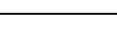
## **NXP Semiconductors**

Technical Data


## **RF Front-End Receiver Module**

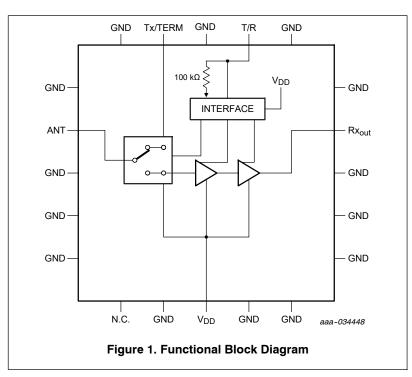
The AFRX5G272 is an integrated multi-chip module designed for TD-LTE and 5G mMIMO applications. It consists of a T/R switch, a two-stage low noise amplifier and support circuitry to work from a 5 V supply and a 1.8 V logic-level T/R control.

The device has Tx and Rx modes, which are controlled via T/R logic signaling. In Tx mode, internal RF switches direct the signal from the antenna port to an external termination resistor. In Rx mode, internal RF switches direct the signal from the antenna port to internal LNAs. While in Tx mode, the LNA is in idle mode with minimized current consumption.

#### Features

- Frequency: 2300–2690 MHz
- Rx mode (2500 MHz)
  - Gain: 33.0 dB
  - IIP3: 0 dBm
  - NF: 1.2 dB
- Tx mode (2500 MHz)
  - Robustness short-term incidents: 39.0 dBm (Avg.), 47.0 dBm (Peak)
  - Robustness indefinitely incidents: 37.0 dBm (Avg.), 45.0 dBm (Peak)
- ANT port return loss:
  - Rx mode: –20 dB
  - Tx mode: -20 dB
- Reverse isolation: 55 dB
- Insertion loss ANT to Tx/TERM port: -0.75 dB
- 1.8 V logic JEDEC-compliant control interface
- 5 V supply
- Power consumption:
  - Rx mode: 500 mW
  - Tx mode: 70 mW
- 50 ohm operation with no external matching
- Compact 6.2 mm  $\times$  6.2 mm LGA package, which is compatible with QFN 6  $\times$  6 footprint




# AFRX5G272

Document Number: AFRX5G272

Rev. 0, 07/2020

2300–2690 MHz, 33 dB, 1.2 dB NF AIRFAST RX MODULE





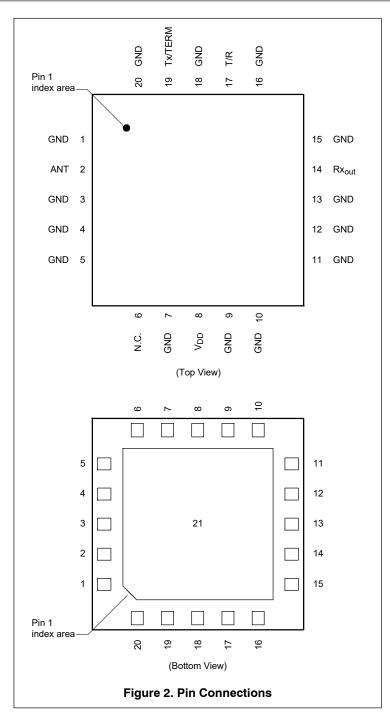
#### Table 1. Maximum Ratings

| Symbol           | Value                                                                                      | Unit                                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub>  | 5.25                                                                                       | Vdc                                                                                                                        |
| T <sub>stg</sub> | –65 to +150                                                                                | °C                                                                                                                         |
| T <sub>C</sub>   | -40 to +105                                                                                | °C                                                                                                                         |
| TJ               | 150                                                                                        | °C                                                                                                                         |
| Pin              | 20                                                                                         | dBm                                                                                                                        |
| P <sub>in</sub>  | 39.0                                                                                       | dBm                                                                                                                        |
|                  | V <sub>DD</sub><br>T <sub>stg</sub><br>T <sub>C</sub><br>T <sub>J</sub><br>P <sub>in</sub> | V <sub>DD</sub> 5.25   T <sub>stg</sub> -65 to +150   T <sub>C</sub> -40 to +105   T <sub>J</sub> 150   P <sub>in</sub> 20 |

### **Table 2. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JS-001-2017)    | 2     |
| Charge Device Model (per JS-002-2014) | Сз    |

## Table 3. Moisture Sensitivity Level


| Test Methodology                     | Rating | Package Peak Temperature | Unit |
|--------------------------------------|--------|--------------------------|------|
| Per JESD22-A113, IPC/JEDEC J-STD-020 | 3      | 260                      | °C   |

1. Continuous use at maximum temperature will affect MTTF.

## Table 4. Electrical Characteristics (V<sub>DD</sub> = 5 Vdc, 2500 MHz, T<sub>A</sub> = 25°C, 50 ohm system, in NXP Application Circuit)

| Characteristic                                                                                                                            | Symbol                         | Min    | Тур        | Мах     | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|------------|---------|------|
| Rx Mode                                                                                                                                   |                                |        |            | •       |      |
| Gain (ANT to Rx <sub>out</sub> )                                                                                                          | Gp                             | _      | 33.0       | _       | dB   |
| Third Order Input Intercept Point                                                                                                         | IIP3                           | _      | 0          | _       | dBm  |
| P <sub>in</sub> @ 1 dB Compression Point                                                                                                  | P1dBi                          | _      | -15        | —       | dBm  |
| Noise Figure ANT to Rx <sub>out</sub>                                                                                                     | NF                             | —      |            | _       | dB   |
| 100°C                                                                                                                                     |                                |        | 1.6        |         |      |
| 25°C                                                                                                                                      |                                |        | 1.2        |         |      |
| Return Loss                                                                                                                               | RL                             | —      | 00         | —       | dB   |
| ANT Port<br>Rx <sub>out</sub> Port                                                                                                        |                                |        | -20<br>-20 |         |      |
| Reverse Isolation                                                                                                                         | S <sub>12</sub>   <sup>2</sup> |        | 55         | _       | dB   |
| Tx Mode                                                                                                                                   | 19121                          |        | 00         |         | 45   |
| Return Loss                                                                                                                               | RL                             | _      |            | _       | dB   |
| ANT Port                                                                                                                                  |                                |        | -20        |         |      |
| Tx Port                                                                                                                                   |                                |        | -20        |         |      |
| Insertion Loss ANT to Tx/TERM                                                                                                             | IL                             |        | -0.75      | —       | dB   |
| Pout @ 0.1 dB Compression Point (ANT to Tx)                                                                                               |                                |        | 45         | -       | dBm  |
| Power Handling — Derating and Incidence                                                                                                   |                                |        |            |         |      |
| Tx Port, Normal Operation: 2500 MHz, –40°C to +100°C, P <sub>avg</sub> ,<br>20 MHz LTE, 8 dB PAR Incident on ANT P <sub>in</sub>          | _                              | _      | 37.0       | _       | dBm  |
| Tx Port, Short-Term Incident (10S): 2500 MHz, -40°C to +100°C,<br>P <sub>avg</sub> , 20 MHz LTE, 8 dB PAR Incident on ANT P <sub>in</sub> | —                              |        | 39.0       | —       | dBm  |
| Rx Port, Normal Operation: 2500 MHz, -40°C to +100°C, P <sub>avg</sub> , CW,<br>Incident on ANT P <sub>in</sub>                           | _                              |        | 20.0       | _       | dBm  |
| <b>Fiming</b>                                                                                                                             | 1                              | 1      | 1          |         |      |
| ANT to Rx <sub>out</sub> Gain Setting Time to within 0.3 dB of Final after T/R<br>Command, -10°C to +105°C                                | _                              |        | < 1.0      | _       | μsec |
| ANT to Termination Path Insertion Loss Setting Time to within 0.3 dB of Final after T/R Command, $-10^{\circ}$ C to $+105^{\circ}$ C      | _                              | _      | 0.5        | _       | μsec |
| T/R Interface                                                                                                                             | 1                              | 1      | 1          | 1       |      |
|                                                                                                                                           | V <sub>IL</sub>                | _      | _          | 0.6825  | V    |
| JEDEC T/R Interface Voltage                                                                                                               | V <sub>IH</sub>                | 1.0725 | _          | _       | V    |
| Table 5. Ordering Information                                                                                                             | 1                              |        |            |         |      |
| Device Tone and Deal Informe                                                                                                              | tion                           |        |            | Deekere |      |

| Device      | Tape and Reel Information                               | Package                |
|-------------|---------------------------------------------------------|------------------------|
| AFRX5G272T4 | T4 Suffix = 2,500 Units, 16 mm Tape Width, 13-inch Reel | 6.2 mm × 6.2 mm Module |



### **Table 6. Functional Pin Description**

| Pin Number                                           | Pin Function      | Pin Description                                                                               |
|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------|
| 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 18, 20, 21 | GND               | Ground                                                                                        |
| 2                                                    | ANT               | Antenna Port/RF Input Port                                                                    |
| 6                                                    | N.C.              | No Connection                                                                                 |
| 8                                                    | V <sub>DD</sub>   | DC Bias Voltage                                                                               |
| 14                                                   | Rx <sub>out</sub> | RF Output for LNA                                                                             |
| 17(1)                                                | T/R               | Digital Control for Transmit/Receive Switch (100 $k\Omega$ pulldown is integrated internally) |
| 19                                                   | Tx/TERM           | 50 $\Omega$ Termination Port (user will need to provide 50 $\Omega$ termination externally)   |

1. T/R = Low, ANT to Tx. T/R = High, ANT to  $Rx_{out.}$ 

## AFRX5G272



aaa-036994

Figure 3. AFRX5G272 Application Circuit Component Layout

| Table 7, AFRX5G272 Ap  | plication Circuit | <b>Designations and Values</b> |
|------------------------|-------------------|--------------------------------|
| TUDIO I ATTINO GELE AP | phoulion on our   | Designations and values        |

| Part | Description                                 | Part Number       | Manufacturer |
|------|---------------------------------------------|-------------------|--------------|
| C1   | 10 μF Chip Capacitor                        | GRM188R61A106ME69 | Murata       |
| C2   | 10 pF Chip Capacitor                        | GRM1555C1E100JA01 | Murata       |
| Q1   | Receiver Module                             | AFRX5G272         | NXP          |
| R1   | 10 kΩ, 1/16 W Chip Resistor                 | RC0402JR-0710KL   | Yageo        |
| R2   | 20 kΩ, 1/16 W Chip Resistor                 | RC0402JR-0720KL   | Yageo        |
| PCB  | Rogers R04350B, 0.010", $\epsilon_r = 3.66$ | M228234           | MTL          |

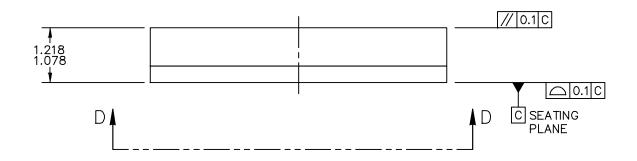
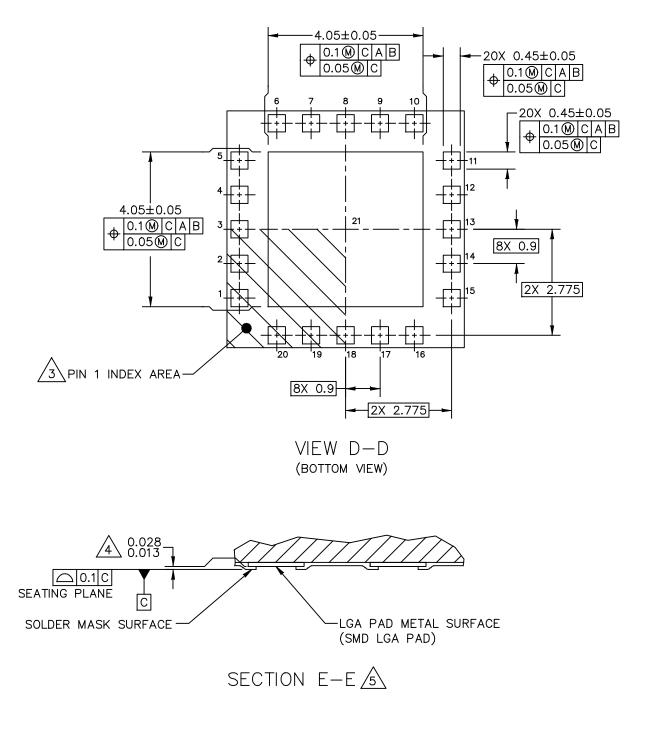

**NOTE:** R1 and R2 components are needed only when the NXP application circuit (Figure 3) is used in conjunction with a jumper for the convenient application of a T/R control voltage. R1 and R2 are not required in customer end application board designs.



Figure 4. Product Marking

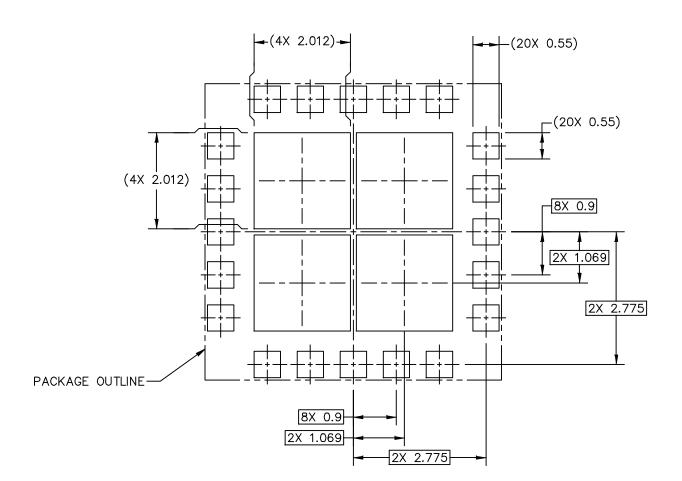
## AFRX5G272

> 6.2 PIN 1 INDEX AREA 3 F C C TOP VIEW




| © NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 2   | 9 AUG 2018 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01306D     | 0         | 1 OF 6     |

## AFRX5G272

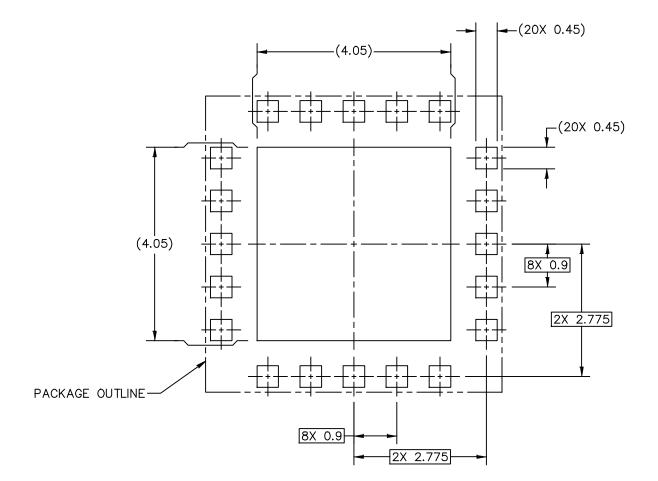

SOT1996-1

SOT1996-1



| C NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 2   | 9 AUG 2018 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01306D     | 0         | 2          |

## AFRX5G272

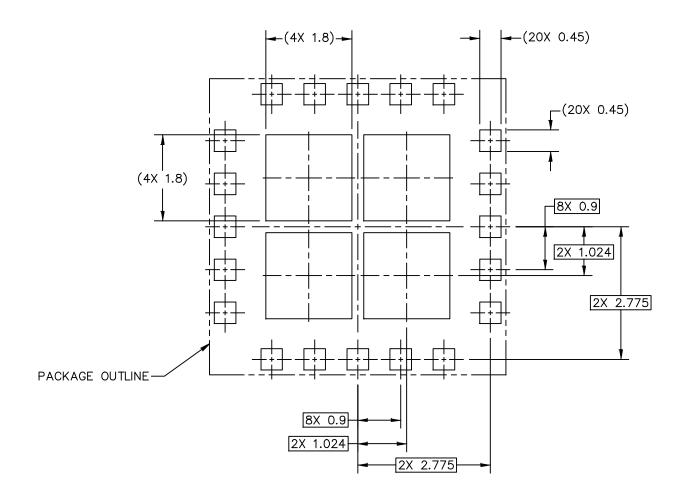



## PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| S NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 2   | 9 AUG 2018 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01306D     | 0         | 3          |

SOT1996-1




PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREAS

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| © NXP B.V.                 | ALL RIGHTS RESERVED |                 | DATE: 29  | 9 AUG 2018 |
|----------------------------|---------------------|-----------------|-----------|------------|
| MECHANICAL OUTLINE         | STANDARD:           | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE | NON-JEDEC           | 98ASA01306D     | 0         | 4          |

SOT1996-1



#### RECOMMENDED STENCIL THICKNESS 0.125

## PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

| NXP B.V. ALL RIGHTS RESERVED |           |                 |           | 9 AUG 2018 |
|------------------------------|-----------|-----------------|-----------|------------|
| MECHANICAL OUTLINE           | STANDARD: | DRAWING NUMBER: | REVISION: | PAGE:      |
| PRINT VERSION NOT TO SCALE   | NON-JEDEC | 98ASA01306D     | 0         | 5          |

NOTES:

´5.

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. DIMENSION APPLIES TO ALL LEADS AND FLAG.

THE BOTTOM VIEW SHOWS THE SOLDERABLE AREA OF THE PADS. THE CENTER PAD (PIN 21) AND THE PERIPHERAL PADS ARE SOLDER MASK DEFINED (SMD).

| ONXP B.V.                  | DATE: 2   | 9 AUG 2018      |           |       |
|----------------------------|-----------|-----------------|-----------|-------|
| MECHANICAL OUTLINE         | STANDARD: | DRAWING NUMBER: | REVISION: | PAGE: |
| PRINT VERSION NOT TO SCALE | NON-JEDEC | 98ASA01306D     | 0         | 6     |

## **PRODUCT TOOLS**

Refer to the following resource to aid your design process.

## **Development Tools**

Printed Circuit Boards

## FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

#### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |
|----------|-----------|-------------------------------|
| 0        | July 2020 | Initial release of data sheet |