are not required.

The switch design is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RF throw port.

Table 7. Control Voltage Truth Table

## **POWER SUPPLY**

The ADRF5080 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.

The ideal power-up sequence is as follows:

- 1. Connect GND to ground.
- 2. Power up VDD and VSS. Powering up VSS after VDD avoids current transients on VDD during ramp up.
- 3. Apply a control voltage to the digital control inputs (EN, LS, V1, V2, and V3). Applying a control voltage to the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. Use a series 1 kΩ resistor to limit the current flowing into the control pin in such cases. If the control pins are not driven to a valid logic state (that is, controller output is in high impedance state) after VDD is powered up, it is recommended to use a pull-up or pull-down resistor.
- 4. Apply an RF input signal.

The ideal power-down sequence is the reverse order of the powerup sequence.

## **SINGLE-SUPPLY OPERATION**

The ADRF5080 can operate with a single positive supply voltage applied to the VDD pin and VSS pin connected to ground. However, some performance degradations can occur in the input compression and input third-order intercept.

|      | Digita      | al Control  | Inputs      |             |            | RFx Paths  |            |            |            |            |            |            |
|------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
| EN   | LS          | V3          | V2          | <b>V</b> 1  | RF1 to RFC | RF2 to RFC | RF3 to RFC | RF4 to RFC | RF5 to RFC | RF6 to RFC | RF7 to RFC | RF8 to RFC |
| Low  | Low         | Low         | Low         | Low         | On         | Off        |
| Low  | Low         | Low         | Low         | High        | Off        | On         | Off        | Off        | Off        | Off        | Off        | Off        |
| Low  | Low         | Low         | High        | Low         | Off        | Off        | On         | Off        | Off        | Off        | Off        | Off        |
| Low  | Low         | Low         | High        | High        | Off        | Off        | Off        | On         | Off        | Off        | Off        | Off        |
| Low  | Low         | High        | Low         | Low         | Off        | Off        | Off        | Off        | On         | Off        | Off        | Off        |
| Low  | Low         | High        | Low         | High        | Off        | Off        | Off        | Off        | Off        | On         | Off        | Off        |
| Low  | Low         | High        | High        | Low         | Off        | Off        | Off        | Off        | Off        | Off        | On         | Off        |
| Low  | Low         | High        | High        | High        | Off        | On         |
| Low  | High        | Low         | Low         | Low         | Off        | On         |
| Low  | High        | Low         | Low         | High        | Off        | Off        | Off        | Off        | Off        | Off        | On         | Off        |
| Low  | High        | Low         | High        | Low         | Off        | Off        | Off        | Off        | Off        | On         | Off        | Off        |
| Low  | High        | Low         | High        | High        | Off        | Off        | Off        | Off        | On         | Off        | Off        | Off        |
| Low  | High        | High        | Low         | Low         | Off        | Off        | Off        | On         | Off        | Off        | Off        | Off        |
| Low  | High        | High        | Low         | High        | Off        | Off        | On         | Off        | Off        | Off        | Off        | Off        |
| Low  | High        | High        | High        | Low         | Off        | On         | Off        | Off        | Off        | Off        | Off        | Off        |
| Low  | High        | High        | High        | High        | On         | Off        |
| High | Low or high | Low or high | Low or high | Low or high | Off        |

analog.com Rev. PrF | 12 of 14

#### **APPLICATIONS INFORMATION**

The ADRF5080 has two power supply pins (VDD and VSS) and five digital control pins (LS, EN, V1, V2, and V3). Figure 25 shows the external components and connections for the supply and control pins. Supply and control pins are decoupled with a 10 pF or 100 pF multilayer ceramic capacitor. The device pinout allows the placement of the decoupling capacitors close to the device. No other external components are needed for bias and operation, except DC blocking capacitors on the RFx pins when the RF lines are biased at a voltage different than 0 V. Refer to Pin Configuration and Function Descriptions section for further details.

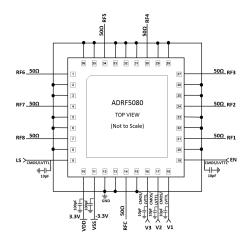



Figure 25. Recommended Schematic

## RECOMMENDATIONS FOR PCB DESIGN

The RF ports are matched to 50  $\Omega$  internally and the pinout is designed to mate a coplanar waveguide (CPWG) with 50  $\Omega$  characteristic impedance on the PCB. Figure 26 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003 dielectric material. The RF trace with a 14 mil width and a 7 mil clearance is recommended for 2.8 mil finished copper thickness.

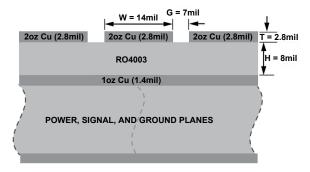



Figure 26. Example PCB Stackup

Figure 27 shows the routing of the RF traces, supply, and control signals from the device. The ground planes are connected with as many filled through vias as allowed for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.

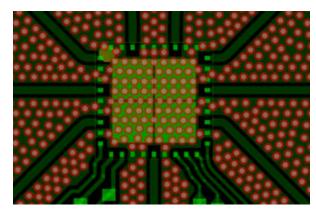



Figure 27. PCB Routings

Figure 28 shows the recommended layout from the device RFx pins to the 50  $\Omega$  CPWG on the referenced stackup. PCB pads are drawn 1:1 to device pads. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width by 2 mils and tapered to an RF trace with 45° angle. The paste mask is also designed to match the pad without any aperture reduction. The paste is divided into multiple openings for the paddle.

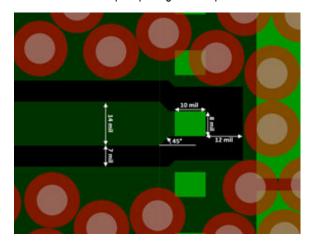



Figure 28. Recommended RFx Pin Transitions

For alternate PCB stackups with different dielectric thickness and CPWG design, contact Analog Devices, Inc., Technical Support Request for further recommendations.

analog.com Rev. PrF | 13 of 14